Characterization and Insecticidal Efficacy of Green-Synthesized Silver Nanoparticles Against Four Stored Product Insect Species
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Collection
2.2. Biosynthesis of Silver Nanoparticles
2.3. Characterization of Biosynthesized Silver Nanoparticles
2.4. Insects Culture
2.5. Insecticidal Effect of Biosynthesized AgNPs
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization of AgNPs
3.1.1. UV-Vis Spectroscopy
3.1.2. FTIR Analysis
3.1.3. Hydrodynamic Diameter, PDI and Zeta Potential
3.1.4. TEM Analysis
3.2. Insecticidal Effect of Biosynthesized AgNPs
3.2.1. Insecticidal Effect of Biosynthesized AgNPs on Coleoptera
3.2.2. Insecticidal Effect of Biosynthesized AgNPs on Lepidoptera
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Salah-Eddin, A.; Salem, S.A.; Ghabeish, I.H.; Awwad, A.M. Toxicity of Nanoparticles against Drosophila melanogaster (Diptera: Drosophilidae). J. Nanomater. 2015, 2015, 758132. [Google Scholar] [CrossRef]
- Innes, R.; Neame, T.; Galpern, P. Contrasting late season pest insect abundance in non-crop vegetation areas and nearby canola fields in the Canadian Prairies. Agric. For. Èntomol. 2024, 26, 421–431. [Google Scholar] [CrossRef]
- Sharma, S.; Kooner, R.; Arora, R. Insect Pests and Crop Losses. In Breeding Insect Resistant Crops for Sustainable Agriculture; Arora, R., Sandhu, S., Eds.; Springer: Singapore, 2017. [Google Scholar] [CrossRef]
- Berbeć, A.K.; Staniak, M.; Feledyn-Szewczyk, B.; Kocira, A.; Stalenga, J. Organic but Also Low-Input Conventional Farming Systems Support High Biodiversity of Weed Species in Winter Cereals. Agriculture 2020, 10, 413. [Google Scholar] [CrossRef]
- Boniecki, P.; Koszela, K.; Piekarska-Boniecka, H.; Weres, J.; Zaborowicz, M.; Kujawa, S.; Majewski, A.; Raba, B. Neural identification of selected apple pests. Comput. Electron. Agric. 2015, 110, 9–16. [Google Scholar] [CrossRef]
- Abdelgaleil, S.A.; Gad, H.A.; Atta, A.A.; Al-Anany, M.S. Control of Sitophilus granarius and Sitophilus oryzae on stored wheat using low-rate combinations of natural zeolite with three insecticides. J. Stored Prod. Res. 2022, 97, 101975. [Google Scholar] [CrossRef]
- Khan, A.A. Insect as major Carrier of aflatoxins and mycotoxin in foods: A review. J. Entomol. Zool. Stud. 2024, 12, 46–53. [Google Scholar] [CrossRef]
- Tarlack, P.; Mehrkhou, F.; Mousavi, M. Life history and fecundity rate of Ephestia kuehniella (Lepidoptera: Pyralidae) on different wheat flour varieties. Arch. Phytopathol. Plant Prot. 2014, 48, 95–103. [Google Scholar] [CrossRef]
- Vitta, N.; Aguilar, V. La Polilla India de la Harina Plodia interpunctella (Hübner); Ficha Técnica n° 26, INIA La Platina; INIA: Santiago, Chile, 2019; pp. 1–2. [Google Scholar]
- Altunç, Y.E.; Chi, H.; Güncan, A. Life table parameters, consumption, and frass production of Plodia interpunctella on four major cultivars of Turkish hazelnut. Crop. Prot. 2025, 197, 107309. [Google Scholar] [CrossRef]
- Fenner, K.; Canonica, S.; Wackett, L.P.; Elsner, M. Evaluating pesticide degradation in the environment: Blind spots and emerging opportunities. Science 2013, 341, 752–758. [Google Scholar] [CrossRef]
- Morrissey, C.A.; Mineau, P.; Devries, J.H.; Sanchez-Bayo, F.; Liess, M.; Cavallaro, M.C.; Liber, K. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ. Int. 2015, 74, 291–303. [Google Scholar] [CrossRef]
- Goulson, D. Review: An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 2013, 50, 977–987. [Google Scholar] [CrossRef]
- Riedo, J.; Wettstein, F.E.; Rösch, A.; Herzog, C.; Banerjee, S.; Büchi, L.; Charles, R.; Wächter, D.; Martin-Laurent, F.; Bucheli, T.D.; et al. Widespread Occurrence of Pesticides in Organically Managed Agricultural Soils-the Ghost of a Conventional Agricultural Past? Environ. Sci. Technol. 2021, 55, 2919–2928. [Google Scholar] [CrossRef]
- Martínez-Cisterna, D.; Rubilar, O.; Tortella, G.; Chen, L.; Chacón-Fuentes, M.; Lizama, M.; Parra, P.; Bardehle, L. Silver Nanoparticles as a Potent Nanopesticide: Toxic Effects and Action Mechanisms on Pest Insects of Agricultural Importance—A Review. Molecules 2024, 29, 5520. [Google Scholar] [CrossRef]
- Santos, T.S.; de Souza Varize, C.; Sanchez-Lopez, E.; Jain, S.A.; Souto, E.B.; Severino, P.; Mendonça, M.d.C. Entomopathogenic Fungi-Mediated AgNPs: Synthesis and Insecticidal Effect against Plutella xylostella (Lepidoptera: Plutellidae). Materials 2022, 15, 7596. [Google Scholar] [CrossRef]
- AL-Jaddawi, A.; Hamad, N.; Mohammed, K.; Fahmy, E. Effect of New Bio-component of Cytoplasmic Polyhedrosis Virus (Cypovirus1) with Silver Nanoparticles against Four Pests in Stored Food Products. J. Pure. Appl. Microbiol. 2024, 18, 626–637. [Google Scholar] [CrossRef]
- Martínez-Cisterna, D.; Rubilar, O.; Chen, L.; Lizama, M.; Chacón-Fuentes, M.; Quiroz, A.; Parra, P.; Rebolledo, R.; Bardehle, L. Biosynthesized Chitosan-Coated Silver Nanoparticles: Insecticide Activity and Sublethal Effects Against Drosophila suzukii (Diptera: Drosophilidae). Biomolecules 2025, 15, 490. [Google Scholar] [CrossRef]
- Jiang, T.; Huang, J.; Peng, J.; Wang, Y.; Du, L. Characterization of Silver Nanoparticles Synthesized by the Aqueous Extract of Zanthoxylum nitidum and Its Herbicidal Activity against Bidens pilosa L. Nanomaterials 2023, 13, 1637. [Google Scholar] [CrossRef]
- Rajaganesh, R.; Murugan, K. Anti-dengue potential and mosquitocidal effect of marine green algae-stabilized Mn-doped superparamagnetic iron oxide nanoparticles (Mn-SPIONs): An eco-friendly approach. Environ. Sci. Pollut. Res. Int. 2024, 31, 19575–19594. [Google Scholar] [CrossRef]
- Fahim, M.; Shahzaib, A.; Nishat, N.; Jahan, A.; Ahmad, T.; Inam, A. Green synthesis of silver nanoparticles: A comprehensive review of methods, influencing factors, and applications. JCIS Open 2024, 16, 100125. [Google Scholar] [CrossRef]
- Vanlalveni, C.; Lallianrawna, S.; Biswas, A.; Selvaraj, M.; Changmai, B.; Lalthazuala, S. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Adv. 2021, 11, 2804–2837. [Google Scholar] [CrossRef]
- Manosalva, N.; Tortella, G.; Diez, M.C.; Schalchli, H.; Seabra, A.; Durán, N.; Rubilar, O. Green synthesis of silver nanoparticles: Efect of synthesis reaction parameters on antimicrobial activity. World J. Microbiol. Biotechnol. 2019, 35, 88. [Google Scholar] [CrossRef]
- Artigas, J.N. Entomología Económica: Insectos de Interés Agrícola, Forestal, Médico y Veterinario; Editorial Universidad de Concepción: Concepción, Chile, 1994. [Google Scholar]
- Abbot, W. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef] [PubMed]
- Suresh, U.; Murugan, K.; Panneerselvam, C.; Rajaganesh, R.; Roni, M.; Aziz, A.L.; Naji, H.; Trivedi, S.; Rehman, H.; Kumar, S.; et al. Suaeda maritima-based herbal coils and green nanoparticles as potential biopesticides against the dengue vector Aedes aegypti and the tobacco cutworm Spodoptera litura. Physiol. Mol. Plant Pathol. 2017, 101, 225–235. [Google Scholar] [CrossRef]
- Murugan, K.; Dinesh, D.; Paulpandi, M.; Althbyani, A.D.; Subramaniam, J.; Madhiyazhagan, P.; Wang, L.; Suresh, U.; Kumar, P.M.; Mohan, J.; et al. Nanoparticles in the fight against mosquito-borne diseases: Bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 2015, 114, 4349–4361. [Google Scholar] [CrossRef]
- Al Mashud, M.A.; Moinuzzaman, M.D.; Hossain, M.S.; Ahmed, S.; Ahsan, G.; Reza, A.; Anwar, R.B.; Uddin, M.H.; Momin, M.A.; Hena Mostofa Jamal, M.A. Green synthesis of silver nanoparticles using Cinnamomum tamala (Tejpata) leaf and their potential application to control multidrug-resistant Pseudomonas aeruginosa isolated from hospital drainage water. Heliyon 2022, 8, e09920. [Google Scholar] [CrossRef]
- Zubair, M.; Azeem, M.; Mumtaz, C.; Younas, M.; Muhammad, A.; Zubair, E.; Khalid, A.; Hafeez, F.; Rizwan, M.; Ali, S. Green synthesis and characterization of silver nanoparticles from Acacia nilotica and their anticancer, antidiabetic and antioxidant efficacy. Environ. Pollut. 2022, 304, 119249. [Google Scholar] [CrossRef]
- Chowdhury, M.; Hossain, N.; Mostofa, M.D.; Roy, M. Green synthesis and characterization of zirconium nanoparticle for dental implant applications. Heliyon 2023, 9, e12711. [Google Scholar] [CrossRef]
- De Matteis, V.; Cascione, M.; Costa, D.; Rinaldi, R. Aloe vera silver nanoparticles addition in chitosan films: Improvement of physicochemical properties for eco-friendly food packaging material. J. Mater. Res. Technol. 2023, 24, 1015–1033. [Google Scholar] [CrossRef]
- Atrooz, O.; Al-Nadaf, A.; Uysal, H.; El-Gendy, M. Biosynthesis of silver nanoparticles using Coriandrum sativum L. extract and evaluation of their antibacterial, anti-inflammatory and antinociceptive activities. S. Afr. J. Bot. 2023, 158, 219–227. [Google Scholar] [CrossRef]
- Kamaraj, C.; Rajakumar, G.; Rahuman, A.A.; Velayutham, K.; Bagavan, A.; Zahir, A.; Elango, G. Feeding deterrent activity of synthesized silver nanoparticles using manilkara zapota leaf extract against the house fly, Musca domestica (Diptera: Muscidae). Parasitol. Res. 2012, 111, 2439–2448. [Google Scholar] [CrossRef]
- Pavunraj, M.; Baskar, K.; Duraipandiyan, V.; Abdullah, N.; Rajendran, V.; Benelli, G. Toxicity of Ag Nanoparticles Synthesized Using Stearic Acid from Catharanthus roseus Leaf Extract Against Earias vittela and Mosquito Vectors (Culex quinquefasciatus and Aedes aegypti). J. Clust. Sci. 2017, 28, 2477–2492. [Google Scholar] [CrossRef]
- Akif, H.K.; Olutas, E.; Avcioglu, F.; Kaya, H.; Sahin, B. Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: One-pot synthesis, characterization, and anticancer and antibacterial activities. Beilstein J. Nanotechnol. 2023, 14, 362–376. [Google Scholar] [CrossRef]
- Ghramh, H.; Al-Ghamdi, K.h.M.; Mahyoub, J.; Ibrahim, E. Chrysanthemum extract and extract prepared silver nanoparticles as biocides to control Aedes aegypti (L.), the vector of dengue fever. J. Asia. Pac. Entomol. 2018, 21, 205–210. [Google Scholar] [CrossRef]
- Murugan, K.; Benelli, G.; Ayyapan, S.; Dinesh, D.; Panneerselvam, C.; Nicoletti, M.; Hwang, J.S.; Kumar, P.M.; Subramaniam, J.; Suresh, U. Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol. Res. 2015, 114, 2243–2253. [Google Scholar] [CrossRef]
- Vincent, S.; Kovendan, K.; Chandramohan, B.; Kamalakannan, S.; Mahesh, P.; Vasugi, C.; Praseeja, C.; Subramaniam, J.; Govindarajan, M.; Murugan, K.; et al. Swift Fabrication of Silver Nanoparticles Using Bougainvillea glabra: Potential Against the Japanese Encephalitis Vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae). J. Clust. Sci. 2016, 28, 37–58. [Google Scholar] [CrossRef]
- Rengga, W.D.P.; Yufisatari, A.; Adi, W. Synthesis of Silver nanoparticles from silver nitrate solution using green tea extract (Camelia sinensis) as bioreductor. JBAT 2017, 6, 32–38. [Google Scholar] [CrossRef]
- Elamawi, R.; Al-Harbi, R.; Hendi, A. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt. J. Biol. Pest Control. 2018, 28, 28. [Google Scholar] [CrossRef]
- Seekonda, S.; Rani, R. Eco-friendly synthesis, characterization, catalytic, antibacterial, antidiabetic, and antioxidant activities of Embelia robusta seeds extract stabilized AgNPs. J. Sci. Adv. Mater. Dev. 2022, 7, 100480. [Google Scholar] [CrossRef]
- Thirunavoukkarasu, M.; Balaji, U.; Behera, S.; Panda, P.K.; Mishra, B.K. Biosynthesis of silver nanoparticle from leaf extract of Desmodium gangeticum (L.) DC. and its biomedical potential. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 116, 424–427. [Google Scholar] [CrossRef]
- Sankar, M.V.; Abideen, S. Pesticidal effect of Green synthesized silver and lead nanoparticles using Avicennia marina against grain storage pest Sitophilus oryzae. Dig. J. Nanomater. Biostruct. 2015, 5, 32–39. [Google Scholar]
- Cheng, Z.; Tang, S.; Feng, J.; Wu, Y. Biosynthesis and antibacterial activity of silver nanoparticles using Flos sophorae Immaratus extract. Heliyon 2022, 8, e10010. [Google Scholar] [CrossRef]
- Eyssa, H.M.; Sawires, S.G.; Senna, M.M. Gamma irradiation of polyethylene nanocomposites for food packaging applications against stored-product insect pests. J. Vinyl. Addit. Technol. 2018, 25, 120–129. [Google Scholar] [CrossRef]
- Almadiy, A.A.; Nenaah, G.E.; Shawer, D.M. Facile synthesis of silver nanoparticles using harmala alkaloids and their insecticidal and growth inhibitory activities against the khapra beetle. J. Pest Sci. 2017, 91, 727–737. [Google Scholar] [CrossRef]
- Benelli, G. Mode of action of nanoparticles against insects. Environ. Sci. Pollut. Res. 2018, 5, 12329–12341. [Google Scholar] [CrossRef]
- Arvind, R.S.; Raja, S.K. Biogenic silver nanoparticles mediated stress on developmental period and gut physiology of major Lepidopteran pest Spodoptera litura (Fab.) (Lepidoptera: Noctuidae)-An eco-friendly approach of insect pest control. J. Environ. Chem. Eng. 2017, 5, 453–467. [Google Scholar] [CrossRef]
- Sayed, A.M.; Kim, S.; Behle, R.W. Characterization of silver nanoparticles synthesized by Bacillus thuringiensis as a nanobiopesticide for insect pest control. Biocontrol Sci. Technol. 2017, 27, 1308. [Google Scholar] [CrossRef]
- Meng, X.; Abdlli, N.; Wang, N.; Lü, P.; Nie, Z.; Dong, X.; Lu, S.; Chen, K. Effects of Ag Nanoparticles on Growth and Fat Body Proteins in Silkworms (Bombyx mori). Biol. Trace Elem. Res. 2017, 180, 327–337. [Google Scholar] [CrossRef]
- Manimegalai, T.; Raguvaran, K.; Kalpana, M.; Maheswaran, R. Green synthesis of silver nanoparticle using Leonotis nepetifolia and their toxicity against vector mosquitoes of Aedes aegepti and Culex quinquefasciatus and agricultural pests of Spodoptera litura and Helicoverpa armigera. Environ. Sci. Pollut. Res. Int. 2020, 27, 43103–43116. [Google Scholar] [CrossRef]
- Achari, G.; Kowshik, M. Recent Developments on Nanotechnology in Agriculture: Plant Mineral Nutrition, Health, and Interactions with Soil Microflora. J. Agric. Food Chem. 2018, 66, 8647–8661. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Martínez-Cisterna, D.; Rubilar, O.; Bardehle, L.; Chacón-Fuentes, M.; Chen, L.; Silva, B.; Lizama, M.; Parra, P.; Matamala, I.; Barra, O.; et al. Characterization and Insecticidal Efficacy of Green-Synthesized Silver Nanoparticles Against Four Stored Product Insect Species. Insects 2026, 17, 143. https://doi.org/10.3390/insects17020143
Martínez-Cisterna D, Rubilar O, Bardehle L, Chacón-Fuentes M, Chen L, Silva B, Lizama M, Parra P, Matamala I, Barra O, et al. Characterization and Insecticidal Efficacy of Green-Synthesized Silver Nanoparticles Against Four Stored Product Insect Species. Insects. 2026; 17(2):143. https://doi.org/10.3390/insects17020143
Chicago/Turabian StyleMartínez-Cisterna, Daniel, Olga Rubilar, Leonardo Bardehle, Manuel Chacón-Fuentes, Lingyun Chen, Benjamin Silva, Marcelo Lizama, Pablo Parra, Ignacio Matamala, Orlando Barra, and et al. 2026. "Characterization and Insecticidal Efficacy of Green-Synthesized Silver Nanoparticles Against Four Stored Product Insect Species" Insects 17, no. 2: 143. https://doi.org/10.3390/insects17020143
APA StyleMartínez-Cisterna, D., Rubilar, O., Bardehle, L., Chacón-Fuentes, M., Chen, L., Silva, B., Lizama, M., Parra, P., Matamala, I., Barra, O., & Rebolledo, R. (2026). Characterization and Insecticidal Efficacy of Green-Synthesized Silver Nanoparticles Against Four Stored Product Insect Species. Insects, 17(2), 143. https://doi.org/10.3390/insects17020143

