Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (900)

Search Parameters:
Keywords = hydro-meteorology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 5254 KB  
Article
Hydro-Meteorological Landslide Inventory for Sustainable Urban Management in a Coastal Region of Brazil
by Paulo Rodolpho Pereira Hader, Isabela Taici Lopes Gonçalves Horta, Victor Arroyo da Silva do Valle and Clemente Irigaray
Sustainability 2025, 17(16), 7487; https://doi.org/10.3390/su17167487 - 19 Aug 2025
Viewed by 347
Abstract
Comprehensive, standardised, multi-temporal inventories of rainfall-induced landslides linked to soil moisture remain scarce, especially in tropical regions. Addressing this gap, we present a multi-source urban inventory for Brazil’s Baixada Santista region (1988–2024). A key advance is the introduction of geographical and temporal confidence [...] Read more.
Comprehensive, standardised, multi-temporal inventories of rainfall-induced landslides linked to soil moisture remain scarce, especially in tropical regions. Addressing this gap, we present a multi-source urban inventory for Brazil’s Baixada Santista region (1988–2024). A key advance is the introduction of geographical and temporal confidence classifications, which indicates precisely how each landslide’s location and occurrence date are known, thereby addressing a previously overlooked criterion in Brazil’s landslide data treatment. The inventory comprises 2534 records categorised by spatial (G1–G3) and temporal (T1–T3) confidence. Notable findings include the following: (i) confidence classifications enhance inventory reliability for research and early warning, though precise temporal data remains challenging; (ii) multi-source integration with UAV validation is key to robust inventories in urban tropical regions; (iii) soil moisture complements rainfall-based warnings, but requires local calibration for satellite-derived estimates; (iv) data gaps and biases underscore the need for standardised landslide documentation; and (v) the framework is transferable, providing a scalable model for Brazil and worldwide. Despite limitations, the inventory provides a foundation for (i) susceptibility and hazard modelling; (ii) empirical thresholds for early warning; and (iii) climate-related trend analyses. Overall, the framework offers a sustainable, practical, transferable method for worldwide and contributes to strengthening disaster information systems and early warning capacities. Full article
(This article belongs to the Special Issue Landslide Hazards and Soil Erosion)
Show Figures

Figure 1

28 pages, 18925 KB  
Article
Development of a Two-Stage Correction Framework for Satellite, Multi-Source Merged, and Reanalysis Precipitation Products Across the Huang-Huai-Hai Plain, China, During 2000–2020
by Lijun Chao, Yao Deng, Sheng Wang, Jiahui Ren, Ke Zhang and Guoqing Wang
Remote Sens. 2025, 17(16), 2809; https://doi.org/10.3390/rs17162809 - 13 Aug 2025
Viewed by 284
Abstract
The acquisition of high-precision spatiotemporal precipitation data with long-term continuity plays an irreplaceable role in supporting agricultural modeling, hydrological forecasting, disaster prevention, and climate research. This study evaluates and corrects daily precipitation from satellite products (GPM, PERSIANN-CDR, CMORPH, GSMaP), merged datasets (GPCP, MSWEP, [...] Read more.
The acquisition of high-precision spatiotemporal precipitation data with long-term continuity plays an irreplaceable role in supporting agricultural modeling, hydrological forecasting, disaster prevention, and climate research. This study evaluates and corrects daily precipitation from satellite products (GPM, PERSIANN-CDR, CMORPH, GSMaP), merged datasets (GPCP, MSWEP, CHIRPS), and reanalysis products (ERA5, GLDAS) over the Huang-Huai-Hai Plain from 2000 to 2020. The study proposes a two-stage “error correction and residual correction” optimization framework. The error correction stage integrates machine learning with statistical methods (RF-DQDM), while the residual correction stage uses ground observations to dynamically adjust systematic biases. Results show that all corrected products outperform their original versions in spatial patterns and statistical metrics. Original precipitation data exhibit significant systematic errors modulated by topography, with eastern lowlands showing smaller errors. After correction, correlation coefficients rise above 0.8, and RMSE reductions average 60%. And product responses diverge significantly. CHIRPS improves from weakest to top performer, while model limitations constrain GLDAS enhancements. This framework establishes a transferable monsoon region optimization paradigm. This study provides a transferable bias correction framework for monsoon regions and builds a homogenized high-precision precipitation benchmark. It also recommends using CHIRPS or ERA5 for extreme rainfall analysis and MSWEP or GPCP for hydrological applications. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

19 pages, 49781 KB  
Article
Streamflow Simulation in the Cau River Basin, Northeast Vietnam, Using SWAT-Based Hydrological Modelling
by Ngoc Anh Nguyen, Van Trung Chu, Lan Huong Nguyen, Anh Tuan Ha and Trung H. Nguyen
Geographies 2025, 5(3), 41; https://doi.org/10.3390/geographies5030041 - 13 Aug 2025
Viewed by 280
Abstract
The Cau River Basin in northeastern Vietnam is an ecologically and economically important watershed, yet it has lacked comprehensive hydrological modelling to date. Characterised by highly complex topography, diverse land use/land cover, and limited hydrometeorological data, the basin presents challenges for water resource [...] Read more.
The Cau River Basin in northeastern Vietnam is an ecologically and economically important watershed, yet it has lacked comprehensive hydrological modelling to date. Characterised by highly complex topography, diverse land use/land cover, and limited hydrometeorological data, the basin presents challenges for water resource assessment and management. This study applies the SWAT hydrological model to simulate streamflow dynamics in the Cau River Basin over a 31-year period (1990–2020) using multiple-source geospatial data, including a 30 m digital elevation model, official soil and land use maps, and daily climate records from six meteorological stations. Model calibration (1997–2008) and validation (2009–2020) were conducted using the SWAT-CUP tool, achieving strong performance with a Nash–Sutcliffe Efficiency (NSE) of 0.95 and 0.90, and R2 of 0.95 and 0.91, respectively. Sensitivity analysis identified four key parameters most influential on streamflow (curve number, saturated hydraulic conductivity, soil evaporation compensation factor, and available water capacity), supporting a more focused and effective calibration process. Model results revealed substantial spatio-temporal variability in runoff, with annual surface runoff ranging from 19.8 mm (2011) to 56.4 mm (2013), generally lower in upstream sub-watersheds (<30 mm) and higher in downstream areas (>60 mm). The simulations also showed a clear seasonal contrast between the wet and dry periods. These findings support evidence-based strategies for flood and drought mitigation, inform agricultural and land use planning, and offer a transferable modelling framework for similarly complex watersheds. Full article
Show Figures

Figure 1

22 pages, 2811 KB  
Article
Deep Feature Selection of Meteorological Variables for LSTM-Based PV Power Forecasting in High-Dimensional Time-Series Data
by Husein Mauladdawilah, Mohammed Balfaqih, Zain Balfagih, María del Carmen Pegalajar and Eulalia Jadraque Gago
Algorithms 2025, 18(8), 496; https://doi.org/10.3390/a18080496 - 10 Aug 2025
Viewed by 409
Abstract
Accurate photovoltaic (PV) power forecasting is essential for grid integration, particularly in maritime climates with dynamic weather patterns. This study addresses high-dimensional meteorological data challenges by systematically evaluating 32 variables across four categories (solar irradiance, temperature, atmospheric, hydrometeorological) for day-ahead PV forecasting using [...] Read more.
Accurate photovoltaic (PV) power forecasting is essential for grid integration, particularly in maritime climates with dynamic weather patterns. This study addresses high-dimensional meteorological data challenges by systematically evaluating 32 variables across four categories (solar irradiance, temperature, atmospheric, hydrometeorological) for day-ahead PV forecasting using long short-term memory (LSTM) networks. Using six years of data from a 350 kWp solar farm in Scotland, we compare satellite-derived data and local weather station measurements. Surprisingly, downward thermal infrared flux—capturing persistent atmospheric moisture and cloud properties in maritime climates—emerged as the most influential predictor despite low correlation (1.93%). When paired with precipitation data, this two-variable combination achieved 99.81% R2, outperforming complex multi-variable models. Satellite data consistently surpassed ground measurements, with 9 of the top 10 predictors being satellite derived. Our approach reduces model complexity while improving forecasting accuracy, providing practical solutions for energy systems. Full article
(This article belongs to the Special Issue Algorithms for Feature Selection (3rd Edition))
Show Figures

Figure 1

19 pages, 3601 KB  
Article
Study on Correction Methods for GPM Rainfall Rate and Radar Reflectivity Using Ground-Based Raindrop Spectrometer Data
by Lin Chen, Huige Di, Dongdong Chen, Ning Chen, Qinze Chen and Dengxin Hua
Remote Sens. 2025, 17(15), 2747; https://doi.org/10.3390/rs17152747 - 7 Aug 2025
Viewed by 428
Abstract
The Dual-frequency Precipitation Radar (DPR) aboard the Global Precipitation Measurement (GPM) mission provides valuable three-dimensional precipitation structure data on a global scale and has been widely used in hydrometeorological research. However, due to its spatial resolution limitations and inherent algorithmic assumptions, the accuracy [...] Read more.
The Dual-frequency Precipitation Radar (DPR) aboard the Global Precipitation Measurement (GPM) mission provides valuable three-dimensional precipitation structure data on a global scale and has been widely used in hydrometeorological research. However, due to its spatial resolution limitations and inherent algorithmic assumptions, the accuracy of GPM precipitation estimates can exhibit systematic biases, especially under complex terrain conditions or in the presence of variable precipitation structures, such as light stratiform rain or intense convective storms. In this study, we evaluated the near-surface precipitation rate estimates from the GPM-DPR Level 2A product using over 1440 min of disdrometer observations collected across China from 2021 to 2023. Based on three years of stable stratiform precipitation data from the Jinghe station, we developed a least squares linear correction model for radar reflectivity. Independent validation using national disdrometer data from 2023 demonstrated that the corrected reflectivity significantly improved rainfall estimates under light precipitation conditions, although improvements were limited for convective events or in complex terrain. To further enhance retrieval accuracy, we introduced a regionally adaptive R–Z relationship scheme stratified by precipitation type and terrain category. Applying these localized relationships to the corrected reflectivity yielded more consistent rainfall estimates across diverse conditions, highlighting the importance of incorporating regional microphysical characteristics into satellite retrieval algorithms. The results indicate that the accuracy of GPM precipitation retrievals is more significantly influenced by precipitation type than by terrain complexity. Under stratiform precipitation conditions, the GPM-estimated precipitation data demonstrate the highest reliability. The correction framework proposed in this study is grounded on ground-based observations and integrates regional precipitation types with terrain characteristics. It effectively enhances the applicability of GPM-DPR products across diverse environmental conditions in China and offers a methodological reference for correcting satellite precipitation biases in other regions. Full article
Show Figures

Figure 1

21 pages, 8772 KB  
Article
Assessing Hydropower Impacts on Flood and Drought Hazards in the Lancang–Mekong River Using CNN-LSTM Machine Learning
by Muzi Zhang, Boying Chi, Hongbin Gu, Jian Zhou, Honggang Chen, Weiwei Wang, Yicheng Wang, Juanjuan Chen, Xueqian Yang and Xuan Zhang
Water 2025, 17(15), 2352; https://doi.org/10.3390/w17152352 - 7 Aug 2025
Viewed by 490
Abstract
The efficient and rational development of hydropower in the Lancang–Mekong River Basin can promote green energy transition, reduce carbon emissions, prevent and mitigate flood and drought disasters, and ensure the sustainable development of the entire basin. In this study, based on publicly available [...] Read more.
The efficient and rational development of hydropower in the Lancang–Mekong River Basin can promote green energy transition, reduce carbon emissions, prevent and mitigate flood and drought disasters, and ensure the sustainable development of the entire basin. In this study, based on publicly available hydrometeorological observation data and satellite remote sensing monitoring data from 2001 to 2020, a machine learning model of the Lancang–Mekong Basin was developed to reconstruct the basin’s hydrological processes, and identify the occurrence patterns and influencing mechanisms of water-related hazards. The results show that, against the background of climate change, the Lancang–Mekong Basin is affected by the increasing frequency and intensity of extreme precipitation events. In particular, Rx1day, Rx5day, R10mm, and R95p (extreme precipitation indicators determined by the World Meteorological Organization’s Expert Group on Climate Change Monitoring and Extreme Climate Events) in the northwestern part of the Mekong River Basin show upward trends, with the average maximum daily rainfall increasing by 1.8 mm/year and the total extreme precipitation increasing by 18 mm/year on average. The risks of flood and drought disasters will continue to rise. The flood peak period is mainly concentrated in August and September, with the annual maximum flood peak ranging from 5600 to 8500 m3/s. The Stung Treng Station exhibits longer drought duration, greater severity, and higher peak intensity than the Chiang Saen and Pakse Stations. At the Pakse Station, climate change and hydropower development have altered the non-drought proportion by −12.50% and +15.90%, respectively. For the Chiang Saen Station, the fragmentation degree of the drought index time series under the baseline, naturalized, and hydropower development scenarios is 0.901, 1.16, and 0.775, respectively. These results indicate that hydropower development has effectively reduced the frequency of rapid drought–flood transitions within the basin, thereby alleviating pressure on drought management efforts. The regulatory role of the cascade reservoirs in the Lancang River can mitigate risks posed by climate change, weaken adverse effects, reduce flood peak flows, alleviate hydrological droughts in the dry season, and decrease flash drought–flood transitions in the basin. The research findings can enable basin managers to proactively address climate change, develop science-based technical pathways for hydropower dispatch, and formulate adaptive disaster prevention and mitigation strategies. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

23 pages, 11564 KB  
Article
Cloud-Based Assessment of Flash Flood Susceptibility, Peak Runoff, and Peak Discharge on a National Scale with Google Earth Engine (GEE)
by Ivica Milevski, Bojana Aleksova, Aleksandar Valjarević and Pece Gorsevski
Atmosphere 2025, 16(8), 945; https://doi.org/10.3390/atmos16080945 - 7 Aug 2025
Viewed by 902
Abstract
Flash floods, exacerbated by climate change and land use alterations, are among the most destructive natural hazards globally, leading to significant damage and loss of life. In this context, the Flash Flood Potential Index (FFPI), which is a terrain and land surface-based model, [...] Read more.
Flash floods, exacerbated by climate change and land use alterations, are among the most destructive natural hazards globally, leading to significant damage and loss of life. In this context, the Flash Flood Potential Index (FFPI), which is a terrain and land surface-based model, and Google Earth Engine (GEE) were used to assess flood-prone zones across North Macedonia’s watersheds. The presented GEE-based assessment was accomplished by a custom script that automates the FFPI calculation process by integrating key factors derived from publicly available sources. These factors, which define susceptibility to torrential floods, include slope (Copernicus GLO-30 DEM), land cover (Copernicus GLO-30 DEM), soil type (SoilGrids), vegetation (ESA World Cover), and erodibility (CHIRPS). The spatial distribution of average FFPI values across 1396 small catchments (10–100 km2) revealed that a total of 45.4% of the area exhibited high to very high susceptibility, with notable spatial variability. The CHIRPS rainfall data (2000–2024) that combines satellite imagery and in situ measurements was used to estimate peak 24 h runoff and discharge. To improve the accuracy of CHIRPS, the data were adjusted by 30–50% to align with meteorological station records, along with normalized FFPI values as runoff coefficients. Validation against 328 historical river flood and flash flood records confirmed that 73.2% of events aligned with moderate to very high flash flood susceptibility catchments, underscoring the model’s reliability. Thus, the presented cloud-based scenario highlights the potential of the GEE’s efficacy in scalability and robustness for flash flood modeling and regional risk management at national scale. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

17 pages, 2727 KB  
Article
Local Perspectives on the Role of Dams in Altering River Ecosystem Services in West Africa
by Jean Hounkpe, Yaovi Aymar Bossa, Félicien Djigbo Badou, Flaurine Nouasse, Koupamba Gisèle Sanni Sinasson, Issoufou Yangouliba, Afissétou L. D. Bio Salifou, Irette Kodjogbe, Yacouba Yira, Ozias Hounkpatin, Luc O. C. Sintondji and Daouda Mama
Earth 2025, 6(3), 93; https://doi.org/10.3390/earth6030093 - 7 Aug 2025
Viewed by 374
Abstract
Water-related ecosystem services provide a broad range of benefits, including the mitigation of extreme hydrometeorological events, the provision of water for various uses, the support of tourism, and the provision of cultural services. This study assesses the perceptions and accessibility of these services [...] Read more.
Water-related ecosystem services provide a broad range of benefits, including the mitigation of extreme hydrometeorological events, the provision of water for various uses, the support of tourism, and the provision of cultural services. This study assesses the perceptions and accessibility of these services among communities located near the Alafiarou and Okpara dams in Benin and the Bagré dam in Burkina Faso. The methodology involved designing and implementing a questionnaire in KoboCollect, with trained agents deployed to conduct data collection at each of the three sites. Data analysis indicates that respondents identified biodiversity conservation and the provision of drinking water as the most crucial ecosystem services. Over two-thirds of participants reported observing both positive and negative changes in the services provided by rivers and in socio-economic activities since the construction of the dams. While the majority noted improvements in agriculture, irrigation, water quality, fisheries, and flow rates, other changes included biodiversity loss, a decrease in vegetation cover (notably trees and shrubs), an increase in the population of mosquitoes and other insects, and a decline in fishery resources downstream. Despite these challenges, local communities were strongly willing to participate in initiatives aimed at protecting and restoring river ecosystems and their related services. Full article
Show Figures

Figure 1

20 pages, 2731 KB  
Article
Flood Hazard Assessment and Monitoring in Bangladesh: An Integrated Approach for Disaster Risk Mitigation
by Kashfia Nowrin Choudhury and Helmut Yabar
Earth 2025, 6(3), 90; https://doi.org/10.3390/earth6030090 - 5 Aug 2025
Viewed by 708
Abstract
Floods are among the most devastating hydrometeorological natural disasters worldwide, causing massive infrastructure and economic loss in low-lying, flood-prone developing countries like Bangladesh. Effective disaster mitigation relies on organized and detailed flood damage information to facilitate emergency evacuation, coordinate relief distribution, and formulate [...] Read more.
Floods are among the most devastating hydrometeorological natural disasters worldwide, causing massive infrastructure and economic loss in low-lying, flood-prone developing countries like Bangladesh. Effective disaster mitigation relies on organized and detailed flood damage information to facilitate emergency evacuation, coordinate relief distribution, and formulate an effective disaster management policy. Nevertheless, the nation confronts considerable obstacles due to insufficient historical flood damage data and the underdevelopment of near-real-time (NRT) flood monitoring systems. This study addresses this issue by developing a replicable methodology for flood damage assessment and NRT monitoring systems. Using the Google Earth Engine (GEE) platform, we analyzed flood events from 2019 to 2023, integrating geospatial layers such as roads, cropland, etc. Analysis of flood events over the five-year period revealed substantial impacts, with 21.60% of the total area experiencing inundation. This flooding affected 6.92% of cropland and 4.16% of the population. Furthermore, 18.10% of the road network, spanning over 21,000 km within the study area, was also affected. This system has the potential to enhance emergency response capabilities during flood events and inform more effective disaster mitigation policies. Full article
Show Figures

Figure 1

25 pages, 3746 KB  
Article
Empirical Modelling of Ice-Jam Flood Hazards Along the Mackenzie River in a Changing Climate
by Karl-Erich Lindenschmidt, Sergio Gomez, Jad Saade, Brian Perry and Apurba Das
Water 2025, 17(15), 2288; https://doi.org/10.3390/w17152288 - 1 Aug 2025
Viewed by 349
Abstract
This study introduces a novel methodology for assessing ice-jam flood hazards along river channels. It employs empirical equations that relate non-dimensional ice-jam stage to discharge, enabling the generation of an ensemble of longitudinal profiles of ice-jam backwater levels through Monte-Carlo simulations. These simulations [...] Read more.
This study introduces a novel methodology for assessing ice-jam flood hazards along river channels. It employs empirical equations that relate non-dimensional ice-jam stage to discharge, enabling the generation of an ensemble of longitudinal profiles of ice-jam backwater levels through Monte-Carlo simulations. These simulations produce non-exceedance probability profiles, which indicate the likelihood of various flood levels occurring due to ice jams. The flood levels associated with specific return periods were validated using historical gauge records. The empirical equations require input parameters such as channel width, slope, and thalweg elevation, which were obtained from bathymetric surveys. This approach is applied to assess ice-jam flood hazards by extrapolating data from a gauged reach at Fort Simpson to an ungauged reach at Jean Marie River along the Mackenzie River in Canada’s Northwest Territories. The analysis further suggests that climate change is likely to increase the severity of ice-jam flood hazards in both reaches by the end of the century. This methodology is applicable to other cold-region rivers in Canada and northern Europe, provided similar fluvial geomorphological and hydro-meteorological data are available, making it a valuable tool for ice-jam flood risk assessment in other ungauged areas. Full article
Show Figures

Figure 1

32 pages, 1671 KB  
Article
Modelling the Impact of Climate Change on Runoff in a Sub-Regional Basin
by Ndifon M. Agbiji, Jonah C. Agunwamba and Kenneth Imo-Imo Israel Eshiet
Geosciences 2025, 15(8), 289; https://doi.org/10.3390/geosciences15080289 - 1 Aug 2025
Viewed by 521
Abstract
This study focuses on developing a climate-flood model to investigate and interpret the relationship and impact of climate on runoff/flooding at a sub-regional scale using multiple linear regression (MLR) with 30 years of hydro-climatic data for the Cross River Basin, Nigeria. Data were [...] Read more.
This study focuses on developing a climate-flood model to investigate and interpret the relationship and impact of climate on runoff/flooding at a sub-regional scale using multiple linear regression (MLR) with 30 years of hydro-climatic data for the Cross River Basin, Nigeria. Data were obtained from Nigerian Meteorological Agency (NIMET) for the following climatic parameters: annual average rainfall, maximum and minimum temperatures, humidity, duration of sunlight (sunshine hours), evaporation, wind speed, soil temperature, cloud cover, solar radiation, and atmospheric pressure. These hydro-meteorological data were analysed and used as parameters input to the climate-flood model. Results from multiple regression analyses were used to develop climate-flood models for all the gauge stations in the basin. The findings suggest that at 95% confidence, the climate-flood model was effective in forecasting the annual runoff at all the stations. The findings also identified the climatic parameters that were responsible for 100% of the runoff variability in Calabar (R2 = 1.000), 100% the runoff in Uyo (R2 = 1.000), 98.8% of the runoff in Ogoja (R2 = 0.988), and 99.9% of the runoff in Eket (R2 = 0.999). Based on the model, rainfall depth is the only climate parameter that significantly predicts runoff at 95% confidence intervals in Calabar, while in Ogoja, rainfall depth, temperature, and evaporation significantly predict runoff. In Eket, rainfall depth, relative humidity, solar radiation, and soil temperatures are significant predictors of runoff. The model also reveals that rainfall depth and evaporation are significant predictors of runoff in Uyo. The outcome of the study suggests that climate change has impacted runoff and flooding within the Cross River Basin. Full article
Show Figures

Figure 1

32 pages, 17155 KB  
Article
Machine Learning Ensemble Methods for Co-Seismic Landslide Susceptibility: Insights from the 2015 Nepal Earthquake
by Tulasi Ram Bhattarai and Netra Prakash Bhandary
Appl. Sci. 2025, 15(15), 8477; https://doi.org/10.3390/app15158477 - 30 Jul 2025
Viewed by 383
Abstract
The Mw 7.8 Gorkha Earthquake of 25 April 2015 triggered over 25,000 landslides across central Nepal, with 4775 events concentrated in Gorkha District alone. Despite substantial advances in landslide susceptibility mapping, existing studies often overlook the compound role of post-seismic rainfall and lack [...] Read more.
The Mw 7.8 Gorkha Earthquake of 25 April 2015 triggered over 25,000 landslides across central Nepal, with 4775 events concentrated in Gorkha District alone. Despite substantial advances in landslide susceptibility mapping, existing studies often overlook the compound role of post-seismic rainfall and lack robust spatial validation. To address this gap, we validated an ensemble machine learning framework for co-seismic landslide susceptibility modeling by integrating seismic, geomorphological, hydrological, and anthropogenic variables, including cumulative post-seismic rainfall. Using a balanced dataset of 4775 landslide and non-landslide instances, we evaluated the performance of Logistic Regression (LR), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) models through spatial cross-validation, SHapley Additive exPlanations (SHAP) explainability, and ablation analysis. The RF model outperformed all others, achieving an accuracy of 87.9% and a Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) value of 0.94, while XGBoost closely followed (AUC = 0.93). Ensemble models collectively classified over 95% of observed landslides into High and Very High susceptibility zones, demonstrating strong spatial reliability. SHAP analysis identified elevation, proximity to fault, peak ground acceleration (PGA), slope, and rainfall as dominant predictors. Notably, the inclusion of post-seismic rainfall substantially improved recall and F1 scores in ablation experiments. Spatial cross-validation revealed the superior generalizability of ensemble models under heterogeneous terrain conditions. The findings underscore the value of integrating post-seismic hydrometeorological factors and spatial validation into susceptibility assessments. We recommend adopting ensemble models, particularly RF, for operational hazard mapping in earthquake-prone mountainous regions. Future research should explore the integration of dynamic rainfall thresholds and physics-informed frameworks to enhance early warning systems and climate resilience. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

22 pages, 22134 KB  
Article
Adaptive Pluvial Flood Disaster Management in Taiwan: Infrastructure and IoT Technologies
by Sheng-Hsueh Yang, Sheau-Ling Hsieh, Xi-Jun Wang, Deng-Lin Chang, Shao-Tang Wei, Der-Ren Song, Jyh-Hour Pan and Keh-Chia Yeh
Water 2025, 17(15), 2269; https://doi.org/10.3390/w17152269 - 30 Jul 2025
Viewed by 729
Abstract
In Taiwan, hydro-meteorological data are fragmented across multiple agencies, limiting the effectiveness of coordinated flood response. To address this challenge and the increasing uncertainty associated with extreme rainfall, a real-time disaster prevention platform has been developed. This system integrates multi-source data and geospatial [...] Read more.
In Taiwan, hydro-meteorological data are fragmented across multiple agencies, limiting the effectiveness of coordinated flood response. To address this challenge and the increasing uncertainty associated with extreme rainfall, a real-time disaster prevention platform has been developed. This system integrates multi-source data and geospatial information through a cluster-based architecture to enhance pluvial flood management. Built on a Service-Oriented Architecture (SOA) and incorporating Internet of Things (IoT) technologies, AI-based convolutional neural networks (CNNs), and 3D drone mapping, the platform enables automated alerts by linking sensor thresholds with real-time environmental data, facilitating synchronized operational responses. Deployed in New Taipei City over the past three years, the system has demonstrably reduced flood risk during severe rainfall events. Region-specific action thresholds and adaptive strategies are continually refined through feedback mechanisms, while integrated spatial and hydrological trend analyses extend the lead time available for emergency response. Full article
Show Figures

Figure 1

27 pages, 6584 KB  
Article
Evaluating Geostatistical and Statistical Merging Methods for Radar–Gauge Rainfall Integration: A Multi-Method Comparative Study
by Xuan-Hien Le, Naoki Koyama, Kei Kikuchi, Yoshihisa Yamanouchi, Akiyoshi Fukaya and Tadashi Yamada
Remote Sens. 2025, 17(15), 2622; https://doi.org/10.3390/rs17152622 - 28 Jul 2025
Viewed by 514
Abstract
Accurate and spatially consistent rainfall estimation is essential for hydrological modeling and flood risk mitigation, especially in mountainous tropical regions with sparse observational networks and highly heterogeneous rainfall. This study presents a comparative analysis of six radar–gauge merging methods, including three statistical approaches—Quantile [...] Read more.
Accurate and spatially consistent rainfall estimation is essential for hydrological modeling and flood risk mitigation, especially in mountainous tropical regions with sparse observational networks and highly heterogeneous rainfall. This study presents a comparative analysis of six radar–gauge merging methods, including three statistical approaches—Quantile Adaptive Gaussian (QAG), Empirical Quantile Mapping (EQM), and radial basis function (RBF)—and three geostatistical approaches—external drift kriging (EDK), Bayesian Kriging (BAK), and Residual Kriging (REK). The evaluation was conducted over the Huong River Basin in Central Vietnam, a region characterized by steep terrain, monsoonal climate, and frequent hydrometeorological extremes. Two observational scenarios were established: Scenario S1 utilized 13 gauges for merging and 7 for independent validation, while Scenario S2 employed all 20 stations. Hourly radar and gauge data from peak rainy months were used for the evaluation. Each method was assessed using continuous metrics (RMSE, MAE, CC, NSE, and KGE), categorical metrics (POD and CSI), and spatial consistency indicators. Results indicate that all merging methods significantly improved the accuracy of rainfall estimates compared to raw radar data. Among them, RBF consistently achieved the highest accuracy, with the lowest RMSE (1.24 mm/h), highest NSE (0.954), and strongest spatial correlation (CC = 0.978) in Scenario S2. RBF also maintained high classification skills across all rainfall categories, including very heavy rain. EDK and BAK performed better with denser gauge input but required recalibration of variogram parameters. EQM and REK yielded moderate performance and had limitations near basin boundaries where gauge coverage was sparse. The results highlight trade-offs between method complexity, spatial accuracy, and robustness. While complex methods like EDK and BAK offer detailed spatial outputs, they require more calibration. Simpler methods are easier to apply across different conditions. RBF emerged as the most practical and transferable option, offering strong generalization, minimal calibration needs, and computational efficiency. These findings provide useful guidance for integrating radar and gauge data in flood-prone, data-scarce regions. Full article
Show Figures

Figure 1

19 pages, 3405 KB  
Article
Study on Hydrological–Meteorological Response in the Upper Yellow River Based on 100-Year Series Reconstruction
by Xiaohui He, Xiaoyu He, Yajun Gao and Fanchao Li
Water 2025, 17(15), 2223; https://doi.org/10.3390/w17152223 - 25 Jul 2025
Viewed by 480
Abstract
Precipitation, as a key input in the water cycle, directly influences the formation and change process of runoff. Meanwhile, the return runoff intuitively reflects the available quantity of water resources in a river basin. An in-depth analysis of the evolution laws and response [...] Read more.
Precipitation, as a key input in the water cycle, directly influences the formation and change process of runoff. Meanwhile, the return runoff intuitively reflects the available quantity of water resources in a river basin. An in-depth analysis of the evolution laws and response relationships between precipitation and return runoff over a long time scale serves as an important support for exploring the evolution of hydrometeorological conditions and provides an accurate basis for the scientific planning and management of water resources. Taking Lanzhou Station on the upper Yellow River as a typical case, this study proposes the VSSL (LSTM Fusion Method Optimized by SSA with VMD Decomposition) deep learning precipitation element series extension method and the SSVR (SVR Fusion Method Optimized by SSA) machine learning runoff element series extension method. These methods achieve a reasonable extension of the missing data and construct 100-year precipitation and return runoff series from 1921 to 2020. The research results showed that the performance of machine learning and deep learning methods in the precipitation and return runoff test sets is better than that of traditional statistical methods, and the fitting effect of return runoff is better than that of precipitation. The 100-year precipitation and return runoff series of Lanzhou Station from 1921 to 2020 show a non-significant upward trend at a rate of 0.26 mm/a and 0.42 × 108 m3/a, respectively. There is no significant mutation point in precipitation, while the mutation point of return runoff occurred in 1991. The 100-year precipitation series of Lanzhou Station has four time-scale alternations of dry and wet periods, with main periods of 60 years, 20 years, 12 years, and 6 years, respectively. The 100-year return runoff series has three time-scale alternations of dry and wet periods, with main periods of 60 years, 34 years, and 26 years, respectively. During the period from 1940 to 2000, an approximately 50-year cycle, precipitation and runoff not only have strong common-change energy and significant interaction, but also have a fixed phase difference. Precipitation changes precede runoff, and runoff responds after a fixed time interval. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

Back to TopTop