Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = hydraulic redistribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 30553 KiB  
Article
Optimizing Multi-Cluster Fracture Propagation and Mitigating Interference Through Advanced Non-Uniform Perforation Design in Shale Gas Horizontal Wells
by Guo Wen, Wentao Zhao, Hongjiang Zou, Yongbin Huang, Yanchi Liu, Yulong Liu, Zhongcong Zhao and Chenyang Wang
Processes 2025, 13(8), 2461; https://doi.org/10.3390/pr13082461 - 4 Aug 2025
Abstract
The persistent challenge of fracture-driven interference (FDI) during large-scale hydraulic fracturing in the southern Sichuan Basin has severely compromised shale gas productivity, while the existing research has inadequately addressed both FDI risk reductions and the optimization of reservoir stimulation. To bridge this gap, [...] Read more.
The persistent challenge of fracture-driven interference (FDI) during large-scale hydraulic fracturing in the southern Sichuan Basin has severely compromised shale gas productivity, while the existing research has inadequately addressed both FDI risk reductions and the optimization of reservoir stimulation. To bridge this gap, this study developed a mechanistic model of the competitive multi-cluster fracture propagation under non-uniform perforation conditions and established a perforation-based design methodology for the mitigation of horizontal well interference. The results demonstrate that spindle-shaped perforations enhance the uniformity of fracture propagation by 20.3% and 35.1% compared to that under uniform and trapezoidal perforations, respectively, with the perforation quantity (48) and diameter (10 mm) identified as the dominant control parameters for balancing multi-cluster growth. Through a systematic evaluation of the fracture communication mechanisms, three distinct inter-well types of FDI were identified: Type I (natural fracture–stress anisotropy synergy), Type II (natural-fracture-dominated), and Type III (stress-anisotropy-dominated). To mitigate these, customized perforation schemes coupled with geometry-optimized fracture layouts were developed. The surveillance data for the offset well show that the pressure interference decreased from 14.95 MPa and 6.23 MPa before its application to 0.7 MPa and 0 MPa, achieving an approximately 95.3% reduction in the pressure interference in the application wells. The expansion morphology of the inter-well fractures confirmed effective fluid redistribution across clusters and containment of the overextension of planar fractures, demonstrating this methodology’s dual capability to enhance the effectiveness of stimulation while resolving FDI challenges in deep shale reservoirs, thereby advancing both productivity and operational sustainability in complex fracturing operations. Full article
Show Figures

Figure 1

18 pages, 3895 KiB  
Article
Long-Term Mechanical Response of Jinping Ultra-Deep Tunnels Considering Pore Pressure and Engineering Disturbances
by Ersheng Zha, Mingbo Chi, Jianjun Hu, Yan Zhu, Jun Guo, Xinna Chen and Zhixin Liu
Appl. Sci. 2025, 15(15), 8166; https://doi.org/10.3390/app15158166 - 23 Jul 2025
Viewed by 185
Abstract
As the world’s deepest hydraulic tunnels, the Jinping ultra-deep tunnels provide world-class conditions for research on deep rock mechanics under extreme conditions. This study analyzed the time-dependent behavior of different tunneling sections in the Jinping tunnels using the Nishihara creep model implemented in [...] Read more.
As the world’s deepest hydraulic tunnels, the Jinping ultra-deep tunnels provide world-class conditions for research on deep rock mechanics under extreme conditions. This study analyzed the time-dependent behavior of different tunneling sections in the Jinping tunnels using the Nishihara creep model implemented in Abaqus. Validated numerical simulations of representative cross-sections at 1400 m and 2400 m depths in the diversion tunnel reveal that long-term creep deformations (over a 20-year period) substantially exceed instantaneous excavation-induced displacements. The stress concentrations and strain magnitudes exhibit significant depth dependence. The maximum principal stress at a 2400 m depth reaches 1.71 times that at 1400 m, while the vertical strain increases 1.46-fold. Based on this, the long-term mechanical behavior of the surrounding rock during the expansion of the Jinping auxiliary tunnel was further calculated and predicted. It was found that the stress concentration at the top and bottom of the left sidewall increases from 135 MPa to 203 MPa after expansion, identifying these as critical areas requiring focused monitoring and early warnings. The total deformation of the rock mass increases by approximately 5 mm after expansion, with the cumulative deformation reaching 14 mm. Post-expansion deformation converges within 180 days, with creep deformation of 2.5 mm–3.5 mm observed in both sidewalls, accounts for 51.0% of the total deformation during expansion. The surrounding rock reaches overall stability three years after the completion of expansion. These findings establish quantitative relationships between the excavation depth, time-dependent deformation, and stress redistribution and support the stability design, risk management, and infrastructure for ultra-deep tunnels in a stress state at a 2400 m depth. These insights are critical to ensuring the long-term stability of ultra-deep tunnels and operational safety assessments. Full article
Show Figures

Figure 1

28 pages, 5469 KiB  
Article
Mechanical Properties and Performance of CNT–Reinforced Mortars (CEM II/B–L and CEM I) for Crack Bridging and Protective Coating Applications
by Nikolaos Chousidis
Buildings 2025, 15(13), 2296; https://doi.org/10.3390/buildings15132296 - 30 Jun 2025
Viewed by 351
Abstract
Cement–based mortars are essential in both modern construction and heritage conservation, where balancing mechanical strength with material compatibility is crucial. Mortars containing ––binders with low hydraulic activity, such as CEM II/B–L, often exhibit increased porosity and diminished strength, limiting their suitability for structurally [...] Read more.
Cement–based mortars are essential in both modern construction and heritage conservation, where balancing mechanical strength with material compatibility is crucial. Mortars containing ––binders with low hydraulic activity, such as CEM II/B–L, often exhibit increased porosity and diminished strength, limiting their suitability for structurally demanding applications. This study investigates the potential of multiwalled carbon nanotubes (MWCNTs) to enhance the mechanical and microstructural properties of mortars formulated with both CEM II/B–L and CEM I binders. The influence of CNT incorporation was systematically assessed through compressive and flexural strength tests, vacuum saturation tests, mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM), and differential thermal analysis (DTA). The results demonstrate significant mechanical improvements attributable to nanoscale mechanisms including crack bridging, pore–filling, and stress redistribution. Microstructural characterization revealed a refined pore network, increased densification of the matrix, and morphological modifications of hydration products. These findings underscore the effectiveness of CNT reinforcement in cementitious matrices and highlight the critical role of binder composition in influencing these effects. This work advances the development of high–performance mortar systems, optimized for enhanced structural integrity and long–term durability. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 3557 KiB  
Article
Determination of the Unsaturated Hydraulic Parameters of Compacted Soil Under Varying Temperature Conditions
by Rawan El Youssef, Sandrine Rosin-Paumier and Adel Abdallah
Geotechnics 2025, 5(2), 38; https://doi.org/10.3390/geotechnics5020038 - 6 Jun 2025
Viewed by 745
Abstract
Heat storage in compacted soil embankments is a promising technology in energy geotechnics, but its impact on the thermo-hydraulic behavior of unsaturated soils remains insufficiently understood. This paper investigates coupled heat and moisture transfer in unsaturated soil under different thermal conditions using a [...] Read more.
Heat storage in compacted soil embankments is a promising technology in energy geotechnics, but its impact on the thermo-hydraulic behavior of unsaturated soils remains insufficiently understood. This paper investigates coupled heat and moisture transfer in unsaturated soil under different thermal conditions using a new bottom-heating method. The thermo-hydraulic response is monitored along the soil column and compared to an isothermal drying test. Variations in suction and water content were analyzed to determine water retention curve and to derive unsaturated hydraulic conductivity using the instantaneous profile method. The water retention curve exhibited deviations under thermal conditions, with reduced water contents observed only at intermediate suctions. Unsaturated hydraulic conductivity decreased significantly at moderate suctions but increased by up to one order of magnitude at high suctions. Heat-driven moisture redistribution was examined through flux calculations, highlighting that vapor-phase transport contributed significantly, up to 88%, to the upward water migration. These findings contribute to a better understanding of thermo-hydraulic interactions in unsaturated soils, which is essential for optimizing thermal storage applications in compacted embankments. Full article
Show Figures

Figure 1

14 pages, 4956 KiB  
Article
Effect of Geostress Variation on Hydraulic Fracturing Behavior and Stress Redistribution in Coal Seam Roofs
by Kaikai Zhao, Peng Huang, Yufeng He, Liyin Cui, Peng Liu, Yanjun Feng, Xiaodong Sun and Shuhang Cao
Processes 2025, 13(6), 1732; https://doi.org/10.3390/pr13061732 - 1 Jun 2025
Cited by 1 | Viewed by 470
Abstract
A comprehensive understanding of hydraulic fracturing behavior and its impact on regional stress distribution under varying principal stress conditions is essential for preventing dynamic disasters. In this study, true triaxial hydraulic fracturing experiments were conducted using roof sandstone from the Mengcun coal mine. [...] Read more.
A comprehensive understanding of hydraulic fracturing behavior and its impact on regional stress distribution under varying principal stress conditions is essential for preventing dynamic disasters. In this study, true triaxial hydraulic fracturing experiments were conducted using roof sandstone from the Mengcun coal mine. The 3D structure of the hydraulic fractures was reconstructed using CT scanning and numerical simulation to elucidate the effect of intricate geostress conditions on hydraulic fracture propagation. The results indicate that the difference in maximum principal stress plays a crucial role in initiating and propagating hydraulic fractures. Specifically, a greater difference in maximum principal stress increases the likelihood of hydraulic fracture deflection. As this stress difference rises, the angle of hydraulic fracture deflection increases. Additionally, the presence of a hydraulic fracture alters the characteristics of the stress field, leading to stress concentration at the hydraulic fracture tip and stress unloading on both sides. Although the effects of injection rate and rock lithology were not considered in this study, this study remains valuable for optimizing hydraulic fracturing parameters in coal seam roofs. Full article
(This article belongs to the Topic Advances in Coal Mine Disaster Prevention Technology)
Show Figures

Figure 1

19 pages, 28674 KiB  
Article
Innovative Stress Release Stimulation Through Sequential Cavity Completion for CBM Reservoir Enhancement
by Huaibin Zhen, Haifeng Zhao, Kai Wei, Yulong Liu, Shuguang Li, Zhenji Wei, Chengwang Wang and Gaojie Chen
Processes 2025, 13(5), 1567; https://doi.org/10.3390/pr13051567 - 19 May 2025
Viewed by 358
Abstract
China holds substantial coalbed methane resources, yet low single-well productivity persists. While horizontal well cavity completion offers a permeability-enhancing solution through stress release, its effectiveness remains limited by the incomplete knowledge of stress redistribution and permeability evolution during stress release. To bridge this [...] Read more.
China holds substantial coalbed methane resources, yet low single-well productivity persists. While horizontal well cavity completion offers a permeability-enhancing solution through stress release, its effectiveness remains limited by the incomplete knowledge of stress redistribution and permeability evolution during stress release. To bridge this gap, a fully coupled hydromechanical 3D discrete element model (FLC3D) was developed to investigate stress redistribution and permeability evolution in deep coalbed methane reservoirs under varying cavity spacings and fluid pressures, and a novel sequential cavity completion technique integrated with hydraulic fracturing was proposed to amplify stress release zones and mitigate stress concentration effects. Key findings reveal that cavity-induced stress release zones predominantly develop proximal to the working face, exhibiting radial attenuation with increasing distance. Vertical stress concentrations at cavity termini reach peak intensities of 2.54 times initial stress levels, forming localized permeability barriers with 50–70% reduction. Stress release zones demonstrate permeability enhancement directly proportional to stress reduction magnitude, achieving a maximum permeability of 5.8 mD (483% increase from baseline). Prolonged drainage operations reduce stress release zone volumes by 17% while expanding stress concentration zones by 31%. The developed sequential cavity hydraulic fracturing technology demonstrates, through simulation, that strategically induced hydraulic fractures elevate fluid pressures in stress-concentrated regions, effectively neutralizing compressive stresses and restoring reservoir permeability. These findings provide actionable insights for optimizing stress release stimulation strategies in deep coalbed methane reservoirs, offering a viable pathway toward sustainable and efficient resource development. Full article
(This article belongs to the Special Issue Coalbed Methane Development Process)
Show Figures

Figure 1

15 pages, 4515 KiB  
Article
Analysis of Stress Perturbation Patterns in Oil and Gas Reservoirs Induced by Faults
by Haoran Sun, Shuang Tian, Yuankai Xiang, Leiming Cheng and Fujian Yang
Processes 2025, 13(5), 1416; https://doi.org/10.3390/pr13051416 - 6 May 2025
Viewed by 555
Abstract
The distribution of in situ stress fields in reservoirs is critical for the accurate exploration and efficient exploitation of hydrocarbon resources, especially in deep, fault-developed strata where tectonic activities significantly complicate stress field patterns. To clarify the perturbation effects of faults on in [...] Read more.
The distribution of in situ stress fields in reservoirs is critical for the accurate exploration and efficient exploitation of hydrocarbon resources, especially in deep, fault-developed strata where tectonic activities significantly complicate stress field patterns. To clarify the perturbation effects of faults on in situ stress fields in deep reservoirs, this study combines dynamic–static parameter conversion models derived from laboratory experiments (acoustic emission Kaiser effect and triaxial compression tests) with a coupled “continuous matrix–discontinuous fault” numerical framework implemented in FLAC3D6.0. Focusing on the BKQ Formation reservoir in the MH area, China, we developed a multivariate regression-based inversion model integrating gravitational and bidirectional tectonic stress fields, validated against field measurements with errors of −2.96% to 9.07%. The key findings of this study include the following: (1) fault slip induces stress reductions up to 22.3 MPa near fault zones, with perturbation ranges quantified via exponential decay functions (184.91–317.74 m); (2) the “continuous matrix–discontinuous fault” coupling method resolves limitations of traditional continuum models by simulating fault slip through interface contact elements; and (3) stress redistribution exhibits NW-SE gradients, aligning with regional tectonic compression. These results provide quantitative guidelines for optimizing hydrocarbon development boundaries and hydraulic fracturing designs in faulted reservoirs. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

30 pages, 11394 KiB  
Article
Gap Impact on Rigid Submerged Vegetated Flow and Its Induced Flow Turbulence
by Heba Mals, Jaan H. Pu, Prashanth Reddy Hanmaiahgari, Bimlesh Kumar, Ebrahim Hamid Hussein Al-Qadami and Mohd Adib Mohammad Razi
J. Mar. Sci. Eng. 2025, 13(5), 829; https://doi.org/10.3390/jmse13050829 - 22 Apr 2025
Viewed by 449
Abstract
Submerged vegetation plays a crucial role in influencing flow hydrodynamics, generating turbulence, and shaping velocity distributions in aquatic environments. This study investigates the hydrodynamic effects of submerged rigid vegetation, specifically focusing on the local flow and turbulence alterations resulting from the removal of [...] Read more.
Submerged vegetation plays a crucial role in influencing flow hydrodynamics, generating turbulence, and shaping velocity distributions in aquatic environments. This study investigates the hydrodynamic effects of submerged rigid vegetation, specifically focusing on the local flow and turbulence alterations resulting from the removal of a single stem from an otherwise uniform vegetation array under controlled laboratory conditions. Experiments were conducted in a flume using Acoustic Doppler Velocimetry (ADV) to measure 3D (three-dimensional) flow characteristics, turbulence intensities, Reynolds shear stress (RSS), and quadrant analysis. In the fully vegetated scenario, vegetation significantly modified flow conditions, creating inflexion points and distinct peaks in velocity profiles, turbulence intensity, and RSS—particularly near two-thirds of the vegetation height—due to wake vortices and flow separation. The removal of a single stem introduced a localised gap, which redistributed turbulent energy, increased RSS and near-bed turbulent interactions, and disrupted the organised vortex structures downstream. While sweep and ejection events near the gap reached magnitudes similar to those in the fully vegetated setup, they lacked the characteristic coherent peaks linked to vortex generation. Overall, turbulence intensities and RSS were reduced, indicating a smoother flow regime and weaker energy redistribution mechanisms. These findings critically impact river restoration, flood management, and habitat conservation. By understanding how vegetation gaps alter flow hydrodynamics, engineers and ecologists can optimise vegetation placement in waterways to enhance flow efficiency, sediment transport, and aquatic ecosystem stability. This study bridges fundamental fluid mechanics with real-world applications in environmental hydraulics. Full article
Show Figures

Figure 1

17 pages, 4510 KiB  
Article
A Comparative Study for Evaluating the Groundwater Inflow and Drainage Effect of Jinzhai Pumped Storage Power Station, China
by Jian Wu, Zhifang Zhou, Hao Wang, Bo Chen and Jinguo Wang
Appl. Sci. 2024, 14(19), 9123; https://doi.org/10.3390/app14199123 - 9 Oct 2024
Cited by 1 | Viewed by 965
Abstract
Various hydrogeological problems like groundwater inflow, water table drawdown, and water pressure redistribution may be encountered in the construction of hydraulic projects. How to accurately predict the occurrence of groundwater inflow and assess the drainage effect during construction are still challenging problems for [...] Read more.
Various hydrogeological problems like groundwater inflow, water table drawdown, and water pressure redistribution may be encountered in the construction of hydraulic projects. How to accurately predict the occurrence of groundwater inflow and assess the drainage effect during construction are still challenging problems for engineering designers. Taking the Jinzhai pumped storage power station (JPSPS) of China as an example, this paper aims to use different methods to calculate the water inflow rates of an underground powerhouse and evaluate the drainage effect caused by tunnel inflow during construction. The methods consist of the analytical formulas, the site groundwater rating (SGR) method, and the Signorini type variational inequality formulation. The results show that the analytical methods considering stable water table may overestimate the water inflow rates of caverns in drained conditions, whereas the SGR method with available hydro-geological parameters obtains a qualitative hazard assessment in the preliminary phase. The numerical solutions provide more precise and reliable values of groundwater inflow considering complex geological structures and seepage control measures. Moreover, the drainage effects, including a seepage-free surface, pore water pressure redistribution, and hydraulic gradient, have been accurately evaluated using various numerical synthetic cases. Specifically, the faults intersecting on underground caverns and drainage structures significantly change the groundwater flow regime around caverns. This comparative study can not only exactly identify the capabilities of the methods for cavern inflow in drained conditions, but also can comprehensively evaluate the drainage effect during cavern construction. Full article
Show Figures

Figure 1

13 pages, 7550 KiB  
Article
Effects of Xerophytic Vegetation-Salix on Soil Water Redistribution in Semiarid Region
by Ming Zhao and Qiangmin Wang
Agronomy 2024, 14(10), 2200; https://doi.org/10.3390/agronomy14102200 - 25 Sep 2024
Viewed by 811
Abstract
Xerophytic vegetation re-regulates and allocates water resources through canopy interception, root water uptake and transpiration, and changes the water budget among precipitation, runoff, interception and infiltration, thus having a significant impact on the processes of the hydrological cycle. In this study, we investigated [...] Read more.
Xerophytic vegetation re-regulates and allocates water resources through canopy interception, root water uptake and transpiration, and changes the water budget among precipitation, runoff, interception and infiltration, thus having a significant impact on the processes of the hydrological cycle. In this study, we investigated the effect of xerophytic shrub-Salix on soil water redistribution and water budget through an in situ monitoring experiment combined with two-dimensional vegetation water consumption modeling. The results showed that, due to the interception effect of root water uptake, it was difficult for precipitation infiltration to recharge deep soil water and groundwater. The measured data of soil moisture content, hydraulic head and precipitation were used to verify and calibrate the performance of the soil water flow model in the vadose zone by HYDRUS-2D. The effect of roots system on soil water was simulated, and the appropriate spacing of Salix replanting was estimated. Combined with the relationship between the transverse roots system and the crown width obtained by the investigation, it was determined that the spacing between the Salix should be greater than five times the crown width, so that the balance between the water consumption of Salix and the water supply of deep soil by precipitation could be considered. The results of this study are important for estimating groundwater recharge in arid areas and provide practical vegetation replanting options for similar regions. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

4 pages, 537 KiB  
Proceeding Paper
A Hybrid Graph–Hydraulic Approach for Identifying Critical Elements in Water Distribution Networks
by Rahul Satish, Mohsen Hajibabaei, Martin Oberascher and Robert Sitzenfrei
Eng. Proc. 2024, 69(1), 52; https://doi.org/10.3390/engproc2024069052 - 4 Sep 2024
Cited by 2 | Viewed by 602
Abstract
Water distribution networks (WDNs) are susceptible to vulnerabilities that necessitate proactive management to ensure efficient incident management. When dealing with a sequence of failures triggered, for example, by hydraulic redistributions under failure conditions, the computational burden often becomes the limiting factor for exploring [...] Read more.
Water distribution networks (WDNs) are susceptible to vulnerabilities that necessitate proactive management to ensure efficient incident management. When dealing with a sequence of failures triggered, for example, by hydraulic redistributions under failure conditions, the computational burden often becomes the limiting factor for exploring scenarios. Therefore, this study proposes a hybrid method combining a graph-based approach for prescreening critical pipes with a hydraulic assessment to rapidly identify critical nodes. Tested on an Austrian WDN, this approach effectively pinpoints primary failures (pipe failures) while reducing computational time. By integrating the hydraulic approach, the method successfully identified the most critical elements due to the failures. This method empowers operators to mitigate the impact of potential failures and enhance disaster robustness. Full article
Show Figures

Figure 1

24 pages, 18876 KiB  
Article
Multi-Story Volumetric Blocks Buildings with Lower Frame Floors
by Ilia Teshev, Aliy Bespayev, Zauresh Zhambakina, Murat Tamov, Ulan Altigenov, Timur Zhussupov and Aigerim Tolegenova
Buildings 2024, 14(6), 1655; https://doi.org/10.3390/buildings14061655 - 4 Jun 2024
Cited by 2 | Viewed by 1736
Abstract
This article presents the results of experimental studies of the stress–strain state of volumetric blocks based on the underlying frame structures. The aim of the research is to evaluate the stress–strain state and the nature of damage development as a result of an [...] Read more.
This article presents the results of experimental studies of the stress–strain state of volumetric blocks based on the underlying frame structures. The aim of the research is to evaluate the stress–strain state and the nature of damage development as a result of an increase in the load up to a critical level. Based on the analysis of the nature of the damage, recommendations have been developed to strengthen the destruction zone. Data were collected on the redistribution of stresses and deformations, the formation of cracks and joint openings, the magnitude of horizontal displacements, and the failure mode of volumetric blocks and floor frames. Five full-scale volumetric blocks were tested under the loading of hydraulic jacks, differing in concrete type, reinforcement, presence of doors, and dimensions of the stylobate beams. When the volumetric modules were supported by a frame floor the results revealed that the maximum destructive load of 10,462 kN was observed in the first specimen; the horizontal displacements of the walls decreased by 13–18 mm, and there was a decrease in the crack opening width to 0.5 mm. The cracks decreased the strength of the walls, leading to a redistribution of the compressive stresses and their increase in the support zone. The most significant compressive strains in concrete in the corner parts of longitudinal walls were in the range of (600–620) × 10−6, and in the middle part of the walls, 370 × 10−6 were observed. Furthermore, the largest cracks caused significant horizontal displacements (deplanation) of the walls, which decreased the stiffness of the conjunction of longitudinal walls with the floor slab and created an additional eccentricity of the vertical force. Based on the findings, the correlation between the measured parameters of each specimen at all stages of vertical load increase is demonstrated and illustrated in graphs of the measured parameters. The importance of quantity compliance with the initial rigid connection between the longitudinal wall and ceiling plate has been estimated. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 6352 KiB  
Article
Integrated Time-Dependent Analysis of a Hydraulic Structure on Soft Foundations during Construction
by Chao Xu, Liang Ye, Suli Pan and Wen Luo
Water 2024, 16(10), 1375; https://doi.org/10.3390/w16101375 - 11 May 2024
Viewed by 1319
Abstract
An integrated model that considers multiphysics is necessary to accurately analyze the time-dependent response of hydraulic structures on soft foundations. This study develops an integrated superstructure–foundation–backfills model and investigates the time-dependent displacement and stress of a lock head project on a soft foundation [...] Read more.
An integrated model that considers multiphysics is necessary to accurately analyze the time-dependent response of hydraulic structures on soft foundations. This study develops an integrated superstructure–foundation–backfills model and investigates the time-dependent displacement and stress of a lock head project on a soft foundation during the construction period. Finite element analyses are conducted, incorporating a transient thermal creep model for concrete and an elasto-plastic consolidation model for the soil. The modified Cam-clay model is employed to describe the elasto-plastic behavior of the soil. Subsequently, global sensitivity analyses are conducted to determine the relative importance of the model parameters on the system’s response, using Garson’s and partial derivative algorithms based on the backpropagation (BP) neural network. The results indicate that the integrated system exhibits pronounced time-dependent displacement and stress, with dangerous values appearing during specific periods. These values are easily neglected, highlighting the importance of integrated time-dependent analysis. Construction activities, particularly the backfilling process, could cause a sudden change in stress and significantly impact the stress redistribution of the superstructure. Additionally, the mechanical properties of concrete have a significant impact on the stress on the superstructure, while the mechanical properties of the soil control the settlement of the integrated system. Full article
Show Figures

Figure 1

18 pages, 3276 KiB  
Article
Effects of Hydraulic Erosion on the Spatial Redistribution Characteristics of Soil Aggregates and SOC on Pisha Sandstone Slope
by Peng Zhang, Long Li, Jing Wang, Shangxuan Zhang and Zhizhuo Zhu
Sustainability 2023, 15(17), 13276; https://doi.org/10.3390/su151713276 - 4 Sep 2023
Cited by 3 | Viewed by 1610
Abstract
Under the long-term effects of hydraulic erosion, soil particles and nutrients are continuously lost and enriched in the process of runoff and sediment movement, leading to a change in soil organic carbon (SOC) in different spatial positions on the slope, which is closely [...] Read more.
Under the long-term effects of hydraulic erosion, soil particles and nutrients are continuously lost and enriched in the process of runoff and sediment movement, leading to a change in soil organic carbon (SOC) in different spatial positions on the slope, which is closely related to the carbon balance of the ecosystem. Therefore, the changes in slope erosion intensity and the spatial redistribution characteristics of soil aggregates and SOC under water erosion conditions were quantitatively analyzed by combining field runoff plots with three-dimensional (3D) laser scanning technology. The results showed that: (1) After rainfall, the slope erosion intensity successively declined from the upper to the lower parts of the slope, and the content of soil aggregates in each soil layer changed obviously. The loss of 1–2 mm soil aggregates was the largest in the sedimentary area of the 2–4 cm soil layer, at 0.38 g/kg. The concentration of 0.5–1 mm soil aggregates was the largest in the micro-erosion area of the 2–4 cm soil layer, at 0.36 g/kg. (2) After rainfall, the overall SOC on the slope showed a loss state in the 0–2 cm soil layer and an enrichment state in the 2–4 cm soil layer. Among them, the loss of SOC in the medium erosion area of the 0–1 cm soil layer was the largest, and its content decreased by 57.58%. The enrichment in the 2–4 cm soil layer was the maximum in the micro-eroded area, with a content increase of 79.23%. (3) Before and after rainfall, the SOC of each soil layer was positively correlated with small aggregates, and the correlation gradually tended to be negative with the increase in the particle size of soil aggregates, and the SOC showed a negative correlation with large aggregates (>2 mm). Full article
Show Figures

Figure 1

20 pages, 10508 KiB  
Article
Driving Forces and Influences of Flood Diversion on Discharge Fraction and Peak Water Levels at an H-Shaped Compound River Node in the Pearl River Delta, South China
by Yongjun Fang, Xianwei Wang, Jie Ren, Huan Liu and Ya Wang
Water 2023, 15(11), 1970; https://doi.org/10.3390/w15111970 - 23 May 2023
Cited by 5 | Viewed by 1975
Abstract
The SiXianJiao (SXJ) is the first-order exchange node of the West River and the North River and redistributes water (mass) to the downstream river network in the Pearl River Delta (PRD), South China. The lateral SXJ waterway plays a critical role in flow [...] Read more.
The SiXianJiao (SXJ) is the first-order exchange node of the West River and the North River and redistributes water (mass) to the downstream river network in the Pearl River Delta (PRD), South China. The lateral SXJ waterway plays a critical role in flow (mass) diversion between the West River and the North River, forming a unique H-shaped compound river node. Previous studies mainly focused on Y-shaped bifurcation and confluence nodes, and there is a lack of research on deltaic H-shaped river nodes. This study established the Delft3D model to investigate the driving forces and influences of flood diversion at the SXJ node. The results showed that the H-shaped SXJ river node was usually in hydraulic equilibrium but was often disturbed by large water level differences between the two rivers, due to unbalanced and asynchronous upstream flood waves. The large water level differences drove mutual flood diversion through the lateral SXJ waterway, which synchronized the downstream discharge and reduced the peak water levels (flood hazards), resulting in similar water levels or hydraulic equilibrium in the two rivers. There exists a critical flow fraction—about 75.9% (West River)—at which the incoming flow from both rivers presents similar water levels at the SXJ node, resulting in little flood diversion. Above the threshold, the flood water will divert from the West River to the North River with a maximum rate of −11,900 m3/s, accounting for 20% of the West River, reducing the peak water level up to 1.48 m at Makou. Below the threshold, the flood water will divert from the North River to the West River with a maximum rate of 11,990 m3/s, accounting for 55% of the North River, reducing the peak water level up to 6.63 m at Sanshui. Meanwhile, the discharge fraction at downstream Makou (Sanshui) maintained a near-constant value during individual floods and fluctuated around 76.6% (23.4%). This critical discharge fraction and the analytical approach are of significance in flood-risk management and hydraulic engineering design in the PRD. The concept model of the H-shaped compound river node clearly elucidates the flood diversion mechanism via the lateral SXJ waterway and may work for other similar river nodes as well. Full article
(This article belongs to the Special Issue A Safer Future—Prediction of Water-Related Disasters)
Show Figures

Figure 1

Back to TopTop