Determination of the Unsaturated Hydraulic Parameters of Compacted Soil Under Varying Temperature Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Soils Properties
2.2. Experimental Setup
2.2.1. Preparation and Assembly of the Reference Isothermal Drying Test
2.2.2. Preparation and Assembly of the Newly Designed Non-Isothermal Drying Test
2.3. Experimental Program
2.3.1. Isothermal Drying Tests (E1 and E2)
2.3.2. Non-Isothermal Drying Test (E3)
2.4. Soil Matric Suction Determination
3. Results
3.1. Water Content and Matric Soil Suction Profiles
3.1.1. Isothermal Drying Tests
3.1.2. Non-Isothermal Drying Test
3.2. Water Retention Curve
3.2.1. Isothermal Drying Tests
3.2.2. Non-Isothermal Drying Test
3.3. Unsaturated Hydraulic Conductivity
4. Discussions
4.1. Comparison of Water Content and Suction Profiles Under Isothermal (E2 Test) and Non-Isothermal (E3 Test) Conditions
4.2. Water Flow Dynamics in Isothermal (E2) and Non-Isothermal (E3) Tests
4.3. Vapor Pressure Evolution and Redistribution Mechanisms
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brandl, H. Energy Foundations and Other Thermo-Active Ground Structures. Géotechnique 2006, 56, 81–122. [Google Scholar] [CrossRef]
- Nasri, F.; Alqurashi, F.; Nciri, R.; Ali, C. Design and Simulation of a Novel Solar Air-Conditioning System Coupled with Solar Chimney. Sustain. Cities Soc. 2018, 40, 667–676. [Google Scholar] [CrossRef]
- Hadorn, J.-C. Guide to Seasonal Heat Storage; Public Works: Ottawa, ON, Canada, 1989. [Google Scholar]
- Sunku Prasad, J.; Muthukumar, P.; Desai, F.; Basu, D.N.; Rahman, M.M. A Critical Review of High-Temperature Reversible Thermochemical Energy Storage Systems. Appl. Energy 2019, 254, 113733. [Google Scholar] [CrossRef]
- Beier, R.A.; Holloway, W.A. Changes in the Thermal Performance of Horizontal Boreholes with Time. Appl. Therm. Eng. 2015, 78, 1–8. [Google Scholar] [CrossRef]
- Janiszewski, M.; Kopaly, A.; Honkonen, M.; Kukkonen, I.; Uotinen, L.; Siren, T.; Rinne, M. Feasibility of Underground Seasonal Storage of Solar Heat in Finland. In Proceedings of the International Conference on Geo-mechanics, Geo-energy and Geo-resources, Monash University, Melbourne, Australia, 28–29 September 2016; pp. 959–965. [Google Scholar]
- Xu, J.; Wang, R.Z.; Li, Y. A Review of Available Technologies for Seasonal Thermal Energy Storage. Sol. Energy 2014, 103, 610–638. [Google Scholar] [CrossRef]
- Amer, M.; Chen, M.-R.; Sajjad, U.; Ali, H.M.; Abbas, N.; Lu, M.-C.; Wang, C.-C. Experiments for Suitability of Plastic Heat Exchangers for Dehumidification Applications. Appl. Therm. Eng. 2019, 158, 113827. [Google Scholar] [CrossRef]
- Leong, W.H.; Tarnawski, V.R.; Aittomäki, A. Effect of Soil Type and Moisture Content on Ground Heat Pump Performance: Effet Du Type et de l’humidité Du Sol Sur La Performance Des Pompes à Chaleur à Capteurs Enterrés. Int. J. Refrig. 1998, 21, 595–606. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H. SW—Soil and Water: Measurement of the Thermal Conductivity of Sandy Loam and Clay Loam Soils Using Single and Dual Probes. J. Agric. Eng. Res. 2001, 80, 209–216. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H. Thermal Properties of Soils as Affected by Density and Water Content. Biosyst. Eng. 2003, 86, 97–102. [Google Scholar] [CrossRef]
- Boukelia, A. Physical and Numerical Modeling of Energy Geostructures. Ph.D. Thesis, University of Lorraine, Nancy, France, 2016. [Google Scholar]
- McCartney, J.; Coccia, C.J.R.; Alsherif, N.A.; Stewart, M.A.; Baser, T.; Traore, T.; Goode, J.C., III. Unsaturated Soil Mechanics in Geothermal Energy Applications. In Proceedings of the 6th International Conference on Unsaturated Soils, UNSAT 2014, Sydney, Australia, 2–4 July 2014; eScholarship, University of California: Berkeley, CA, USA, 2014. [Google Scholar]
- King, F.H. Observations and Experiments on the Fluctuations in the Level and Rate of Movement of Ground-Water on the Wisconsin Agricultural Experiment Station Farm and at Whitewater, Wisconsin; Weather Bureau: Washington, DC, USA, 1892. [Google Scholar]
- Gardner, R. Relation of Temperature to Moisture Tension of Soil. Soil Sci. 1955, 79, 257–266. [Google Scholar] [CrossRef]
- Tang, A.-M.; Cui, Y.-J. Controlling Suction by the Vapour Equilibrium Technique at Different Temperatures and Its Application in Determining the Water Retention Properties of MX80 Clay. Can. Geotech. J. 2005, 42, 287–296. [Google Scholar] [CrossRef]
- Uchaipichat, A.; Khalili, N. Experimental Investigation of Thermo-Hydro-Mechanical Behaviour of an Unsaturated Silt. Géotechnique 2009, 59, 339–353. [Google Scholar] [CrossRef]
- Romero Morales, E.E. Characterisation and Thermo-Hydro-Mechanical Behaviour of Unsaturated Boom Clay: An Experimental Study. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 1999. [Google Scholar]
- Romero, E.; Gens, A.; Lloret, A. Temperature Effects on the Hydraulic Behaviour of an Unsaturated Clay. In Unsaturated Soil Concepts and Their Application in Geotechnical Practice; Toll, D.G., Ed.; Springer: Dordrecht, The Netherlands, 2001; pp. 311–332. ISBN 978-90-481-5918-5. [Google Scholar]
- Cho, W.J.; Lee, J.O.; Chun, K.S. The Temperature Effects on Hydraulic Conductivity of Compacted Bentonite. Appl. Clay Sci. 1999, 14, 47–58. [Google Scholar] [CrossRef]
- Bouazza, A.; Abuel-Naga, H.M.; Gates, W.P.; Laloui, L. Temperature Effects on Volume Change and Hydraulic Properties of Geosynthetic Clay Liners. In Proceedings of the First Pan American Geosynthetics Conference & Exhibition, Cancun, Mexico, 2–5 March 2008; Industrial Fabrics Association International (IFAI): Roseville, MN, USA, 2008. [Google Scholar]
- Ye, W.M.; Wan, M.; Chen, B.; Chen, Y.G.; Cui, Y.J.; Wang, J. Temperature Effects on the Swelling Pressure and Saturated Hydraulic Conductivity of the Compacted GMZ01 Bentonite. Environ. Earth Sci. 2013, 68, 281–288. [Google Scholar] [CrossRef]
- Cui, Y.-J.; Tang, A.-M.; Loiseau, C.; Delage, P. Determining the Unsaturated Hydraulic Conductivity of a Compacted Sand–Bentonite Mixture under Constant-Volume and Free-Swell Conditions. Phys. Chem. Earth Parts A/B/C 2008, 33, S462–S471. [Google Scholar] [CrossRef]
- Diny, S.; Masrouri, F.; Tisot, J.-P. Détermination de La Conductivité Hydraulique d’un Limon Non Saturé. Rev. Fr. Geotech. 1993, 62, 67–74. [Google Scholar] [CrossRef]
- Krisdani, H.; Rahardjo, H.; Leong, E.-C. Use of Instantaneous Profile and Statistical Methods to Determine Permeability Functions of Unsaturated Soils. Can. Geotech. J. 2009, 46, 869–874. [Google Scholar] [CrossRef]
- Liu, X.; Xu, W.; Zhan, L.; Chen, Y. Laboratory and Numerical Study on an Enhanced Evaporation Process in a Loess Soil Column Subjected to Heating. J. Zhejiang Univ.-Sci. A 2016, 17, 553–564. [Google Scholar] [CrossRef]
- Lahoori, M. Thermo-Hydro-Mechanical Behavior of an Embankment to Store Thermal Energy. Ph.D. Thesis, Université de Lorraine, Nancy, France, 2020. [Google Scholar]
- Haghighi, A.; Medero, G.M.; Marinho, F.A.; Mercier, B.; Woodward, P.K. Temperature Effects on Suction Measurement Using the Filter Paper Technique. Geotech. Test. J. 2012, 35, 83–90. [Google Scholar] [CrossRef]
- Pham, T.A.; Hashemi, A.; Sutman, M.; Medero, G.M. Effect of Temperature on the Soil–Water Retention Characteristics in Unsaturated Soils: Analytical and Experimental Approaches. Soils Found. 2023, 63, 101301. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, L.; Zhao, D.; Guo, Y.; Lin, J.; Jiang, F.; Huang, Y.; Zhang, Y. Thermal Effects on the Soil Water Retention Curves and Hydraulic Properties of Benggang Soil in Southern China. Water 2024, 16, 238. [Google Scholar] [CrossRef]
- Cahill, A.T.; Parlange, M.B. On Water Vapor Transport in Field Soils. Water Resour. Res. 1998, 34, 731–739. [Google Scholar] [CrossRef]
- Sakai, M.; Toride, N.; Šimůnek, J. Water and Vapor Movement with Condensation and Evaporation in a Sandy Column. Soil Sci. Soc. Am. J. 2009, 73, 707–717. [Google Scholar] [CrossRef]
- Saito, H.; Šimunek, J.; Mohanty, B.P. Numerical Analysis of Coupled Water, Vapor, and Heat Transport in the Vadose Zone. Vadose Zone J. 2006, 5, 784–800. [Google Scholar] [CrossRef]
- Mohamed, A.-M.; Yong, R.N.; Cheung, S.C. Temperature Dependence of Soil Water Potential. Geotech. Test. J. 1992, 15, 330–339. [Google Scholar] [CrossRef]
- Mohamed, A.M.; Yong, R.N.; Onofrei, C.I.; Kjartanson, B.H. Coupled Heat and Moisture Flow in Unsaturated Swelling Clay Barriers. Geotech. Test. J. 1996, 19, 155–163. [Google Scholar] [CrossRef]
- Kanno, T.; Kato, K.; Yamagata, J. Moisture Movement under a Temperature Gradient in Highly Compacted Bentonite. Eng. Geol. 1996, 41, 287–300. [Google Scholar] [CrossRef]
- Villar, M.V.; Cuevas, J.; Martin, P.L. Effects of Heat/Water Flow Interaction on Compacted Bentonite: Preliminary Results. Eng. Geol. 1996, 41, 257–267. [Google Scholar] [CrossRef]
- Yong, R.N.; Mohamed, A.-M.O. Evaluation of Coupled Heat and Moisture Flow Parameters in a Bentonite-Sand Buffer Material. Eng. Geol. 1996, 41, 269–286. [Google Scholar] [CrossRef]
- Yong, R.N.; Mohamed, A.M.O.; Shooshpasha, I.; Onofrei, C. Hydro-Thermal Performance of Unsaturated Bentonite-Sand Buffer Material. Eng. Geol. 1997, 47, 351–365. [Google Scholar] [CrossRef]
- Gao, Y.; Dong, S.; Wang, C.; Chen, Y.; Hu, W. Effect of Thermal Intensity and Initial Moisture Content on Heat and Moisture Transfer in Unsaturated Soil. Sustain. Cities Soc. 2020, 55, 102069. [Google Scholar] [CrossRef]
- NF ISO 11277/A1; Qualité Du Sol—Détermination de La Répartition Granulométrique de La Matière Minérale Des Sols—Méthode Par Tamisage et Sédimentation—Amendement 1. Association Française de Normalisation: Paris, France, 2024.
- EN ISO 17892-12; Reconnaissance et Essais Géotechniques. Essais de Laboratoire Sur Les Sols. Association Française de Normalisation: Paris, France, 2018.
- ASTM D2487-17e1; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). Annual Book of ASTM Standards. ASTM International: West Conshohocken, PA, USA, 2020.
- The Institute for Roads, Streets and Infrastructures for Mobility. Guide Des Terrassements Des Remblais et Des Couches de Forme: Les Principes Généraux et Les Annexes Techniques; IDRRIM: Paris, France, 2023. [Google Scholar]
- Boukelia, A.; Rosin-Paumier, S.; Masrouri, F.; Le Borgne, T. Stockage de Chaleur Dans Les Sols Compactés. In Proceedings of the Journées nationales de géotechnique et de géologie de l’ingénieur, Nancy, France, 6–8 July 2016. [Google Scholar]
- ASTM D5298-16; Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper. Annual Book of ASTM Standard. ASTM International: West Conshohocken, PA, USA, 2016.
- Amraoui, N. Étude de l’infiltration Dans Les Sols Fins Non Saturés. Ph.D. Thesis, Institut National Polytechnique de Lorraine, Nancy, France, 1996. [Google Scholar]
- Van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- NF X30-442; Déchets—Détermination Au Laboratoire Du Coefficient de Perméabilité à Saturation d’un Matériau—Essais de Perméabilité à l’oedomètre à Charge Hydraulique Constante/Variable. Association Française de Normalisation: Paris, France, 2008.
- Tetens, O. Uber Einige Meteorologische Begriffe. Z. Geophys 1930, 6, 297–309. [Google Scholar]
Composition | |
---|---|
Quartz | 81% |
Calcium Carbonate | 5% calcite, 7% dolomite |
Feldspath | 3% |
Clay minerals | 5% |
Particle-Size Fractions | |
Passing at 63 μm (%) | 37 |
Passing at 2 μm (%) | 20 |
Carbonate Content | |
CaCO3 (%) | 0.80 |
Optimum Proctor Normal | |
ρd (Mg.m−3) | 1.81 |
wOPN (%) | 16.3 |
Test | Column (Height × Diameter mm) | Duration | Type of Molds Used | T °C Bottom | T °C External | winitial (%) | Other Materials Used |
---|---|---|---|---|---|---|---|
E1 | 200 × 70 | 84 days | Stainless-steel | 20 ± 1 °C | 20 ± 1 °C | 18.5 | - |
E2 | 75 × 36.4 | 11 days | Plastic | 20 ± 1 °C | 20 ± 1 °C | 16.3 | Thermocouples |
E3 | 75 × 36.4 | 7 days | Plastic | 40 ± 1 °C | 20 ± 1 °C | 16.3 | Thermocouples Heat plate Sapphire disk |
Parameter | a | b | c | d | f | g | h |
---|---|---|---|---|---|---|---|
value | 1.09·101 | −6.4·10−2 | −4.06·10−2 | 2.19·10−4 | 1.91·10−2 | −3.65·10−3 | −7.65·10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Youssef, R.; Rosin-Paumier, S.; Abdallah, A. Determination of the Unsaturated Hydraulic Parameters of Compacted Soil Under Varying Temperature Conditions. Geotechnics 2025, 5, 38. https://doi.org/10.3390/geotechnics5020038
El Youssef R, Rosin-Paumier S, Abdallah A. Determination of the Unsaturated Hydraulic Parameters of Compacted Soil Under Varying Temperature Conditions. Geotechnics. 2025; 5(2):38. https://doi.org/10.3390/geotechnics5020038
Chicago/Turabian StyleEl Youssef, Rawan, Sandrine Rosin-Paumier, and Adel Abdallah. 2025. "Determination of the Unsaturated Hydraulic Parameters of Compacted Soil Under Varying Temperature Conditions" Geotechnics 5, no. 2: 38. https://doi.org/10.3390/geotechnics5020038
APA StyleEl Youssef, R., Rosin-Paumier, S., & Abdallah, A. (2025). Determination of the Unsaturated Hydraulic Parameters of Compacted Soil Under Varying Temperature Conditions. Geotechnics, 5(2), 38. https://doi.org/10.3390/geotechnics5020038