Determination of the Unsaturated Hydraulic Parameters of Compacted Soil Under Varying Temperature Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soils Properties
2.2. Experimental Setup
2.2.1. Preparation and Assembly of the Reference Isothermal Drying Test
2.2.2. Preparation and Assembly of the Newly Designed Non-Isothermal Drying Test
2.3. Experimental Program
2.3.1. Isothermal Drying Tests (E1 and E2)
2.3.2. Non-Isothermal Drying Test (E3)
2.4. Soil Matric Suction Determination
3. Results
3.1. Water Content and Matric Soil Suction Profiles
3.1.1. Isothermal Drying Tests
3.1.2. Non-Isothermal Drying Test
3.2. Water Retention Curve
3.2.1. Isothermal Drying Tests
3.2.2. Non-Isothermal Drying Test
3.3. Unsaturated Hydraulic Conductivity
4. Discussions
4.1. Comparison of Water Content and Suction Profiles Under Isothermal (E2 Test) and Non-Isothermal (E3 Test) Conditions
4.2. Water Flow Dynamics in Isothermal (E2) and Non-Isothermal (E3) Tests
4.3. Vapor Pressure Evolution and Redistribution Mechanisms
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brandl, H. Energy Foundations and Other Thermo-Active Ground Structures. Géotechnique 2006, 56, 81–122. [Google Scholar] [CrossRef]
- Nasri, F.; Alqurashi, F.; Nciri, R.; Ali, C. Design and Simulation of a Novel Solar Air-Conditioning System Coupled with Solar Chimney. Sustain. Cities Soc. 2018, 40, 667–676. [Google Scholar] [CrossRef]
- Hadorn, J.-C. Guide to Seasonal Heat Storage; Public Works: Ottawa, ON, Canada, 1989. [Google Scholar]
- Sunku Prasad, J.; Muthukumar, P.; Desai, F.; Basu, D.N.; Rahman, M.M. A Critical Review of High-Temperature Reversible Thermochemical Energy Storage Systems. Appl. Energy 2019, 254, 113733. [Google Scholar] [CrossRef]
- Beier, R.A.; Holloway, W.A. Changes in the Thermal Performance of Horizontal Boreholes with Time. Appl. Therm. Eng. 2015, 78, 1–8. [Google Scholar] [CrossRef]
- Janiszewski, M.; Kopaly, A.; Honkonen, M.; Kukkonen, I.; Uotinen, L.; Siren, T.; Rinne, M. Feasibility of Underground Seasonal Storage of Solar Heat in Finland. In Proceedings of the International Conference on Geo-mechanics, Geo-energy and Geo-resources, Monash University, Melbourne, Australia, 28–29 September 2016; pp. 959–965. [Google Scholar]
- Xu, J.; Wang, R.Z.; Li, Y. A Review of Available Technologies for Seasonal Thermal Energy Storage. Sol. Energy 2014, 103, 610–638. [Google Scholar] [CrossRef]
- Amer, M.; Chen, M.-R.; Sajjad, U.; Ali, H.M.; Abbas, N.; Lu, M.-C.; Wang, C.-C. Experiments for Suitability of Plastic Heat Exchangers for Dehumidification Applications. Appl. Therm. Eng. 2019, 158, 113827. [Google Scholar] [CrossRef]
- Leong, W.H.; Tarnawski, V.R.; Aittomäki, A. Effect of Soil Type and Moisture Content on Ground Heat Pump Performance: Effet Du Type et de l’humidité Du Sol Sur La Performance Des Pompes à Chaleur à Capteurs Enterrés. Int. J. Refrig. 1998, 21, 595–606. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H. SW—Soil and Water: Measurement of the Thermal Conductivity of Sandy Loam and Clay Loam Soils Using Single and Dual Probes. J. Agric. Eng. Res. 2001, 80, 209–216. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H. Thermal Properties of Soils as Affected by Density and Water Content. Biosyst. Eng. 2003, 86, 97–102. [Google Scholar] [CrossRef]
- Boukelia, A. Physical and Numerical Modeling of Energy Geostructures. Ph.D. Thesis, University of Lorraine, Nancy, France, 2016. [Google Scholar]
- McCartney, J.; Coccia, C.J.R.; Alsherif, N.A.; Stewart, M.A.; Baser, T.; Traore, T.; Goode, J.C., III. Unsaturated Soil Mechanics in Geothermal Energy Applications. In Proceedings of the 6th International Conference on Unsaturated Soils, UNSAT 2014, Sydney, Australia, 2–4 July 2014; eScholarship, University of California: Berkeley, CA, USA, 2014. [Google Scholar]
- King, F.H. Observations and Experiments on the Fluctuations in the Level and Rate of Movement of Ground-Water on the Wisconsin Agricultural Experiment Station Farm and at Whitewater, Wisconsin; Weather Bureau: Washington, DC, USA, 1892. [Google Scholar]
- Gardner, R. Relation of Temperature to Moisture Tension of Soil. Soil Sci. 1955, 79, 257–266. [Google Scholar] [CrossRef]
- Tang, A.-M.; Cui, Y.-J. Controlling Suction by the Vapour Equilibrium Technique at Different Temperatures and Its Application in Determining the Water Retention Properties of MX80 Clay. Can. Geotech. J. 2005, 42, 287–296. [Google Scholar] [CrossRef]
- Uchaipichat, A.; Khalili, N. Experimental Investigation of Thermo-Hydro-Mechanical Behaviour of an Unsaturated Silt. Géotechnique 2009, 59, 339–353. [Google Scholar] [CrossRef]
- Romero Morales, E.E. Characterisation and Thermo-Hydro-Mechanical Behaviour of Unsaturated Boom Clay: An Experimental Study. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 1999. [Google Scholar]
- Romero, E.; Gens, A.; Lloret, A. Temperature Effects on the Hydraulic Behaviour of an Unsaturated Clay. In Unsaturated Soil Concepts and Their Application in Geotechnical Practice; Toll, D.G., Ed.; Springer: Dordrecht, The Netherlands, 2001; pp. 311–332. ISBN 978-90-481-5918-5. [Google Scholar]
- Cho, W.J.; Lee, J.O.; Chun, K.S. The Temperature Effects on Hydraulic Conductivity of Compacted Bentonite. Appl. Clay Sci. 1999, 14, 47–58. [Google Scholar] [CrossRef]
- Bouazza, A.; Abuel-Naga, H.M.; Gates, W.P.; Laloui, L. Temperature Effects on Volume Change and Hydraulic Properties of Geosynthetic Clay Liners. In Proceedings of the First Pan American Geosynthetics Conference & Exhibition, Cancun, Mexico, 2–5 March 2008; Industrial Fabrics Association International (IFAI): Roseville, MN, USA, 2008. [Google Scholar]
- Ye, W.M.; Wan, M.; Chen, B.; Chen, Y.G.; Cui, Y.J.; Wang, J. Temperature Effects on the Swelling Pressure and Saturated Hydraulic Conductivity of the Compacted GMZ01 Bentonite. Environ. Earth Sci. 2013, 68, 281–288. [Google Scholar] [CrossRef]
- Cui, Y.-J.; Tang, A.-M.; Loiseau, C.; Delage, P. Determining the Unsaturated Hydraulic Conductivity of a Compacted Sand–Bentonite Mixture under Constant-Volume and Free-Swell Conditions. Phys. Chem. Earth Parts A/B/C 2008, 33, S462–S471. [Google Scholar] [CrossRef]
- Diny, S.; Masrouri, F.; Tisot, J.-P. Détermination de La Conductivité Hydraulique d’un Limon Non Saturé. Rev. Fr. Geotech. 1993, 62, 67–74. [Google Scholar] [CrossRef]
- Krisdani, H.; Rahardjo, H.; Leong, E.-C. Use of Instantaneous Profile and Statistical Methods to Determine Permeability Functions of Unsaturated Soils. Can. Geotech. J. 2009, 46, 869–874. [Google Scholar] [CrossRef]
- Liu, X.; Xu, W.; Zhan, L.; Chen, Y. Laboratory and Numerical Study on an Enhanced Evaporation Process in a Loess Soil Column Subjected to Heating. J. Zhejiang Univ.-Sci. A 2016, 17, 553–564. [Google Scholar] [CrossRef]
- Lahoori, M. Thermo-Hydro-Mechanical Behavior of an Embankment to Store Thermal Energy. Ph.D. Thesis, Université de Lorraine, Nancy, France, 2020. [Google Scholar]
- Haghighi, A.; Medero, G.M.; Marinho, F.A.; Mercier, B.; Woodward, P.K. Temperature Effects on Suction Measurement Using the Filter Paper Technique. Geotech. Test. J. 2012, 35, 83–90. [Google Scholar] [CrossRef]
- Pham, T.A.; Hashemi, A.; Sutman, M.; Medero, G.M. Effect of Temperature on the Soil–Water Retention Characteristics in Unsaturated Soils: Analytical and Experimental Approaches. Soils Found. 2023, 63, 101301. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, L.; Zhao, D.; Guo, Y.; Lin, J.; Jiang, F.; Huang, Y.; Zhang, Y. Thermal Effects on the Soil Water Retention Curves and Hydraulic Properties of Benggang Soil in Southern China. Water 2024, 16, 238. [Google Scholar] [CrossRef]
- Cahill, A.T.; Parlange, M.B. On Water Vapor Transport in Field Soils. Water Resour. Res. 1998, 34, 731–739. [Google Scholar] [CrossRef]
- Sakai, M.; Toride, N.; Šimůnek, J. Water and Vapor Movement with Condensation and Evaporation in a Sandy Column. Soil Sci. Soc. Am. J. 2009, 73, 707–717. [Google Scholar] [CrossRef]
- Saito, H.; Šimunek, J.; Mohanty, B.P. Numerical Analysis of Coupled Water, Vapor, and Heat Transport in the Vadose Zone. Vadose Zone J. 2006, 5, 784–800. [Google Scholar] [CrossRef]
- Mohamed, A.-M.; Yong, R.N.; Cheung, S.C. Temperature Dependence of Soil Water Potential. Geotech. Test. J. 1992, 15, 330–339. [Google Scholar] [CrossRef]
- Mohamed, A.M.; Yong, R.N.; Onofrei, C.I.; Kjartanson, B.H. Coupled Heat and Moisture Flow in Unsaturated Swelling Clay Barriers. Geotech. Test. J. 1996, 19, 155–163. [Google Scholar] [CrossRef]
- Kanno, T.; Kato, K.; Yamagata, J. Moisture Movement under a Temperature Gradient in Highly Compacted Bentonite. Eng. Geol. 1996, 41, 287–300. [Google Scholar] [CrossRef]
- Villar, M.V.; Cuevas, J.; Martin, P.L. Effects of Heat/Water Flow Interaction on Compacted Bentonite: Preliminary Results. Eng. Geol. 1996, 41, 257–267. [Google Scholar] [CrossRef]
- Yong, R.N.; Mohamed, A.-M.O. Evaluation of Coupled Heat and Moisture Flow Parameters in a Bentonite-Sand Buffer Material. Eng. Geol. 1996, 41, 269–286. [Google Scholar] [CrossRef]
- Yong, R.N.; Mohamed, A.M.O.; Shooshpasha, I.; Onofrei, C. Hydro-Thermal Performance of Unsaturated Bentonite-Sand Buffer Material. Eng. Geol. 1997, 47, 351–365. [Google Scholar] [CrossRef]
- Gao, Y.; Dong, S.; Wang, C.; Chen, Y.; Hu, W. Effect of Thermal Intensity and Initial Moisture Content on Heat and Moisture Transfer in Unsaturated Soil. Sustain. Cities Soc. 2020, 55, 102069. [Google Scholar] [CrossRef]
- NF ISO 11277/A1; Qualité Du Sol—Détermination de La Répartition Granulométrique de La Matière Minérale Des Sols—Méthode Par Tamisage et Sédimentation—Amendement 1. Association Française de Normalisation: Paris, France, 2024.
- EN ISO 17892-12; Reconnaissance et Essais Géotechniques. Essais de Laboratoire Sur Les Sols. Association Française de Normalisation: Paris, France, 2018.
- ASTM D2487-17e1; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). Annual Book of ASTM Standards. ASTM International: West Conshohocken, PA, USA, 2020.
- The Institute for Roads, Streets and Infrastructures for Mobility. Guide Des Terrassements Des Remblais et Des Couches de Forme: Les Principes Généraux et Les Annexes Techniques; IDRRIM: Paris, France, 2023. [Google Scholar]
- Boukelia, A.; Rosin-Paumier, S.; Masrouri, F.; Le Borgne, T. Stockage de Chaleur Dans Les Sols Compactés. In Proceedings of the Journées nationales de géotechnique et de géologie de l’ingénieur, Nancy, France, 6–8 July 2016. [Google Scholar]
- ASTM D5298-16; Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper. Annual Book of ASTM Standard. ASTM International: West Conshohocken, PA, USA, 2016.
- Amraoui, N. Étude de l’infiltration Dans Les Sols Fins Non Saturés. Ph.D. Thesis, Institut National Polytechnique de Lorraine, Nancy, France, 1996. [Google Scholar]
- Van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- NF X30-442; Déchets—Détermination Au Laboratoire Du Coefficient de Perméabilité à Saturation d’un Matériau—Essais de Perméabilité à l’oedomètre à Charge Hydraulique Constante/Variable. Association Française de Normalisation: Paris, France, 2008.
- Tetens, O. Uber Einige Meteorologische Begriffe. Z. Geophys 1930, 6, 297–309. [Google Scholar]
Composition | |
---|---|
Quartz | 81% |
Calcium Carbonate | 5% calcite, 7% dolomite |
Feldspath | 3% |
Clay minerals | 5% |
Particle-Size Fractions | |
Passing at 63 μm (%) | 37 |
Passing at 2 μm (%) | 20 |
Carbonate Content | |
CaCO3 (%) | 0.80 |
Optimum Proctor Normal | |
ρd (Mg.m−3) | 1.81 |
wOPN (%) | 16.3 |
Test | Column (Height × Diameter mm) | Duration | Type of Molds Used | T °C Bottom | T °C External | winitial (%) | Other Materials Used |
---|---|---|---|---|---|---|---|
E1 | 200 × 70 | 84 days | Stainless-steel | 20 ± 1 °C | 20 ± 1 °C | 18.5 | - |
E2 | 75 × 36.4 | 11 days | Plastic | 20 ± 1 °C | 20 ± 1 °C | 16.3 | Thermocouples |
E3 | 75 × 36.4 | 7 days | Plastic | 40 ± 1 °C | 20 ± 1 °C | 16.3 | Thermocouples Heat plate Sapphire disk |
Parameter | a | b | c | d | f | g | h |
---|---|---|---|---|---|---|---|
value | 1.09·101 | −6.4·10−2 | −4.06·10−2 | 2.19·10−4 | 1.91·10−2 | −3.65·10−3 | −7.65·10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Youssef, R.; Rosin-Paumier, S.; Abdallah, A. Determination of the Unsaturated Hydraulic Parameters of Compacted Soil Under Varying Temperature Conditions. Geotechnics 2025, 5, 38. https://doi.org/10.3390/geotechnics5020038
El Youssef R, Rosin-Paumier S, Abdallah A. Determination of the Unsaturated Hydraulic Parameters of Compacted Soil Under Varying Temperature Conditions. Geotechnics. 2025; 5(2):38. https://doi.org/10.3390/geotechnics5020038
Chicago/Turabian StyleEl Youssef, Rawan, Sandrine Rosin-Paumier, and Adel Abdallah. 2025. "Determination of the Unsaturated Hydraulic Parameters of Compacted Soil Under Varying Temperature Conditions" Geotechnics 5, no. 2: 38. https://doi.org/10.3390/geotechnics5020038
APA StyleEl Youssef, R., Rosin-Paumier, S., & Abdallah, A. (2025). Determination of the Unsaturated Hydraulic Parameters of Compacted Soil Under Varying Temperature Conditions. Geotechnics, 5(2), 38. https://doi.org/10.3390/geotechnics5020038