Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = hydraulic erosion resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6970 KiB  
Article
Study on Lateral Erosion Failure Behavior of Reinforced Fine-Grained Tailings Dam Due to Overtopping Breach
by Yun Luo, Mingjun Zhou, Menglai Wang, Yan Feng, Hongwei Luo, Jian Ou, Shangwei Wu and Xiaofei Jing
Water 2025, 17(14), 2088; https://doi.org/10.3390/w17142088 - 12 Jul 2025
Viewed by 342
Abstract
The overtopping-induced lateral erosion breaching of tailings dams represents a critical disaster mechanism threatening structural safety, particularly in reinforced fine-grained tailings dams where erosion behaviors demonstrate pronounced water–soil coupling characteristics and material anisotropy. Through physical model tests and numerical simulations, this study systematically [...] Read more.
The overtopping-induced lateral erosion breaching of tailings dams represents a critical disaster mechanism threatening structural safety, particularly in reinforced fine-grained tailings dams where erosion behaviors demonstrate pronounced water–soil coupling characteristics and material anisotropy. Through physical model tests and numerical simulations, this study systematically investigates lateral erosion failure patterns of reinforced fine-grained tailings under overtopping flow conditions. Utilizing a self-developed hydraulic initiation test apparatus, with aperture sizes of reinforced geogrids (2–3 mm) and flow rates (4–16 cm/s) as key control variables, the research elucidates the interaction mechanisms of “hydraulic scouring-particle migration-geogrid anti-sliding” during lateral erosion processes. The study revealed that compared to unreinforced specimens, reinforced specimens with varying aperture sizes (2–3 mm) demonstrated systematic reductions in final lateral erosion depths across flow rates (4–16 cm/s): 3.3–5.8 mm (15.6−27.4% reduction), 3.1–7.2 mm (12.8–29.6% reduction), 2.3–11 mm (6.9–32.8% reduction), and 2.5–11.4 mm (6.2–28.2% reduction). Smaller-aperture geogrids (2 mm × 2 mm) significantly enhanced anti-erosion performance through superior particle migration inhibition. Concurrently, a pronounced positive correlation between flow rate and lateral erosion depth was confirmed, where increased flow rates weakened particle erosion resistance and exacerbated lateral erosion severity. The numerical simulation results are in basic agreement with the lateral erosion failure process observed in model tests, revealing the dynamic process of lateral erosion in the overtopping breach of a reinforced tailings dam. These findings provide critical theoretical foundations for optimizing reinforced tailings dam design, construction quality control, and operational maintenance, while offering substantial engineering applications for advancing green mine construction. Full article
Show Figures

Figure 1

31 pages, 7541 KiB  
Article
Harnessing Bacillus subtilis–Moss Synergy: Carbon–Structure Optimization for Erosion-Resistant Barrier Formation in Cold Mollisols
by Tianxiao Li, Shunli Zheng, Zhaoxing Xiao, Qiang Fu, Fanxiang Meng, Mo Li, Dong Liu and Qingyuan Liu
Agriculture 2025, 15(14), 1465; https://doi.org/10.3390/agriculture15141465 - 8 Jul 2025
Viewed by 280
Abstract
Soil degradation exerts profound impacts on soil ecological functions, global food security, and human development, making the development of effective technologies to mitigate degradation a critical research focus. Microorganisms play a leading role in rehabilitating degraded land, improving soil hydraulic properties, and enhancing [...] Read more.
Soil degradation exerts profound impacts on soil ecological functions, global food security, and human development, making the development of effective technologies to mitigate degradation a critical research focus. Microorganisms play a leading role in rehabilitating degraded land, improving soil hydraulic properties, and enhancing soil structural stability. Mosses contribute to soil particle fixation through their unique rhizoid structures; however, the mechanisms underlying their interactions in mixed inoculation remain unclear. Therefore, this study addresses soil and water loss caused by rainfall erosion in the cold black soil region. We conducted controlled laboratory experiments cultivating Bacillus subtilis and cold-adapted moss species, evaluating the erosion mitigation effects of different biological treatments under gradient slopes (3°, 6°, 9°) and rainfall intensities (70 mm h−1, 120 mm h−1), and elucidating their carbon-based structural reinforcement mechanism. The results indicated that compared to the control group, Treatment C significantly increased the mean weight diameter (MWD) and geometric mean diameter (GMD) of soil aggregates by 121.6% and 76.75%, respectively. In separate simulated rainfall events at 70 mm h−1 and 120 mm h−1, Treatment C reduced soil loss by 95.70% and 96.75% and decreased runoff by 38.31% and 67.21%, respectively. Crucially, the dissolved organic carbon (DOC) loss rate in Treatment C was only 21.98%, significantly lower than that in Treatment A (32.32%), Treatment B (22.22%), and the control group (51.07%)—representing a 59.41% reduction compared to the control. This demonstrates the following: (1) Bacillus subtilis enhances microbial metabolism, driving carbon conversion into stable pools, while mosses reduce carbon leaching via physical barriers, synergistically forming a dual “carbon protection–structural reinforcement” barrier. (2) The combined inoculation optimizes soil structure by increasing the proportion of large soil particles and enhancing aggregate stability, effectively suppressing soil loss even under extreme rainfall erosion. This study elucidates, for the first time, the biological pathway through which microbe–moss interactions achieve synergistic carbon sequestration and erosion resistance by regulating aggregate formation and pore water dynamics. It provides a scalable “carbon–structure”-optimized biotechnology system (co-inoculation of Bacillus subtilis and moss) for the ecological restoration of the cold black soil region. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

33 pages, 25988 KiB  
Article
Erosion Resistance Assessment of Grass-Covered Embankments: Insights from In Situ Overflow Tests at the Living Lab Hedwige-Prosper Polder
by Davy Depreiter, Jeroen Vercruysse, Kristof Verelst and Patrik Peeters
Water 2025, 17(13), 2016; https://doi.org/10.3390/w17132016 - 4 Jul 2025
Viewed by 248
Abstract
Grass-covered levees commonly protect river and estuarine areas against flooding. Climate-induced water level changes may increasingly expose these levees to overflow events. This study investigates whether grass-covered levees can withstand such events, and under what conditions failure may occur. Between 2020 and 2022, [...] Read more.
Grass-covered levees commonly protect river and estuarine areas against flooding. Climate-induced water level changes may increasingly expose these levees to overflow events. This study investigates whether grass-covered levees can withstand such events, and under what conditions failure may occur. Between 2020 and 2022, full-scale overflow tests were conducted at the Living Lab Hedwige-Prosperpolder along the Dutch–Belgian Scheldt Estuary to assess erosion resistance under varying hydraulic conditions and vegetation states. A custom-built overflow generator was used, with instrumentation capturing flow velocity, water levels, and erosion progression. The results show that well-maintained levees with intact grass cover endured overflow durations up to 30 h despite high terminal flow velocities (4.9–7.7 m/s), without structural damage. In contrast, levee sections with pre-existing surface anomalies, such as animal burrows, slope irregularities, surface damage, or reed-covered soft soils, failed rapidly, often within one to two hours. Animal burrows facilitated subsurface flow and internal erosion, initiating fast, retrograde failure. These findings highlight the importance of preventive maintenance, particularly the timely detection and repair of anomalies. Once slope failure begins, the process unfolds rapidly, leaving no practical window for intervention. Full article
Show Figures

Figure 1

21 pages, 2034 KiB  
Article
Stabilization of Sandy Soil Against Internal Erosion Using Fly Ash with Alkali-Activated Binder
by Mohammad Almasaeid, Mousa Attom, Magdi El-Emam and Mohamad G. Arab
Water 2025, 17(10), 1552; https://doi.org/10.3390/w17101552 - 21 May 2025
Viewed by 1493
Abstract
Seepage forces due to the flow of water inside embankment hydraulic structures, such as dams or levees, result in internal erosion or piping. This will result in a reduction in soil strength, causing the failure of hydraulic structures. Stabilization of the soil is [...] Read more.
Seepage forces due to the flow of water inside embankment hydraulic structures, such as dams or levees, result in internal erosion or piping. This will result in a reduction in soil strength, causing the failure of hydraulic structures. Stabilization of the soil is one of the most effective approaches to avoid such catastrophic failure and prevent significant loss of life and property. The objective of this research is to stabilize sandy soil against internal erosion using fly ash (FA) alone and fly ash mixed with alkali-activated binder (NaOH). Although fly ash is commonly used for clay soil, its reactivity with alkali activators like NaOH makes it a potential candidate for stabilizing non-cohesive sandy soils when combined with alkaline solutions. A well-graded sandy soil was selected and mixed with fly ash alone and fly ash with sodium hydroxide at different percentages. Compaction curves were determined for each percentage, and specimens from the mix were remolded at 98% relative compaction and optimum moisture content corresponding to the compaction curve value. The hole erosion test (HET) was employed to evaluate internal erosion parameters. During the hole erosion test, seepage conditions were simulated by applying a controlled water flow through remolded specimens to replicate erosion caused by internal seepage forces. Additionally, the internal erosion parameters were evaluated at different curing times (2 days, 7 days, and 28 days were selected to capture short-term, intermediate, and long-term effects of chemical reactions on soil stabilization). Parameters such as the friction factor, coefficient of soil erosion, and critical shear stress were obtained, and the erosion rate index (IHET) was determined. It was found that using FA–NaOH significantly reduced internal erosion and increased the erosion rate index and the critical shear of the soil. The addition of 10% fly ash mixed with activated-alkali binder at 7 days curing time stabilized the soil against erosion. At this percentage, the erosion rate index equal to 5.3 and soil was categorized as: “very slow erosion”. However, mixing the sand with fly ash alone has a small or insignificant effect on the internal erosion of the soil, especially at higher percentages of fly ash. The optimum percentage of fly ash alone to improve the soil resistance to internal erosion was found to be 5% at 28 days of curing time where the soil rated as “moderately slow”. Full article
(This article belongs to the Special Issue Soil Erosion and Sedimentation by Water)
Show Figures

Figure 1

26 pages, 4872 KiB  
Article
Using Expert Knowledge to Assess Resistance to Internal Erosion of Levees with Tree Vegetation
by Gisèle Bambara, Corinne Curt, Laurent Peyras and Rémy Tourment
Geotechnics 2025, 5(2), 30; https://doi.org/10.3390/geotechnics5020030 - 21 May 2025
Viewed by 842
Abstract
The breaching of river levees can have dramatic economic and human impacts. In many countries, including France, laws and regulations require the assessment and inspection of hydraulic structures. Methods are required to carry out these missions. The following article presents a method for [...] Read more.
The breaching of river levees can have dramatic economic and human impacts. In many countries, including France, laws and regulations require the assessment and inspection of hydraulic structures. Methods are required to carry out these missions. The following article presents a method for assessing the impacts of tree vegetation on the resistance of river levees to internal erosion. Indeed, the presence of trees—particularly following the decomposition of their roots—may cause damage in the structure through contact erosion, concentrated erosion, backward erosion or suffusion. The proposed method takes into account the possible presence of trees and especially roots in different parts of the levee. The method is based on the formalization and aggregation of expert knowledge. It permits the calculation of a performance indicator, which is obtained by aggregating criteria determined using formalized status indicators. The entire method is available in the article. The method was tested on two real cases. Full article
Show Figures

Figure 1

26 pages, 9546 KiB  
Article
Mix Design of Pervious Concrete in Geotechnical Engineering Applications
by Maurizio Ziccarelli
Materials 2025, 18(9), 1909; https://doi.org/10.3390/ma18091909 - 23 Apr 2025
Viewed by 609
Abstract
This paper presents a comprehensive experimental study on the mix design and performance of permeable concrete for geotechnical applications, focusing on its hydraulic conductivity, durability, and filter properties. Characterized by high porosity and minimal or no fine aggregates, classical pervious concretes are effectively [...] Read more.
This paper presents a comprehensive experimental study on the mix design and performance of permeable concrete for geotechnical applications, focusing on its hydraulic conductivity, durability, and filter properties. Characterized by high porosity and minimal or no fine aggregates, classical pervious concretes are effectively utilized in various civil and environmental engineering applications, including drainage systems and erosion control. This research examines the influence of the particle size distribution of aggregates on the filter properties of permeable concrete for applications in geotechnical engineering (draining piles, deep trench drains, and draining backfill). It emphasizes the importance of resistance to clogging to maintain adequate residual hydraulic conductivity and to prevent the internal erosion of soils into which permeable concrete drains are installed. The experimental results indicate that including sand in the aggregates strongly enhances the filtering capacity of pervious concrete. These findings suggest that if the mix design of permeable concrete is developed considering the grain size distribution of the base soils, the concrete will meet long-term drainage requirements (sufficient residual hydraulic conductivity), exhibit good resistance to physical clogging, provide excellent protection for the base soils against internal erosion, and contribute to the overall stability of geotechnical systems. Full article
Show Figures

Figure 1

15 pages, 5922 KiB  
Article
Comparative Study on the Calcium Leaching Resistance of Low-Heat Cement, Moderate-Heat Cement, and Ordinary Portland Cement Pastes
by Chunmeng Jiang, Shihao An, Shuangxi Li, Yingjie Chen and Jian Liu
Materials 2025, 18(1), 212; https://doi.org/10.3390/ma18010212 - 6 Jan 2025
Cited by 3 | Viewed by 1048
Abstract
Hydraulic structures are frequently subjected to soft-water or acidic environments, necessitating serious consideration of the long-term effects of calcium leaching on the durability of concrete structures. Three types of common Portland cement (ordinary Portland cement, moderate-heat cement, and low-heat cement) paste samples widely [...] Read more.
Hydraulic structures are frequently subjected to soft-water or acidic environments, necessitating serious consideration of the long-term effects of calcium leaching on the durability of concrete structures. Three types of common Portland cement (ordinary Portland cement, moderate-heat cement, and low-heat cement) paste samples widely applied to hydraulic concrete were immersed in a 6 mol/L NH4Cl solution to simulate accelerated calcium leaching behavior. The mass loss, porosity, leaching depth, compressive strength, and Ca/Si ratio of the three types of pastes were measured at different immersion stages (0, 14, 28, 56, 91, 140, and 180 days). The Vickers hardness index was employed to compare cement samples subjected to erosion for 30 and 180 days. The microstructure and composition of the mineralogical phases of the leached samples were also determined by X-ray diffraction, thermogravimetric analysis, and scanning electronic microscopy. Accordingly, the time-varying behavior and deterioration mechanism of the different cements subjected to leaching were contrastively revealed. The results showed that the calcium leaching resistance of the low-heat cement was the best, followed by the moderate-heat cement and ordinary Portland cement, proving that the content and structure of Ca(OH)2 and C-S-H gels were closely related to the leaching performance of the cement. The less Ca(OH)2 and more aggregated C-H-S gels produced by C2S led to better calcium leaching resistance in the cement. Therefore, the leaching performance of Portland cement could be effectively improved by reducing the content of C3S and increasing the content of C2S, and the dissolution rate of calcium ions under leaching could be reduced by controlling the low initial calcium content in cementitious materials. This paper offers theoretical guidance for mitigating the long-term effects of calcium leaching on hydraulic concrete structures by conducting a comprehensive comparative analysis of the damage behavior and deterioration mechanisms of various types of Portland cement under identical erosion conditions. Full article
(This article belongs to the Special Issue Sustainable and Advanced Cementitious Materials)
Show Figures

Figure 1

12 pages, 3724 KiB  
Article
Corrosion and Cavitation Performance of Flame-Sprayed NiCrBSi Composite Coatings Reinforced with Hard Particles
by Doina Frunzaverde, Gabriela Marginean and Costel Relu Ciubotariu
Crystals 2024, 14(12), 1078; https://doi.org/10.3390/cryst14121078 - 13 Dec 2024
Viewed by 769
Abstract
To enhance the operational life of hydraulic machinery, protective coatings against wear, particularly cavitation erosion, and corrosion might be applied on the surfaces of components. The experiments conducted in this study aimed to assess the suitability of 80/20 NiCrBSi/WC-Co composite coatings for this [...] Read more.
To enhance the operational life of hydraulic machinery, protective coatings against wear, particularly cavitation erosion, and corrosion might be applied on the surfaces of components. The experiments conducted in this study aimed to assess the suitability of 80/20 NiCrBSi/WC-Co composite coatings for this purpose. A coating of NiCrBSi self-fluxing alloy, which served as the reference material, was deposited alongside a NiCrBSi coating reinforced with 20% WC-Co, both applied by flame spraying onto X3CrNiMo13-4 substrates, the martensitic stainless steel type frequently utilized in turbine blade manufacturing. The improved density of the coatings and adhesion to the substrate was achieved by remelting with an oxyacetylene flame. The cavitation and corrosion performance of both the reference and composite coating were evaluated through cavitation tests and electrochemical measurements conducted in the laboratory. The results demonstrate that the addition of 20% WC-Co significantly enhances the cavitation resistance of the composite material, as evidenced by the reduction to 3.76 times of the cumulative erosion (CE), while the stabilization rate remained at half the value observed for the reference self-fluxing alloy coating. Conversely, the addition of WC-Co into the NiCrBSi coating resulted in a slight decrease in the corrosion resistance of the self-fluxing alloy. Nevertheless, the corrosion rate of the composite coating (124.80 µm/year) did not significantly exceed the upper limit for excellent corrosion resistance (100 µm/year). Full article
(This article belongs to the Special Issue Modern Technologies in the Manufacturing of Metal Matrix Composites)
Show Figures

Graphical abstract

20 pages, 2624 KiB  
Article
Rill Erosion Due to Wildfire or Deforestation in Forestlands of Northern Iran
by Misagh Parhizkar, Manuel Esteban Lucas-Borja and Demetrio Antonio Zema
Forests 2024, 15(11), 1926; https://doi.org/10.3390/f15111926 - 31 Oct 2024
Cited by 3 | Viewed by 942
Abstract
Rill erosion, mostly affecting steep and long hillslopes, is one of the most severe effects of deforestation and wildfires in natural ecosystems. Specific monitoring and accurate but simple models are needed to assess the impacts of these forest disturbances on the rill detachment [...] Read more.
Rill erosion, mostly affecting steep and long hillslopes, is one of the most severe effects of deforestation and wildfires in natural ecosystems. Specific monitoring and accurate but simple models are needed to assess the impacts of these forest disturbances on the rill detachment process. To address this need, this study has simulated the rill detachment capacity (Dc) through flume experiments on samples of soils collected in hillslopes after deforestation and severe burning. The associations between Dc and organic matter (OM) and the aggregate stability of soil (WSA), two key parameters influencing the rill detachment process, have also been explored under the two soil conditions (deforested and burned soils) using multivariate statistical techniques. Finally, linear regression models to predict Dc from these soil parameters or the hydraulic and morphological variables (water flow rate, WFR, and soil slope, S), set in the flume experiments, have been proposed for both soil conditions. Higher Dc in samples from deforested sites compared to the burned soils (+35%) was measured. This Dc increase was associated with parallel decreases in OM (−15%) and WSA (−34%) after deforestation compared to the wildfire-affected sites. However, the discrimination in those soil properties between the two soil conditions was not sharp. Accurate linear equations (r2 > 0.76) interpolating Dc and the shear stress (τ) have been set to estimate the rill erodibility (Kr) to evaluate soil resistance in erosion models to be applied in deforested or burned sites. Full article
(This article belongs to the Section Forest Hydrology)
Show Figures

Figure 1

21 pages, 713 KiB  
Article
Construction Quality Evaluation of Concrete Structures in Hydraulic Tunnels Based on CWM-UM Modeling
by Liang Zhao, Changhai He, Zhuangzhuang Luo and Qingfu Li
Appl. Sci. 2024, 14(20), 9606; https://doi.org/10.3390/app14209606 - 21 Oct 2024
Viewed by 1336
Abstract
The construction time of concrete structures in hydraulic tunnels is long, the construction environment is complex, and there are many influencing factors. The requirements for construction quality are high not only to meet the strength requirements but also to meet the design requirements [...] Read more.
The construction time of concrete structures in hydraulic tunnels is long, the construction environment is complex, and there are many influencing factors. The requirements for construction quality are high not only to meet the strength requirements but also to meet the design requirements of erosion resistance, crack resistance, and seepage resistance according to its specific operating environment. Therefore, evaluating the construction quality of concrete structures in hydraulic tunnels is of great significance. Considering the randomness and fuzziness of factors affecting the construction quality of concrete structures in hydraulic tunnels, this paper proposes a comprehensive evaluation model based on combined weighting (CWM) and uncertainty measurement theory (UM). The improved analytic hierarchy process (IAHP) and the CRITIC method are used to determine the subjective and objective weights of evaluation indicators. Combined weighting is based on the principle of minimum entropy, and the UM method is used to evaluate the construction quality level. Finally, taking a hydraulic tunnel as an example, its construction quality grade is calculated to be III, according to the evaluation model proposed in this paper, which matches the engineering reality, and a comparative study is made with the mixture element topology theory at the same time. It is verified that the evaluation model can scientifically and reasonably evaluate the construction quality level of concrete structures in hydraulic tunnels. Full article
(This article belongs to the Special Issue Advances in Tunneling and Underground Engineering)
Show Figures

Figure 1

25 pages, 31111 KiB  
Article
Experimental Analysis of Cavitation Erosion: Parameter Sensitivity and Testing Protocols
by SeyedMehdi Mohammadizadeh, José Gilberto Dalfré Filho, Cassiano Sampaio Descovi, Ana Inés Borri Genovez and Thomaz Eduardo Teixeira Buttignol
Coatings 2024, 14(10), 1288; https://doi.org/10.3390/coatings14101288 - 9 Oct 2024
Cited by 7 | Viewed by 2101
Abstract
The scientific goal of this study was to investigate the effects of various parameters on cavitation-induced erosion, with the aim to enhance the understanding and assessment of cavitation resistance in hydraulic systems. Cavitation erosion poses significant challenges to the durability and efficiency of [...] Read more.
The scientific goal of this study was to investigate the effects of various parameters on cavitation-induced erosion, with the aim to enhance the understanding and assessment of cavitation resistance in hydraulic systems. Cavitation erosion poses significant challenges to the durability and efficiency of hydraulic components, such as those found in hydropower plants and pumping stations. Prompted by the need to improve the reliability of cavitation testing and material assessment, this research conducted a comprehensive sensitivity analysis of a cavitation jet apparatus (CJA). This study employed an experimental platform that consisted of a vertical cylindrical test tank, a submerged nozzle, and an aluminum sample. By examining a range of orifice diameters, this research identified that smaller diameters led to increased erosion intensity, with the most pronounced effects observed at a diameter of 2 mm. Furthermore, various standoff distances (SoDs) were tested, which revealed that shorter distances resulted in greater erosion, with the highest impact noted at an SoD of 5 cm. This study also evaluated different nozzle geometries, where it was found that a 132° conical sharped edges nozzle, combined with an orifice diameter of 2 mm and an SoD of 5 cm, produced the most severe erosion. Conversely, chamfered edges nozzles and a commercial nozzle (MEG2510) with an SoD of 10 cm or greater showed reduced erosion. These results highlight that by standardizing the testing duration to 1200 s, the CJA could reliably assess the cavitation resistance of materials. This study established a clear relationship between increased pressure and higher impact forces, which led to more severe erosion. The findings underscore the effectiveness of the CJA in evaluating material resistance under various cavitation conditions, thus addressing a critical need for reliable cavitation testing tools. Full article
Show Figures

Figure 1

18 pages, 8369 KiB  
Article
Surface Integrity of Austenitic Manganese Alloys Hard Layers after Cavitation Erosion
by Ion Mitelea, Ilare Bordeașu, Daniel Mutașcu, Corneliu Marius Crăciunescu and Ion Dragoș Uțu
Lubricants 2024, 12(10), 330; https://doi.org/10.3390/lubricants12100330 - 26 Sep 2024
Cited by 1 | Viewed by 1237
Abstract
Cavitation erosion, as a mechanical effect of destruction, constitutes a complex and critical problem that affects the safety and efficiency of the functioning of engineering components specific to many fields of work, the most well-known being propellers of ships and maritime and river [...] Read more.
Cavitation erosion, as a mechanical effect of destruction, constitutes a complex and critical problem that affects the safety and efficiency of the functioning of engineering components specific to many fields of work, the most well-known being propellers of ships and maritime and river vessels, seawater desalination systems, offshore oil and gas drilling platforms (including drilling and processing equipment), and the rotors and blades of hydraulic machines. The main objective of the research conducted in this paper is to experimentally investigate the phenomenology of this surface degradation process of maritime ships and offshore installations operating in marine and river waters. To reduce cavitation erosion of maritime structures made from Duplex stainless steels, the study used the deposition by welding of layers of metallic alloys with a high capacity for work hardening. The cavitation tests were conducted in accordance with the American Society for Testing and Materials standards. The response of the deposited metal under each coating condition, compared to the base metal, was investigated by calculating the erosion penetration rate (MDER) through mass loss measurements over the cavitation duration and studying the degraded zones using scanning electron microscopy (SEM), the energy-dispersive X-ray analysis, and hardness measurements. It was revealed that welding hardfacing with austenitic manganese alloy contributes to an approximately 8.5–10.5-fold increase in cavitation erosion resistance. The explanation is given by the increase in surface hardness of the coated area, with 2–3 layers of deposited alloy reaching values of 465–490 HV5, significantly exceeding those specific to the base metal, which range from 260–280 HV5. The obtained results highlighted the feasibility of forming hard coatings on Duplex stainless-steel substrates. Full article
Show Figures

Figure 1

13 pages, 16801 KiB  
Article
Experimental Erosion Flow Pattern Study of Pelton Runner Buckets Using a Non-Recirculating Test Rig
by Baig Mirza Umar, Zhengwei Wang, Sailesh Chitrakar, Bhola Thapa, Xingxing Huang, Ravi Poudel and Aaditya Karna
Energies 2024, 17(16), 4006; https://doi.org/10.3390/en17164006 - 13 Aug 2024
Cited by 2 | Viewed by 2414
Abstract
Sediment erosion of hydraulic turbines is a significant challenge in hydropower plants in mountainous regions like the European Alps, the Andes, and the Himalayan region. The erosive wear of Pelton runner buckets is influenced by a variety of factors, including the size, hardness, [...] Read more.
Sediment erosion of hydraulic turbines is a significant challenge in hydropower plants in mountainous regions like the European Alps, the Andes, and the Himalayan region. The erosive wear of Pelton runner buckets is influenced by a variety of factors, including the size, hardness, and concentration of silt particles; the velocity of the flow and impingement angle of the jet; the properties of the base material; and the operating hours of the turbine. This research aims to identify the locations most susceptible to erosion and to elucidate the mechanisms of erosion propagation in two distinct designs of Pelton runner buckets. The Pelton runner buckets were subjected to static condition tests with particle sizes of 500 microns and a concentration of 14,000 mg/L. The buckets were coated with four layers of paint, sequentially applied in red, yellow, green, and blue. The two Pelton buckets, D1 and D2, were evaluated for their erosion resistance properties. D2 demonstrated superior erosion resistance, attributed to its geometrical features and material composition, lower erosion rates, less material loss, and improved surface integrity compared with D1. This difference is primarily attributed to factors such as the splitter’s thickness, the jet’s impact angle, the velocity at which particles strike, and the concentration of sand. D2 exhibits a great performance in terms of erosion resistance among the two designs. This study reveals that the angle of jet impingement influences erosion progression and material loss, which is important to consider during a Pelton turbine’s design and operating conditions. Full article
Show Figures

Figure 1

12 pages, 2499 KiB  
Article
Study on the Coefficient of Apparent Shear Stress along Lines Dividing a Compound Cross-Section
by Yindi Zhao, Dong Chen, Jinghong Qin, Lei Wang and You Luo
Water 2024, 16(12), 1648; https://doi.org/10.3390/w16121648 - 8 Jun 2024
Cited by 1 | Viewed by 1210
Abstract
A compound channel’s discharge capacity and boundary shear force can be predicted as a sum of the discharge capacity of different sub-regions once the apparent shear stress of the dividing line is reasonably quantified. The apparent shear stress was usually expressed as a [...] Read more.
A compound channel’s discharge capacity and boundary shear force can be predicted as a sum of the discharge capacity of different sub-regions once the apparent shear stress of the dividing line is reasonably quantified. The apparent shear stress was usually expressed as a coefficient multiplied by the difference between two squared velocities of two adjacent regions. This study investigated the range of the coefficient values and their influencing factors. Firstly, the optimal values of the coefficient were obtained based on experimental data. Then, comparisons between the optimal values and several parameters used in quantifying the apparent shear stress were conducted. The results show that the coefficient is mainly related to a morphological parameter of the floodplain and the ratio of resistance coefficients between the floodplain and the main channel. An empirical formula to calculate the coefficient was developed and introduced to calculate the flow discharge and boundary shear stress. Experimental data, including 142 sets of test data of symmetric-floodplain cases and 104 sets of one-floodplain cases, have been used to examine the prediction accuracy of discharges and boundary shear stress. For all these tests, the ranges of water depth of the main channel and the total width of the compound cross-section are about 0.05~0.30 m and 0.3~10 m, respectively; the Q range and the range of Froude numbers of the main channel flow are about 0.0033~1.11 m3/s and 0.3~2.3, respectively. Comparison with other methods and experimental data from both rigid and erodible compound channels indicated that the proposed method not only provided acceptable accuracy for the computation of discharge capacity and boundary shear stress of compound channels in labs but also gave insights for calculating discharge capacity in natural compound channels. Full article
(This article belongs to the Special Issue Advances in Hydraulic and Water Resources Research (2nd Edition))
Show Figures

Figure 1

17 pages, 5267 KiB  
Article
Determining the Relevance of Commonly Used Hydraulic Parameters for Representing the Water Erosive Force in Rock Mass Erosion within Dam Spillways
by Aboubacar Sidiki Koulibaly, Ali Saeidi, Alain Rouleau and Marco Quirion
Water 2024, 16(9), 1261; https://doi.org/10.3390/w16091261 - 28 Apr 2024
Viewed by 1626
Abstract
Spillways are essential control structures in hydroelectric dams for evacuating excess water during periods of high-water flow. These structures are generally excavated within a rock mass, without lining, and they take the form of a flow channel or a plunge pool. Rock mass [...] Read more.
Spillways are essential control structures in hydroelectric dams for evacuating excess water during periods of high-water flow. These structures are generally excavated within a rock mass, without lining, and they take the form of a flow channel or a plunge pool. Rock mass erosion is an important issue facing engineers when designing unlined spillways. Methods commonly used to analyze this phenomenon are based on the threshold line concept, i.e., the correlation between rock mass resistance and its destruction against the erosive force of water. Multiple indices have been proposed for both rock mass quality and water energy (or erosive force) to assess rock mass erosion. The selection of appropriate indices is critical when evaluating hydraulic erosion. The erosive force of water is often represented by energy dissipation; however, other parameters, including average flow velocity and shear stress at the bottom of the flow channel, may also be relevant. Thus, a critical question is framed: which index best represents the erosive force of water? Here, we develop an approach to assess the applicability of the various indices used to represent the erosive force of water by relying on erosional events at more than 100 study sites. We determine that the most relevant parameters are linked to water pressure, as pressure head and flow velocity better explain the erosive force of the water than shear stress and water dissipation energy. Full article
(This article belongs to the Special Issue Evolution of Soil and Water Erosion)
Show Figures

Figure 1

Back to TopTop