Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = hydantoins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2423 KB  
Article
Toxicokinetic Characterization of MDM Hydantoin via Stable Metabolite DMH: Population Modeling for Predicting Dermal Formaldehyde Formation
by Woohyung Jung, Jaewoong Lee, Woojin Kim, Seongwon Kim, Woojin Nam, In-Soo Myeong, Kwang Ho Kim, Soyoung Shin and Tae Hwan Kim
Toxics 2025, 13(11), 917; https://doi.org/10.3390/toxics13110917 - 25 Oct 2025
Viewed by 756
Abstract
MDM hydantoin (MDMH), a formaldehyde-releasing preservative widely used in cosmetics, poses potential health risks due to its conversion to formaldehyde and systemically absorbed metabolites. Current safety assessments lack quantitative exposure data due to rapid degradation of MDMH in biological matrices. In the present [...] Read more.
MDM hydantoin (MDMH), a formaldehyde-releasing preservative widely used in cosmetics, poses potential health risks due to its conversion to formaldehyde and systemically absorbed metabolites. Current safety assessments lack quantitative exposure data due to rapid degradation of MDMH in biological matrices. In the present study, we developed a validated LC-MS/MS assay for simultaneous determination of MDMH and its stable metabolite DMH in rat plasma, and characterized their toxicokinetics using population modeling following intravenous and transdermal administration. MDMH exhibited extremely rapid elimination (t1/2 = 0.4 ± 0.1 min) with near-complete conversion to DMH (97.6 ± 9.6%), while DMH demonstrated prolonged retention (t1/2 = 174.2 ± 12.2 min) and complete bioavailability (100.9 ± 18.0%) after transdermal application. Population modeling estimated that 84% (relative standard error: 42.8%) of applied MDMH undergoes cutaneous absorption and metabolism to DMH and formaldehyde within skin tissues. This study demonstrates that stable metabolite monitoring combined with population modeling enables toxicokinetic characterization of rapidly degrading compounds following dermal exposure. Full article
(This article belongs to the Special Issue Advances in Computational Methods of Studying Exposure to Chemicals)
Show Figures

Figure 1

18 pages, 3719 KB  
Article
Biofouling Resistance Improvement in Membrane-Based Secondary Effluent Treatment: A Focus on Membrane Surface Modification by Graft Polymerization with 3-Allyl-5, 5-Dimethyl Hydantoin
by Godwill Kasongo, Aude Minang Nkombe and Mujahid Aziz
Membranes 2025, 15(10), 314; https://doi.org/10.3390/membranes15100314 - 15 Oct 2025
Viewed by 862
Abstract
The implementation of wastewater management strategies and wastewater treatment techniques, such as reverse osmosis (RO), has been increasing to promote environmental sustainability and reduce freshwater consumption. Municipal secondary effluent is a promising source for reuse and reducing the strain on freshwater consumption. Still, [...] Read more.
The implementation of wastewater management strategies and wastewater treatment techniques, such as reverse osmosis (RO), has been increasing to promote environmental sustainability and reduce freshwater consumption. Municipal secondary effluent is a promising source for reuse and reducing the strain on freshwater consumption. Still, its diverse foulant composition promotes the fouling of polyamide RO membranes, leading to performance decline. In this study, 3-allyl-5,5-dimethylhydantoin (ADMH) was grafted onto thin-film composite RO membranes at varying concentrations via graft polymerization. The membranes were tested against foulant solutions of E. coli and S. aureus, as well as organic and inorganic foulant solutions mimicking the fouling activity of municipal wastewater secondary effluent. Biofouling tests showed improved mortality ratios—58.9% against E. coli and 37.4% against S. aureus—along with fouling deposition rates of 3.7–8.9% and flux recovery ratios of 69.2–96.9%. Although surface hydrophilicity increased with ADMH concentration, fouling resistance was optimal at a moderate concentration. Resistance to organic and inorganic foulants did not show similar improvement, highlighting the importance of the foulant type in determining overall membrane performance. Full article
Show Figures

Graphical abstract

26 pages, 2925 KB  
Article
Novel Dual 5-HT7 Antagonists and Sodium Channel Inhibitors as Potential Therapeutic Agents with Antidepressant and Anxiolytic Activities
by Anna Czopek, Paulina Koczurkiewicz-Adamczyk, Katarzyna Wójcik-Pszczoła, Daria Kornas, Wojciech Sitko, Adam Bucki, Michał Sapa, Krzysztof Kamiński, Grzegorz Satała, Beata Duszyńska, Andrzej J. Bojarski, Gniewomir Latacz, Jacek Czopek, Joanna Szpor, Pola Dryja and Kinga Sałat
Pharmaceuticals 2025, 18(10), 1485; https://doi.org/10.3390/ph18101485 - 2 Oct 2025
Viewed by 968
Abstract
Background/Objectives: The study aimed to pharmacologically evaluate dually acting ligands, 5-HT7 antagonists and sodium channel inhibitors, as potential therapeutic agents for the treatment of depression, anxiety, and neuropathic pain. The designed dual ligands combined structural fragments of LP-12 (a 5-HT7 receptor [...] Read more.
Background/Objectives: The study aimed to pharmacologically evaluate dually acting ligands, 5-HT7 antagonists and sodium channel inhibitors, as potential therapeutic agents for the treatment of depression, anxiety, and neuropathic pain. The designed dual ligands combined structural fragments of LP-12 (a 5-HT7 receptor ligand) and phenytoin (a sodium channel blocker). Methods: A series of 1-(2-biphenyl)piperazine derivatives with a hydantoin core was synthesized and evaluated for 5-HT7 receptor affinity and sodium channel inhibition. The most potent ligands were further analyzed using molecular docking, cytotoxicity assays (MTT, LDH), and in vitro metabolism studies, including microsomal stability and CYP450 inhibition. In vivo pharmacological effects were assessed in behavioral models: forced swim test, four-plate test, and a streptozotocin (STZ)-induced diabetic neuropathy model in mice. Results: Compounds 10 and 20 exhibited high 5-HT7 receptor affinity (Ki < 10 nM) and potent sodium channel inhibition (>80% at 1 µM). Docking studies revealed binding modes consistent with established 5-HT7 ligands. Compound 10 showed lower cytotoxicity than compound 20 in both HepG2 and SH-SY5Y cells and was therefore selected for further evaluation. Metabolic profiling indicated improved microsomal stability relative to verapamil and a low risk of CYP-mediated drug–drug interactions. In vivo, compound 10 produced significant antidepressant- and anxiolytic-like effects, though it failed to reduce neuropathic pain symptoms in the STZ-induced model. Conclusions: Compound 10 shows potential for mood disorder treatment, but further refinement may be needed to improve analgesic efficacy. Full article
(This article belongs to the Special Issue Multitargeted Compounds: A Promising Approach in Medicinal Chemistry)
Show Figures

Graphical abstract

12 pages, 958 KB  
Review
Drugs and Nutrients in Epilepsy: Vitamin B6 and the Ketogenic Diet
by Shani Bahalul-Yarchi, Feigy Hartman, Karin Ben Zaken, Ibrahim O. Sawaid, Lior Segev, Samuel Mesfin, Pnina Frankel, Rahaf Ezzy and Abraham O. Samson
Nutrients 2025, 17(16), 2676; https://doi.org/10.3390/nu17162676 - 19 Aug 2025
Viewed by 2987
Abstract
Certain foods and specific drugs have been linked to epilepsy in the literature. Here, we query PubMed citations for the co-occurrence of epilepsy with foods and drugs, using a list of 217,776 molecules from the HMDB. Notably, the top associations with epilepsy include [...] Read more.
Certain foods and specific drugs have been linked to epilepsy in the literature. Here, we query PubMed citations for the co-occurrence of epilepsy with foods and drugs, using a list of 217,776 molecules from the HMDB. Notably, the top associations with epilepsy include approved drugs and drug families, diagnostic markers, inducers, and vitamins. Drugs include fosphenytoin (40%), topiramate (37%), valproic acid (34%), hydantoin (20%), phenytoin (31%), carbamazepine (33%), carbamazepine-10,11-epoxide (40%), trimethadione (31%), gabapentin (14%), pregabalin (11%), flunarizine (7%), fenfluramine (4%), bumetanide (4%), KBr (18%), cannabidiol (14%), clonazepam (22%), nitrazepam (10%), diazepam (7%), lorazepam (6%), midazolam (3%), amobarbital (21%), phenobarbital (16%), flumazenil (7%) allopregnanolone (7%), pregnanolone (6%), epipregnanolone (6%), 3-hydroxypregnan-20-one (6%), and vitamin B6 (6%). Drug families and scaffolds include imidazolidine (18%), succinimide (10%), acetamide (7%), 2-pyrrolidinone (7%), pyrrolidine (6%), tetrahydropyridine (6%), and isoxazole (4%). Investigational compounds include cyano-7-nitroquinoxaline-2,3-dione (5%). Diagnostic markers include exametazime (10%) and quinolinic acid (3%). Inducers include flurothyl (37%), pentetrazol (32%), pilocarpine (25%), (+)-Bicuculline (8%), and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP, 6%). Our analysis highlights frequently cited associations between epilepsy and specific drugs and highlights the importance of supplementing nutrients with vitamin B6 and the ketogenic diet, which increases the gamma-aminobutyric acid (GABA)/glutamate ratio. As such, our study offers dietary approaches in the treatment of this neurodegenerative disease. Full article
(This article belongs to the Section Nutrition and Neuro Sciences)
Show Figures

Figure 1

8 pages, 2121 KB  
Communication
A New Synthetic Route for Preparation of 5-Methyl-5-Benzylhydantoin: X-Ray Analysis and Theoretical Calculations
by Emiliya Cherneva, Rossen Buyukliev, Boris Shivachev, Rusi Rusew and Adriana Bakalova
Molbank 2025, 2025(1), M1956; https://doi.org/10.3390/M1956 - 22 Jan 2025
Viewed by 1807
Abstract
The aim of this study was to use a different synthetic route for the preparation of 5-methyl-5-benzyl hydantoin by modifying the Bucherer–Berg reaction. This different route for the synthesis led to improvement in reaction time, purity of the compound, and practical yield. The [...] Read more.
The aim of this study was to use a different synthetic route for the preparation of 5-methyl-5-benzyl hydantoin by modifying the Bucherer–Berg reaction. This different route for the synthesis led to improvement in reaction time, purity of the compound, and practical yield. The synthesized compound was characterized spectroscopically by IR, 1H, 13C NMR, and mass spectrometry. The X-ray diffraction method was used to determine the chemical structure. The experimental data from X-ray analysis were compared with theoretically calculated data by DFT analysis. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

32 pages, 2979 KB  
Article
Synthesis, Absolute Configuration, Biological Profile and Antiproliferative Activity of New 3,5-Disubstituted Hydantoins
by Mladenka Jurin, Ana Čikoš, Višnja Stepanić, Marcin Górecki, Gennaro Pescitelli, Darko Kontrec, Andreja Jakas, Tonko Dražić and Marin Roje
Pharmaceuticals 2024, 17(10), 1259; https://doi.org/10.3390/ph17101259 - 24 Sep 2024
Cited by 1 | Viewed by 2906
Abstract
Hydantoins, a class of five-membered heterocyclic compounds, exhibit diverse biological activities. The aim of this study was to synthesize and characterize a series of novel 3,5-disubstituted hydantoins and to investigate their antiproliferative activity against human cancer cell lines. The new hydantoin derivatives 5a [...] Read more.
Hydantoins, a class of five-membered heterocyclic compounds, exhibit diverse biological activities. The aim of this study was to synthesize and characterize a series of novel 3,5-disubstituted hydantoins and to investigate their antiproliferative activity against human cancer cell lines. The new hydantoin derivatives 5ai were prepared as racemic mixtures of syn- and anti-isomers via a base-assisted intramolecular amidolysis of C-3 functionalized β-lactams. The enantiomers of syn-5a and anti-hydantoins 5b were separated by preparative high-performance liquid chromatography (HPLC) using n-hexane/2-propanol (90/10, v/v) as the mobile phase. The absolute configuration of the four allyl hydantoin enantiomers 5a was assigned based on a comparison of the experimental electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) spectra with those calculated using density functional theory (DFT). The antiproliferative activity evaluated in vitro against three different human cancer cell lines: HepG2 (liver hepatocellular carcinoma), A2780 (ovarian carcinoma), and MCF7 (breast adenocarcinoma), and on the non-tumor cell line HFF1 (normal human foreskin fibroblasts) using the MTT cell proliferation assay. In silico drug-like properties and ADMET profiles were estimated using the ADMET Predictor ver. 9.5 and the online server admetSAR. Eighteen new 3,5-disubstituted hydantoins were synthesized and characterized. The compound anti-5c showed potent cytotoxic activity against the human tumor cell line MCF7 (IC50 = 4.5 µmol/L) and the non-tumor cell line HFF1 (IC50 = 12.0 µmol/L). In silico analyzes revealed that the compounds exhibited moderate water solubility and membrane permeability and are likely substrates for CYP3A4 and P-glycoprotein and have a high probability of antiarthritic activity. Full article
(This article belongs to the Special Issue Heterocyclic Compounds in Medicinal Chemistry)
Show Figures

Graphical abstract

13 pages, 5469 KB  
Article
Enhancing the Flexural Strength of AlN with an Additional Cross-Linking Mechanism in the Aqueous Isobam Gelling System
by Yixuan He, Xiaohong Wang, Ning Ding, Hai Jiang and Wenzhong Lu
Materials 2024, 17(14), 3410; https://doi.org/10.3390/ma17143410 - 10 Jul 2024
Cited by 2 | Viewed by 1349
Abstract
Isobam is widely used for fabricating ceramics through spontaneous gelation and has attracted considerable interest. However, the disadvantage of the Isobam system is the low gelation strength. The effects of suitable additives and the mechanism by which they effectively enhance the green body [...] Read more.
Isobam is widely used for fabricating ceramics through spontaneous gelation and has attracted considerable interest. However, the disadvantage of the Isobam system is the low gelation strength. The effects of suitable additives and the mechanism by which they effectively enhance the green body strength and the rheological behavior of an aluminum nitride (AlN) slurry with 50 vol% solid loading were investigated using polyethyleneimine (PEI), hydantoin epoxy resin, and trimethylolpropane triglycidyl ether (TMPGE). Results showed that the additives acted as both dispersants and cross-linkers in the AlN suspension using the Isobam gelling system. The flexural strength of the AlN green body increased by 42%, 204%, and 268% with the addition of 1 wt% PEI, 1 wt% hydantoin epoxy resin, and 0.5 wt% TMPGE, respectively. After sintering at 1700 °C, the AlN ceramic with 0.5 wt% TMPGE had flexural strength and thermal conductivity of 235 MPa and 166.44 W/(m·K), respectively, showing superior performance to the ceramics without additives. Full article
Show Figures

Figure 1

23 pages, 5916 KB  
Article
Chemical Behavior and Bioactive Properties of Spinorphin Conjugated to 5,5′-Dimethyl- and 5,5′-Diphenylhydantoin Analogs
by Stela Georgieva, Petar Todorov, Jana Tchekalarova, Subaer Subaer, Petia Peneva, Kalin Chakarov, Hartati Hartati and Sitti Faika
Pharmaceuticals 2024, 17(6), 770; https://doi.org/10.3390/ph17060770 - 12 Jun 2024
Cited by 1 | Viewed by 1796
Abstract
The discovery of new peptides and their derivatives is an outcome of ongoing efforts to identify a peptide with significant biological activity for effective usage as a possible therapeutic agent. Spinorphin peptides have been documented to exhibit numerous applications and features. In this [...] Read more.
The discovery of new peptides and their derivatives is an outcome of ongoing efforts to identify a peptide with significant biological activity for effective usage as a possible therapeutic agent. Spinorphin peptides have been documented to exhibit numerous applications and features. In this study, biologically active peptide derivatives based on novel peptide analogues of spinorphin conjugated with 5,5′-dimethyl (Dm) and 5,5′-diphenyl (Ph) hydantoin derivatives have been successfully synthesized and characterized. Scanning electron microscopy (SEM) and spectral methods such as UV-Vis, FT-IR (Fourier Transform Infrared Spectroscopy), CD (Circular Dichroism), and fluorimetry were used to characterize the microstructure of the resulting compounds. The results revealed changes in peptide morphology as a result of the restructuring of the aminoacidic sequences and aromatic bonds, which is related to the formation of intermolecular hydrogen bonds between tyrosyl groups and the hydantoin moiety. Electrochemical and fluorescence approaches were used to determine some physicochemical parameters related to the biological behavior of the compounds. The biological properties of the spinorphin derivatives were evaluated in vivo for anticonvulsant activity against the psychomotor seizures at different doses of the studied peptides. Both spinorphin analog peptides with Ph and Dm groups showed activity against all three phases of the seizure in the intravenous Pentylenetetrazole Seizure (ivPTZ) test. This suggests that hydantoin residues do not play a crucial role in the structure of spinorphin compounds and in determining the potency to raise the seizure threshold. On the other hand, analogs with a phenytoin residue are active against the drug-resistant epilepsy test (6-Hz test). In addition, bioactivity analyses revealed that the new peptide analogues have the potential to be used as antimicrobial and antioxidant compounds. These findings suggest promising avenues for further research that may lead to the development of alternative medicines or applications in various fields beyond epilepsy treatment. Full article
Show Figures

Graphical abstract

11 pages, 2529 KB  
Article
Synthesis and Evaluation of 5-(Heteroarylmethylene)hydantoins as Glycogen Synthase Kinase-3β Inhibitors
by Nicholas O. Schneider, Kendra Gilreath, Daniel J. Burkett, Martin St. Maurice and William A. Donaldson
Pharmaceuticals 2024, 17(5), 570; https://doi.org/10.3390/ph17050570 - 29 Apr 2024
Viewed by 2991
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase which plays a center role in the phosphorylation of a wide variety of proteins, generally leading to their inactivation. As such, GSK-3 is viewed as a therapeutic target. An ever-increasing number of small organic molecule [...] Read more.
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase which plays a center role in the phosphorylation of a wide variety of proteins, generally leading to their inactivation. As such, GSK-3 is viewed as a therapeutic target. An ever-increasing number of small organic molecule inhibitors of GSK-3 have been reported. Phenylmethylene hydantoins are known to exhibit a wide range of inhibitory activities including for GSK-3β. A family of fourteen 2-heterocycle substituted methylene hydantoins (14, 1729) were prepared and evaluated for the inhibition of GSK-3β at 25 μM. The IC50 values of five of these compounds was determined; the two best inhibitors are 5-[(4′-chloro-2-pyridinyl)methylene]hydantoin (IC50 = 2.14 ± 0.18 μM) and 5-[(6′-bromo-2-pyridinyl)methylene]hydantoin (IC50 = 3.39 ± 0.16 μM). The computational docking of the compounds with GSK-3β (pdb 1q41) revealed poses with hydrogen bonding to the backbone at Val135. The 5-[(heteroaryl)methylene]hydantoins did not strongly inhibit other metalloenzymes, demonstrating poor inhibitory activity against matrix metalloproteinase-12 at 25 μM and against human carbonic anhydrase at 200 μM, and were not inhibitors for Staphylococcus aureus pyruvate carboxylase at concentrations >1000 μM. Full article
(This article belongs to the Special Issue Nitrogen Containing Scaffolds in Medicinal Chemistry 2023)
Show Figures

Figure 1

12 pages, 1952 KB  
Article
Life Cycle Assessment as a Decision-Making Tool for Photochemical Treatment of Iprodione Fungicide from Wastewater
by Kubra Dogan, Burcin Atilgan Turkmen, Idil Arslan-Alaton and Fatos Germirli Babuna
Water 2024, 16(8), 1183; https://doi.org/10.3390/w16081183 - 21 Apr 2024
Cited by 3 | Viewed by 2672
Abstract
Water contamination with various micropollutants is a serious environmental concern since this group of chemicals cannot always be removed efficiently with advanced treatment methods. Therefore, alternative chemical- and energy-intensive oxidation processes have been proposed for the removal of refractory and/or toxic chemicals. However, [...] Read more.
Water contamination with various micropollutants is a serious environmental concern since this group of chemicals cannot always be removed efficiently with advanced treatment methods. Therefore, alternative chemical- and energy-intensive oxidation processes have been proposed for the removal of refractory and/or toxic chemicals. However, similar treatment performances might result in different environmental impacts. Environmental impacts can be determined by adopting a life cycle assessment methodology. In this context, lab-scale experimental data related to 100% iprodione (a hydantoin fungicide/nematicide selected as the model micropollutant at a concentration of 2 mg/L) removal from simulated tertiary treated urban wastewater (dissolved organic carbon content = 10 mg/L) with UV-C-activated persulfate treatment were studied in terms of environmental impacts generated during photochemical treatment through the application of a life cycle assessment procedure. Standard guidelines were followed in this procedure. Iprodione removal was achieved at varying persulfate concentrations and UV-C doses; however, an “optimum” treatment condition (0.03 mM persulfate, 0.5 W/L UV-C) was experimentally established for kinetically acceptable, 100% iprodione removal in distilled water and adopted to treat iprodione in simulated tertiary treated wastewater (total dissolved organic carbon of iprodione + tertiary wastewater = 11.2 mg/L). The study findings indicated that energy input was the major contributor to all the environmental impact categories, namely global warming, abiotic depletion (fossil and elements), acidification, eutrophication, freshwater aquatic ecotoxicity, human toxicity, ozone depletion, photochemical ozone creation, and terrestrial ecotoxicity potentials. According to the life cycle assessment results, a concentration of 21.42 mg/L persulfate and an electrical energy input of 1.787 kWh/m3 (Wh/L) UV-C light yielded the lowest undesired environmental impacts among the examined photochemical treatment conditions. Full article
(This article belongs to the Special Issue Photocatalysis and Advanced Oxidation Processes in Water)
Show Figures

Graphical abstract

23 pages, 7037 KB  
Article
Chalcogen-Varied Imidazolone Derivatives as Antibiotic Resistance Breakers in Staphylococcus aureus Strains
by Karolina Witek, Aneta Kaczor, Ewa Żesławska, Sabina Podlewska, Małgorzata Anna Marć, Kinga Czarnota-Łydka, Wojciech Nitek, Gniewomir Latacz, Waldemar Tejchman, Markus Bischoff, Claus Jacob and Jadwiga Handzlik
Antibiotics 2023, 12(11), 1618; https://doi.org/10.3390/antibiotics12111618 - 11 Nov 2023
Cited by 4 | Viewed by 2470
Abstract
In this study, a search for new therapeutic agents that may improve the antibacterial activity of conventional antibiotics and help to successfully overcome methicillin-resistant Staphylococcus aureus (MRSA) infections has been conducted. The purpose of this work was to extend the scope of our [...] Read more.
In this study, a search for new therapeutic agents that may improve the antibacterial activity of conventional antibiotics and help to successfully overcome methicillin-resistant Staphylococcus aureus (MRSA) infections has been conducted. The purpose of this work was to extend the scope of our preliminary studies and to evaluate the adjuvant potency of new derivatives in a set of S. aureus clinical isolates. The study confirmed the high efficacy of piperazine derivatives of 5-arylideneimidazol-4-one (79) tested previously, and it enabled the authors to identify even more efficient modulators of bacterial resistance among new analogs. The greatest capacity to enhance oxacillin activity was determined for 1-benzhydrylpiperazine 5-spirofluorenehydantoin derivative (13) which, at concentrations as low as 0.0625 mM, restores the effectiveness of β-lactam antibiotics against MRSA strains. In silico studies showed that the probable mechanism of action of 13 is related to the binding of the molecule with the allosteric site of PBP2a. Interestingly, thiazole derivatives tested were shown to act as both oxacillin and erythromycin conjugators in S. aureus isolates, suggesting a complex mode of action (i.e., influence on the Msr(A) efflux pump). This high enhancer activity indicates the high potential of imidazolones to become commercially available antibiotic adjuvants. Full article
Show Figures

Graphical abstract

27 pages, 5513 KB  
Article
Synthesis of Tetracyclic Spirooxindolepyrrolidine-Engrafted Hydantoin Scaffolds: Crystallographic Analysis, Molecular Docking Studies and Evaluation of Their Antimicrobial, Anti-Inflammatory and Analgesic Activities
by Amani Toumi, Faiza I.A. Abdella, Sarra Boudriga, Tahani Y. A. Alanazi, Asma K. Alshamari, Ahlam Abdulrahman Alrashdi, Amal Dbeibia, Khaled Hamden, Ismail Daoud, Michael Knorr, Jan-Lukas Kirchhoff and Carsten Strohmann
Molecules 2023, 28(21), 7443; https://doi.org/10.3390/molecules28217443 - 6 Nov 2023
Cited by 12 | Viewed by 3381
Abstract
In a sustained search for novel potential drug candidates with multispectrum therapeutic application, a series of novel spirooxindoles was designed and synthesized via regioselective three-component reaction between isatin derivatives, 2-phenylglycine and diverse arylidene-imidazolidine-2,4-diones (Hydantoins). The suggested stereochemistry was ascertained by an X-ray diffraction [...] Read more.
In a sustained search for novel potential drug candidates with multispectrum therapeutic application, a series of novel spirooxindoles was designed and synthesized via regioselective three-component reaction between isatin derivatives, 2-phenylglycine and diverse arylidene-imidazolidine-2,4-diones (Hydantoins). The suggested stereochemistry was ascertained by an X-ray diffraction study and NMR spectroscopy. The resulting tetracyclic heterocycles were screened for their in vitro and in vivo anti-inflammatory and analgesic activity and for their in vitro antimicrobial potency. In vitro antibacterial screening revealed that several derivatives exhibited remarkable growth inhibition against different targeted microorganisms. All tested compounds showed excellent activity against the Micrococccus luteus strain (93.75 µg/mL ≤ MIC ≤ 375 µg/mL) as compared to the reference drug tetracycline (MIC = 500 µg/mL). Compound 4e bearing a p-chlorophenyl group on the pyrrolidine ring exhibited the greatest antifungal potential toward Candida albicans and Candida krusei (MIC values of 23.43 µg/mL and 46.87 µg/mL, respectively) as compared to Amphotericin B (MIC = 31.25 and 62.50 µg/mL, respectively). The target compounds were also tested in vitro against the lipoxygenase-5 (LOX-5) enzyme. Compounds 4i and 4l showed significant inhibitory activity with IC50 = 1.09 mg/mL and IC50 = 1.01 mg/mL, respectively, more potent than the parent drug, diclofenac sodium (IC50 = 1.19 mg/mL). In addition, in vivo evaluation of anti-inflammatory and analgesic activity of these spirooxindoles were assessed through carrageenan-induced paw edema and acetic acid-induced writhing assays, respectively, revealing promising results. In silico molecular docking and predictive ADMET studies for the more active spirocompounds were also carried out. Full article
(This article belongs to the Special Issue Novel Insights toward the Development of New Drugs)
Show Figures

Figure 1

39 pages, 12684 KB  
Article
Novel Lipophilic Hydroxamates Based on Spirocarbocyclic Hydantoin Scaffolds with Potent Antiviral and Trypanocidal Activity
by Vasiliki Pardali, Erofili Giannakopoulou, George Mpekoulis, Vassilina Tsopela, Georgios Panos, Martin C. Taylor, John M. Kelly, Niki Vassilaki and Grigoris Zoidis
Pharmaceuticals 2023, 16(7), 1046; https://doi.org/10.3390/ph16071046 - 24 Jul 2023
Cited by 2 | Viewed by 3279
Abstract
Flaviviridae infections, such as those caused by hepatitis C (HCV) and dengue viruses (DENVs), represent global health risks. Infected people are in danger of developing chronic liver failure or hemorrhagic fever, both of which can be fatal if not treated. The tropical parasites [...] Read more.
Flaviviridae infections, such as those caused by hepatitis C (HCV) and dengue viruses (DENVs), represent global health risks. Infected people are in danger of developing chronic liver failure or hemorrhagic fever, both of which can be fatal if not treated. The tropical parasites Trypanosoma brucei and Trypanosoma cruzi cause enormous socioeconomic burdens in Sub-Saharan Africa and Latin America. Anti-HCV chemotherapy has severe adverse effects and is expensive, whereas dengue has no clinically authorized treatment. Antiparasitic medicines are often toxic and difficult to administer, and treatment failures are widely reported. There is an urgent need for new chemotherapies. Based on our previous research, we have undertaken structural modification of lead compound V with the goal of producing derivatives with both antiviral and trypanocidal activity. The novel spirocarbocyclic-substituted hydantoin analogs were designed, synthesized, and tested for antiviral activity against three HCV genotypes (1b, 3a, 4a), DENV, yellow fever virus (YFV), and two trypanosome species (T. brucei, T. cruzi). The optimization was successful and led to compounds with significant antiviral and trypanocidal activity and exceptional selectivity. Several modifications were made to further investigate the structure–activity relationships (SARs) and confirm the critical role of lipophilicity and conformational degrees of freedom. Full article
(This article belongs to the Special Issue Antiviral Drugs 2021)
Show Figures

Graphical abstract

16 pages, 842 KB  
Article
Hydantoanabaenopeptins from Lake Kinneret Microcystis Bloom, Isolation, and Structure Elucidation of the Possible Intermediates in the Anabaenopeptins Biosynthesis
by Shira Weisthal Algor, Assaf Sukenik and Shmuel Carmeli
Mar. Drugs 2023, 21(7), 401; https://doi.org/10.3390/md21070401 - 13 Jul 2023
Cited by 7 | Viewed by 2096
Abstract
Anabaenopeptins are common metabolites of cyanobacteria. In the course of reisolation of the known aeruginosins KT608A and KT608B for bioassay studies, we noticed the presence of some unknown anabaenopeptins in the extract of a Microcystis cell mass collected during the 2016 spring bloom [...] Read more.
Anabaenopeptins are common metabolites of cyanobacteria. In the course of reisolation of the known aeruginosins KT608A and KT608B for bioassay studies, we noticed the presence of some unknown anabaenopeptins in the extract of a Microcystis cell mass collected during the 2016 spring bloom event in Lake Kinneret, Israel. The 1H NMR spectra of some of these compounds presented a significant difference in the appearance of the ureido bridge protons, and their molecular masses did not match any one of the 152 known anabaenopeptins. Analyses of the 1D and 2D NMR, HRMS, and MS/MS spectra of the new compounds revealed their structures as the hydantoin derivatives of anabaenopeptins A, B, F, and 1[Dht]-anabaenopeptin A and oscillamide Y (1, 2, 3, 6, and 4, respectively) and a new anabaenopeptin, 1[Dht]-anabaenopeptin A (5). The known anabaenopeptins A, B, and F and oscillamide Y (7, 8, 9, and 10, respectively) were present in the extract as well. We propose that 14 and 6 are the possible missing intermediates in the previously proposed partial biosynthesis route to the anabaenopeptins. Compounds 16 were tested for inhibition of the serine proteases trypsin and chymotrypsin and found inactive at a final concentration of ca. 54 μM. Full article
(This article belongs to the Special Issue 20 Years Commemorative Issue in Honor of Professor Paul J. Scheuer)
Show Figures

Graphical abstract

17 pages, 2353 KB  
Article
C-Terminal-Modified Oligourea Foldamers as a Result of Terminal Methyl Ester Reactions under Alkaline Conditions
by Katarzyna Kedzia, Lukasz Dobrzycki, Marcin Wilczek and Karolina Pulka-Ziach
Int. J. Mol. Sci. 2023, 24(7), 6806; https://doi.org/10.3390/ijms24076806 - 6 Apr 2023
Cited by 1 | Viewed by 2521
Abstract
Hybrids of short oligourea foldamers with residues of α, β and γ-amino acids esters at the C-terminus were obtained and subjected to a reaction with LiOH. There are two possible transformations under such conditions, one of which is ester hydrolysis and the formation [...] Read more.
Hybrids of short oligourea foldamers with residues of α, β and γ-amino acids esters at the C-terminus were obtained and subjected to a reaction with LiOH. There are two possible transformations under such conditions, one of which is ester hydrolysis and the formation of a carboxylic group and the other is the cyclization reaction after abstraction of a proton from urea by a base. We have investigated this reaction with difference C-terminal residue structures, as well as under different work-up conditions, especially for oligourea hybrids with α-amino acid esters. For these compounds, an oligourea–hydantoin combination is the product of cyclization. The stability of the hydantoin ring under alkaline conditions has been alsotested. Furthermore, this work reports data related to the structure of C-terminal-modified oligourea foldamers in solution and, for one compound, in the solid state. Helical folding is preserved both for cyclized and linear modifications, with oligourea–acid hybrids appearing to be more conformationally stable, as they are stabilized by an additional intramolecular hydrogen bond in comparison to cyclic derivatives. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

Back to TopTop