Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (128)

Search Parameters:
Keywords = hybrid nanocomposite films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7235 KiB  
Article
Corrosion Resistance Behavior of Mg-Zn-Ce/MWCNT Magnesium Nanocomposites Synthesized by Ultrasonication-Assisted Hybrid Stir–Squeeze Casting for Sacrificial Anode Applications
by S. C. Amith, Poovazhagan Lakshmanan, Gnanavelbabu Annamalai, Manoj Gupta and Arunkumar Thirugnanasambandam
Metals 2025, 15(6), 673; https://doi.org/10.3390/met15060673 - 17 Jun 2025
Viewed by 330
Abstract
The influence of multiwall carbon nanotube (MWCNT) reinforcements on electrochemical corrosion investigations at varying NaCl concentrations (0.4 M, 0.6 M, 0.8 M, 1 M) of Mg-Zn-Ce nanocomposites is studied in this work. The Mg-Zn-Ce/MWCNT nanocomposites were developed by using an ultrasonication-assisted hybrid stir–squeeze [...] Read more.
The influence of multiwall carbon nanotube (MWCNT) reinforcements on electrochemical corrosion investigations at varying NaCl concentrations (0.4 M, 0.6 M, 0.8 M, 1 M) of Mg-Zn-Ce nanocomposites is studied in this work. The Mg-Zn-Ce/MWCNT nanocomposites were developed by using an ultrasonication-assisted hybrid stir–squeeze (UHSS) casting method with different MWCNT concentrations (0, 0.4, 0.8, 1.2 wt.%) in a Mg-Zn-Ce magnesium alloy matrix. The microstructural characterizations shown using X-ray diffraction revealed the presence of secondary phases (MgZn2, Mg12Ce), T-phase (Mg7Zn3RE), α-Mg, and MWCNT peaks. Optical microscopy results showed grain refinement in the case of nanocomposites. Transmission electron microscope studies revealed well-dispersed MWCNT, indicating the good selection of processing parameters. The uniform dispersion of MWCNTs was achieved due to a hybrid stirring mechanism along with transient cavitation, ultrasonic streaming, and squeeze effect. The higher Ecorr value of −1.39 V, lower Icorr value (5.81 µA/cm2), and lower corrosion rate of 0.1 mm/Yr (↑77%) were obtained by 0.8% nanocomposite at 0.4 M NaCl concentration, when compared to the monolithic alloy. The Mg(OH)2 passive film formation on 0.8 wt.% nanocomposite was denser, attributed to the refined grains. At higher NaCl concentration, the one-dimensional morphological advantage of MWCNT helped to act as a barrier for further Mg exposure to excessive Cl attack, which reduced the formation of MgCl2. Therefore, the UHSS-casted Mg-Zn-Ce/MWCNT nanocomposites present a good potential as sacrificial anodes for use in a wide range of industrial applications. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Materials (Third Edition))
Show Figures

Figure 1

38 pages, 5897 KiB  
Review
Future-Oriented Biomaterials Based on Natural Polymer Resources: Characteristics, Application Innovations, and Development Trends
by Oscar Amponsah, Prince Sungdewie Adama Nopuo, Felista Adrehem Manga, Nicole Bianca Catli and Karolina Labus
Int. J. Mol. Sci. 2025, 26(12), 5518; https://doi.org/10.3390/ijms26125518 - 9 Jun 2025
Cited by 1 | Viewed by 1122
Abstract
This review comprehensively explores natural polymer-based materials, focusing on their characteristics, applications, and innovations across different sectors, including medicine, the environment, energy, textiles, and construction. With increasing concern about resource depletion and pollution, biomaterials offer a sustainable alternative to fossil-derived products. The review [...] Read more.
This review comprehensively explores natural polymer-based materials, focusing on their characteristics, applications, and innovations across different sectors, including medicine, the environment, energy, textiles, and construction. With increasing concern about resource depletion and pollution, biomaterials offer a sustainable alternative to fossil-derived products. The review highlights polysaccharide-based and protein-based biomaterials, as well as others, such as polyisoprene, rosin, and hyaluronic acid. Emphasis is laid on their compositions and attractive characteristics, including biocompatibility, biodegradability, and functional versatility. Moreover, the review deeply discusses the ability of natural polymers to form hydrogels, aerogels, films, nanocomposites, etc., enhanced by additives for innovative applications. Future development trends of biomaterials in biomedicine, sustainable materials, environmental biotechnology, and advanced manufacturing are also explored. Their growing potential in these sectors is driven by research advances in emerging technologies such as 3D bioprinting, nanotechnology, and hybrid material innovation, which are proven to enhance the performance, functionality, and scalability of biopolymers. The review suggests several strategies, including improvement in processing techniques and material engineering to overcome limitations associated with biomaterials, thereby reinforcing their suitability and role in a circular and sustainable economy. Full article
(This article belongs to the Special Issue Recent Advances in Polymeric Biomaterials)
Show Figures

Graphical abstract

20 pages, 8368 KiB  
Article
Highly Sensitive Surface Acoustic Wave Sensors for Ammonia Gas Detection at Room Temperature Using Gold Nanoparticles–Cuprous Oxide/Reduced Graphene Oxide/Polypyrrole Hybrid Nanocomposite Film
by Chung-Long Pan, Tien-Tsan Hung, Chi-Yen Shen, Pin-Hong Chen and Chi-Ming Tai
Polymers 2025, 17(8), 1024; https://doi.org/10.3390/polym17081024 - 10 Apr 2025
Viewed by 631
Abstract
Gold nanoparticles–cuprous oxide/reduced graphene oxide/polypyrrole (AuNPs-Cu2O/rGO/PPy) hybrid nanocomposites were synthesized for surface acoustic wave (SAW) sensors, achieving high sensitivity (2 Hz/ppb), selectivity, and fast response (~2 min) at room temperature. The films, deposited via spin-coating, were characterized by SEM, EDS, and [...] Read more.
Gold nanoparticles–cuprous oxide/reduced graphene oxide/polypyrrole (AuNPs-Cu2O/rGO/PPy) hybrid nanocomposites were synthesized for surface acoustic wave (SAW) sensors, achieving high sensitivity (2 Hz/ppb), selectivity, and fast response (~2 min) at room temperature. The films, deposited via spin-coating, were characterized by SEM, EDS, and XRD, revealing a rough, wrinkled morphology beneficial for gas adsorption. The sensor showed significant frequency shifts to NH3, enhanced by AuNPs, Cu2O, rGO, and PPy. It had a 6.4-fold stronger response to NH3 compared to CO2, H2, and CO, confirming excellent selectivity. The linear detection range was 12–1000 ppb, with a limit of detection (LOD) of 8 ppb. Humidity affected performance, causing negative frequency shifts, and sensitivity declined after 30 days due to resistivity changes. Despite this, the sensor demonstrated excellent NH3 selectivity and stability across multiple cycles. In simulated breath tests, it distinguished between healthy and patient-like samples, highlighting its potential as a reliable, non-invasive diagnostic tool. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

14 pages, 2694 KiB  
Article
Sunlight-Driven Synthesis of TiO2/(MA)2SnCl4 Nanocomposite Films for Enhanced Photocatalytic Degradation of Organic Pollutants
by Abdellah Kaiba, Amani M. Alansi, Ali Oubelkacem, Ilyas Chabri, Salah T. Hameed, Naveed Afzal, Mohsin Rafique and Talal F. Qahtan
Catalysts 2025, 15(3), 214; https://doi.org/10.3390/catal15030214 - 24 Feb 2025
Cited by 2 | Viewed by 912
Abstract
In this study, a TiO2/(MA)2SnCl4 nanocomposite film was synthesized using a sustainable, sunlight-driven approach, demonstrating enhanced photocatalytic performance for environmental remediation. TiO2 nanoparticles (TiO2-NPs) were dispersed in ethanol and mixed with a methylammonium (MA) and [...] Read more.
In this study, a TiO2/(MA)2SnCl4 nanocomposite film was synthesized using a sustainable, sunlight-driven approach, demonstrating enhanced photocatalytic performance for environmental remediation. TiO2 nanoparticles (TiO2-NPs) were dispersed in ethanol and mixed with a methylammonium (MA) and SnCl2 precursor solution, followed by drop-casting onto a glass substrate and exposure to direct sunlight for 2 h. Sunlight served as an energy source, facilitating in situ structural modifications and leading to the formation of a well-integrated TiO2/(MA)2SnCl4 hybrid structure, where TiO2 was effectively encapsulated. Characterization revealed a band gap reduction from 3.1 eV (TiO2-NPs) to 2.6 eV in the nanocomposite, extending light absorption into the visible range. The formation of Sn–O–Ti interactions enhanced charge separation, minimized electron–hole recombination, and improved charge carrier dynamics. Photocatalytic degradation tests using methylene blue (MB) under sunlight showed that the nanocomposite film achieved 90% MB degradation within 60 min, outperforming TiO2-NPs, which achieved only 75% degradation. The presence of oxygen vacancies (OVs) generated during sunlight exposure further enhanced photocatalytic efficiency by acting as charge traps and reaction sites. This study introduces a green synthesis strategy leveraging sunlight as a renewable energy source, marking the first integration of (MA)2SnCl4 with TiO2-NPs for enhanced photocatalysis. The synergistic effects of extended visible-light absorption, defect engineering, and efficient charge separation make TiO2/(MA)2SnCl4 nanocomposite films a scalable, cost-effective solution for water purification applications, offering a promising solar-driven approach to addressing global water contamination challenges. Full article
(This article belongs to the Special Issue Design and Application of Combined Catalysis)
Show Figures

Graphical abstract

17 pages, 7967 KiB  
Article
TiO2-Nanobelt-Enhanced, Phosphorescent, Organic Light-Emitting Diodes
by Sushanta Lenka, Shivam Gupta, Bushra Rehman, Deepak Kumar Dubey, Hsuan-Min Wang, Ankit Sharma, Jayachandran Jayakumar, Ching-Wu Wang, Nyan-Hwa Tai, Saulius Grigalevicius and Jwo-Huei Jou
Nanomaterials 2025, 15(3), 199; https://doi.org/10.3390/nano15030199 - 27 Jan 2025
Cited by 1 | Viewed by 1432
Abstract
This study investigates the enhancement of organic light-emitting diode (OLED) performance through the integration of titanium dioxide (TiO2) nanocomposites within a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS) matrix. The nanocomposite films were prepared using a controlled dispersion of TiO2 belts into the [...] Read more.
This study investigates the enhancement of organic light-emitting diode (OLED) performance through the integration of titanium dioxide (TiO2) nanocomposites within a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS) matrix. The nanocomposite films were prepared using a controlled dispersion of TiO2 belts into the PEDOT/PSS solution, followed by their incorporation into the OLED hole-injection layer (HIL). Our results demonstrate a significant improvement in device efficiency, attributed to the optimized charge carrier mobility and reduced recombination losses, which were achieved by the presence of TiO2. The nanocomposite hybrid layer enhances light emission efficiency due to its role in modifying surface roughness, promoting better film uniformity, and improving hole injection. The incorporation of TiO2 nanobelts into PEDOT/PSS led to significant efficiency enhancements, yielding a 39% increase in PEmax, a 37% improvement in CEmax, and a remarkable 72% rise in EQEmax compared to the undoped counterpart. This research provides insight into the potential of TiO2 nanocomposites in advancing OLED technology for next-generation display and lighting applications. Full article
Show Figures

Figure 1

21 pages, 10660 KiB  
Review
A Comprehensive Review on Bio-Based Polybenzoxazines Emphasizing Their Antimicrobial Property
by Shakila Parveen Asrafali, Thirukumaran Periyasamy and Jaewoong Lee
Microorganisms 2025, 13(1), 164; https://doi.org/10.3390/microorganisms13010164 - 14 Jan 2025
Cited by 1 | Viewed by 1659
Abstract
Polybenzoxazines (PBzs), a class of high-performance thermosetting polymers, have gained significant attention for their exceptional thermal stability, mechanical properties, and chemical resistance, making them ideal for aerospace, electronics, and biomedical applications. Recent advancements emphasize their antimicrobial potential, attributed to unique structural properties and [...] Read more.
Polybenzoxazines (PBzs), a class of high-performance thermosetting polymers, have gained significant attention for their exceptional thermal stability, mechanical properties, and chemical resistance, making them ideal for aerospace, electronics, and biomedical applications. Recent advancements emphasize their antimicrobial potential, attributed to unique structural properties and the ability to incorporate bio-active functional groups. This review highlights the synthesis, antimicrobial mechanisms, and applications of PBzs and their bio-based derivatives, focusing on sustainable materials science. PBzs demonstrate antimicrobial efficacy through mechanisms such as hydrophobic surface interactions and reactive functional group formation, preventing microbial adhesion and biofilm development. The incorporation of functional groups like amines, quaternary ammonium salts, and phenolic moieties disrupts microbial processes, enhancing antimicrobial action. Modifications with metal nanoparticles, organic agents, or natural bio-actives further augment these properties. Notable bio-based benzoxazines include derivatives synthesized from renewable resources like curcumin, vanillin, and eugenol, which exhibit substantial antimicrobial activity and environmental friendliness. Hybrid PBzs, combining natural polymers like chitosan or cellulose, have shown improved antimicrobial properties and mechanical performance. For instance, chitosan-PBz composites significantly inhibit microbial growth, while cellulose blends enhance film-forming capabilities and thermal stability. PBz nanocomposites, incorporating materials like silver nanoparticles, present advanced applications in biomedical and marine industries. Examples include zirconia-reinforced composites for dental restoration and urushiol-based PBzs for eco-friendly antifouling solutions. The ability to customize PBz properties through molecular design, combined with their inherent advantages such as flame retardancy, low water absorption, and excellent mechanical strength, positions them as versatile materials for diverse industrial and medical applications. This comprehensive review underscores the transformative potential of PBzs in addressing global challenges in antimicrobial material science, offering sustainable and multifunctional solutions for advanced applications. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

17 pages, 2598 KiB  
Article
Anti-Tissue-Transglutaminase IgA Antibodies Presence Determination Using Electrochemical Square Wave Voltammetry and Modified Electrodes Based on Polypyrrole and Quantum Dots
by Angela Gabriela Pãun, Simona Popescu, Alisa Ioana Ungureanu, Roxana Trusca, Alina Popp, Cristina Dumitriu and George-Octavian Buica
Biosensors 2025, 15(1), 42; https://doi.org/10.3390/bios15010042 - 13 Jan 2025
Cited by 2 | Viewed by 1308
Abstract
A novel electrochemical detection method utilizing a cost-effective hybrid-modified electrode has been established. A glassy carbon (GC) modified electrode was tested for its ability to measure electrochemical tTG antibody levels, which are essential for diagnosing and monitoring Celiac disease (CD). Tissue transglutaminase protein [...] Read more.
A novel electrochemical detection method utilizing a cost-effective hybrid-modified electrode has been established. A glassy carbon (GC) modified electrode was tested for its ability to measure electrochemical tTG antibody levels, which are essential for diagnosing and monitoring Celiac disease (CD). Tissue transglutaminase protein biomolecules are immobilized on a quantum dots-polypyrrole nanocomposite in the improved electrode. Initial, quantum dots (QDs) were obtained from Bombyx mori silk fibroin and embedded in polypyrrole film. Using carbodiimide coupling, a polyamidoamine (PAMAM) dendrimer was linked with GQDs-polypyrrole film to improve sensor sensitivity. The tissue transglutaminase (tTG) antigen was cross-linked onto PAMAM using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)-N-hydroxy succinimide (NHS) chemistry to develop a nanoprobe that can detect human serum anti-tTG antibodies. The physicochemical characteristics of the synthesized nanocomposite were examined by FTIR, UV-visible, FE-SEM, EDX, and electrochemical studies. The novel electrode measures anti-tissue antibody levels in real time using human blood serum samples. The modified electrode has great repeatability and an 8.7 U/mL detection limit. Serum samples from healthy people and CD patients were compared to standard ELISA kit assays. SPSS and Excel were used for statistical analysis. The improved electrode and detection system can identify anti-tissue antibodies up to 80 U/mL. Full article
(This article belongs to the Special Issue Feature Paper in Biosensor and Bioelectronic Devices 2024)
Show Figures

Figure 1

36 pages, 6996 KiB  
Review
Organic–Inorganic Hybrid Dielectric Layers for Low-Temperature Thin-Film Transistors Applications: Recent Developments and Perspectives
by Javier Meza-Arroyo and Rafael Ramírez-Bon
Technologies 2025, 13(1), 20; https://doi.org/10.3390/technologies13010020 - 2 Jan 2025
Viewed by 3040
Abstract
This paper reviews the recent development of organic–inorganic hybrid dielectric materials for application as gate dielectrics in thin-film transistors (TFTs). These hybrid materials consist of the blending of high-k inorganic dielectrics with polymers, and their resulting properties depend on the amount and type [...] Read more.
This paper reviews the recent development of organic–inorganic hybrid dielectric materials for application as gate dielectrics in thin-film transistors (TFTs). These hybrid materials consist of the blending of high-k inorganic dielectrics with polymers, and their resulting properties depend on the amount and type of interactions between the organic and inorganic phases. The resulting amorphous networks, characterized by crosslinked organic and inorganic phases, can be tailored for specific applications, including gate dielectrics in TFTs. As dielectric materials, they offer a synergistic combination of high dielectric constants, low leakage currents, and mechanical flexibility, crucial for next-generation flexible electronics. Furthermore, organic–inorganic hybrid materials are easily processed in solution, allowing for low-temperature deposition compatible with flexible substrates. Various configurations of these hybrid gate dielectrics, such as bilayer structures and polymer nanocomposites, are discussed, with an emphasis on their potential to enhance device performance. Despite the significant advancements, challenges remain in optimizing the performance and stability of these hybrid materials. This review summarizes recent progress and highlights the advantages and emerging applications of low-temperature, solution-processed hybrid dielectrics, with a focus on their integration into flexible, stretchable, and wearable electronic devices. Full article
Show Figures

Figure 1

13 pages, 3889 KiB  
Article
N-Type Nanocomposite Films Combining SWCNTs, Bi2Te3 Nanoplates, and Cationic Surfactant for Pn-Junction Thermoelectric Generators with Self-Generated Temperature Gradient Under Uniform Sunlight Irradiation
by Koki Hoshino, Hisatoshi Yamamoto, Ryota Tamai, Takumi Nakajima, Shugo Miyake and Masayuki Takashiri
Sensors 2024, 24(21), 7060; https://doi.org/10.3390/s24217060 - 1 Nov 2024
Cited by 2 | Viewed by 1635
Abstract
Flexible thermoelectric generators (TEGs) with pn-junction single-walled carbon nanotube (SWCNT) films on a polyimide substrate have attracted considerable attention for energy harvesting. This is because they generate electricity through the photo-thermoelectric effect by self-generated temperature gradient under uniform sunlight irradiation. To increase the [...] Read more.
Flexible thermoelectric generators (TEGs) with pn-junction single-walled carbon nanotube (SWCNT) films on a polyimide substrate have attracted considerable attention for energy harvesting. This is because they generate electricity through the photo-thermoelectric effect by self-generated temperature gradient under uniform sunlight irradiation. To increase the performance and durability of the pn-junction TEGs, n-type films need to be improved as a priority. In this study, bismuth telluride (Bi2Te3) nanoplates synthesized by the solvothermal method were added to the n-type SWCNT films, including a cationic surfactant to form the nanocomposite films because Bi2Te3 has high n-type thermoelectric properties and high durability. The performances of the pn-junction TEGs were investigated by varying the heat treatment times. When the artificial sunlight was uniformly irradiated to the pn-junction TEGs, a stable output voltage of 0.47 mV was observed in the TEG with nanocomposite films heat-treated at 1 h. The output voltage decreased with increasing heat treatment time due to the decrease in the p-type region. The output voltage of TEG at 1 h is higher than that of the TEGs without Bi2Te3 nanoplates under the same conditions. Therefore, the addition of Bi2Te3 nanoplates was found to improve the performance of the pn-junction TEGs. These findings may aid in the development of facile and flexible optical devices, including photodetectors and hybrid devices integrating solar cells. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

26 pages, 10395 KiB  
Article
Hybrid Nanocomposites Based on Poly(3,6-dianiline-2,5-dichloro-1,4-benzoquinone): Synthesis, Structure and Properties
by Svetlana G. Kiseleva, Galina N. Bondarenko, Andrey V. Orlov, Dmitriy G. Muratov, Vladimir V. Kozlov, Andrey A. Vasilev and Galina P. Karpacheva
Polymers 2024, 16(13), 1832; https://doi.org/10.3390/polym16131832 - 27 Jun 2024
Viewed by 1359
Abstract
Hybrid nanocomposites based on poly(3,6-dianiline-2,5-dichloro-1,4-benzoquinone) (PDACB) in salt form and graphene oxide (GO) have been obtained for the first time, and the significant influence of the preparation method on the composition and structure of nanocomposites and their functional properties has been demonstrated. Nanocomposites [...] Read more.
Hybrid nanocomposites based on poly(3,6-dianiline-2,5-dichloro-1,4-benzoquinone) (PDACB) in salt form and graphene oxide (GO) have been obtained for the first time, and the significant influence of the preparation method on the composition and structure of nanocomposites and their functional properties has been demonstrated. Nanocomposites were prepared in three ways: via ultrasonic mixing of PDACB and GO; via in situ oxidative polymerization of 3,6-dianiline-2,5-dichloro-1,4-benzoquinone (DACB) in the presence of GO; and by heating a suspension of previously prepared PDACB and GO in DMF with the removal of the solvent. The results of the study of the composition, chemical structure, morphology, thermal stability and electrical properties of nanocomposites obtained via various methods are presented. Nanocomposites obtained by mixing the components in an ultrasonic field demonstrated strong intermolecular interactions between PDACB and GO both due to the formation of hydrogen bonds and π-stacking, as well as through electrostatic interactions. Under oxidative polymerization of DACB in the presence of GO, the latter participated in the oxidative process, being partially reduced. At the same time, a PDACB polymer film was formed on the surface of the GO. Prolonged heating for 4 h at 85 °C of a suspension of PDACB and GO in DMF led to the dedoping of PDACB with the transition of the polymer to the base non-conductive form and the reduction of GO. Regardless of the preparation method, all nanocomposites showed an increase in thermal stability compared to PDACB. All nanocomposites were characterized by a hopping mechanism of conductivity. Direct current (dc) conductivity σdc values varied within two orders of magnitude depending on the preparation conditions. Full article
(This article belongs to the Special Issue Advances in Polymer Composites II)
Show Figures

Graphical abstract

17 pages, 6151 KiB  
Article
Ternary Holey Carbon Nanohorn/Potassium Chloride/Polyvinylpyrrolidone Nanohybrid as Sensing Film for Resistive Humidity Sensor
by Bogdan-Catalin Serban, Octavian Buiu, Marius Bumbac, Nicolae Dumbravescu, Cristina Pachiu, Mihai Brezeanu, Gabriel Craciun, Cristina Mihaela Nicolescu, Vlad Diaconescu and Cornel Cobianu
Coatings 2024, 14(4), 517; https://doi.org/10.3390/coatings14040517 - 22 Apr 2024
Cited by 1 | Viewed by 1803
Abstract
The study presents findings on the relative humidity (R.H.) sensing capabilities of a resistive sensor. This sensor utilizes sensing layers composed of a ternary nanohybrid, consisting of holey carbon nanohorn (CNHox), potassium chloride (KCl), and polyvinylpyrrolidone (PVP), with mass ratios of 7/1/2, 6.5/1.5/2, [...] Read more.
The study presents findings on the relative humidity (R.H.) sensing capabilities of a resistive sensor. This sensor utilizes sensing layers composed of a ternary nanohybrid, consisting of holey carbon nanohorn (CNHox), potassium chloride (KCl), and polyvinylpyrrolidone (PVP), with mass ratios of 7/1/2, 6.5/1.5/2, and 6/2/2 (w/w/w). The sensing structure comprises a silicon substrate, a SiO2 layer, and interdigitated transducer (IDT) electrodes. The sensing film is deposited on the sensing structure via the drop-casting method. The sensing layers’ morphology and composition are investigated through Scanning Electron Microscopy (SEM) and RAMAN spectroscopy. The resistance of thin-film sensors based on ternary hybrids increased with exposure to a range of relative humidity (R.H.) levels, from 0% to 100%. The newly designed devices demonstrated a comparable response at room temperature to that of commercial capacitive R.H. sensors, boasting excellent linearity, swift response times, and heightened sensitivity. Notably, the studied sensors outperform others employing CNHox-based sensing layers in terms of sensitivity, as observed through manufacturing and testing processes. It elucidates the sensing mechanisms of each constituent within the ternary hybrid nanocomposites, delving into their chemical and physical properties, electronic characteristics, and affinity for water molecules. Various alternative sensing mechanisms are considered and discussed, including the reduction in holes within CNHox upon interaction with water molecules, proton conduction, and PVP swelling. Full article
(This article belongs to the Special Issue Advanced Thin Films Technologies for Optics, Electronics, and Sensing)
Show Figures

Figure 1

13 pages, 4147 KiB  
Article
Poly(vinyl chloride)/Nanocarbon Composites for Advanced Potentiometric Membrane Sensor Design
by Konstantin Yu. Zhizhin, Evgeniy S. Turyshev, Liliya K. Shpigun, Philipp Yu. Gorobtsov, Nikolay P. Simonenko, Tatiana L. Simonenko and Nikolay T. Kuznetsov
Int. J. Mol. Sci. 2024, 25(2), 1124; https://doi.org/10.3390/ijms25021124 - 17 Jan 2024
Cited by 6 | Viewed by 1874
Abstract
Polymer nanocomposites filled with carbon nanoparticles (CNPs) are a hot topic in materials science. This article discusses the current research on the use of these materials as interfacial electron transfer films for solid contact potentiometric membrane sensors (SC-PMSs). The results of a comparative [...] Read more.
Polymer nanocomposites filled with carbon nanoparticles (CNPs) are a hot topic in materials science. This article discusses the current research on the use of these materials as interfacial electron transfer films for solid contact potentiometric membrane sensors (SC-PMSs). The results of a comparative study of plasticized poly (vinyl chloride) (pPVC) matrices modified with single-walled carbon nanotubes (SWCNTs), fullerenes-C60, and their hybrid ensemble (SWCNTs-C60) are reported. The morphological characteristics and electrical conductivity of the prepared nanostructured composite films are reported. It was found that the specific electrical conductivity of the pPVC/SWCNTs-C60 polymer film was higher than that of pPVC filled with individual nanocomponents. The effectiveness of this composite material as an electron transfer film in a new potentiometric membrane sensor for detecting phenylpyruvic acid (in anionic form) was demonstrated. Screening for this metabolic product of phenylalanine in body fluids is of significant diagnostic interest in phenylketonuria (dementia), viral hepatitis, and alcoholism. The developed sensor showed a stable and fast Nernstian response for phenylpyruvate ions in aqueous solutions over the wide linear concentration range of 5 × 10−7–1 × 10−3 M, with a detection limit of 10−7.2 M. Full article
(This article belongs to the Special Issue Synthesis and Applications of Advanced Inorganic Materials)
Show Figures

Figure 1

10 pages, 3415 KiB  
Article
ZnO-Au Hybrid Metamaterial Thin Films with Tunable Optical Properties
by Nirali A. Bhatt, Robynne L. Paldi, James P. Barnard, Juanjuan Lu, Zihao He, Bo Yang, Chao Shen, Jiawei Song, Raktim Sarma, Aleem Siddiqui and Haiyan Wang
Crystals 2024, 14(1), 65; https://doi.org/10.3390/cryst14010065 - 6 Jan 2024
Cited by 2 | Viewed by 2069
Abstract
ZnO-Au nanocomposite thin films have been previously reported as hybrid metamaterials with unique optical properties such as plasmonic resonance properties and hyperbolic behaviors. In this study, Au composition in the ZnO-Au nanocomposites has been effectively tuned by target composition variation and thus resulted [...] Read more.
ZnO-Au nanocomposite thin films have been previously reported as hybrid metamaterials with unique optical properties such as plasmonic resonance properties and hyperbolic behaviors. In this study, Au composition in the ZnO-Au nanocomposites has been effectively tuned by target composition variation and thus resulted in microstructure and optical property tuning. Specifically, all the ZnO-Au nanocomposite thin films grown through the pulsed laser deposition (PLD) method show obvious vertically aligned nanocomposite (VAN) structure with the Au nanopillars embedded in the ZnO matrix. Moreover, the average diameter of Au nanopillars increases as Au concentration increases, which also leads to the redshifts in the surface plasmon resonance (SPR) wavelength and changes in the hyperbolic behaviors of the films. As a whole, this work discusses how strain-driven tuning of optical properties and microstructure resulted through a novel Au concentration variation approach which has not been previously attempted in the ZnO-Au thin film system. These highly ordered films present great promise in the areas of sensing, waveguides, and nanophotonics to name a few. Full article
(This article belongs to the Special Issue Synthesis and Application of Nanocomposite Materials)
Show Figures

Figure 1

16 pages, 5717 KiB  
Article
Modification of Graphite/SiO2 Film Electrodes with Hybrid Organic–Inorganic Perovskites for the Detection of Vasoconstrictor Bisartan 4-Butyl-Ν,Ν-bis{[2-(2H-tetrazol-5-yl)biphenyl-4-yl]methyl}imidazolium Bromide
by Georgios Papathanidis, Anna Ioannou, Alexandros Spyrou, Aggeliki Mandrapylia, Konstantinos Kelaidonis, John Matsoukas, Ioannis Koutselas and Emmanuel Topoglidis
Inorganics 2023, 11(12), 485; https://doi.org/10.3390/inorganics11120485 - 18 Dec 2023
Viewed by 2525
Abstract
In the present work, a hybrid organic–inorganic semiconductor (HOIS) has been used to modify the surface of a graphite paste/silica (G–SiO2) film electrode on a conducting glass substrate to fabricate a promising, sensitive voltammetric sensor for the vasoconstrictor bisartan BV6, which [...] Read more.
In the present work, a hybrid organic–inorganic semiconductor (HOIS) has been used to modify the surface of a graphite paste/silica (G–SiO2) film electrode on a conducting glass substrate to fabricate a promising, sensitive voltammetric sensor for the vasoconstrictor bisartan BV6, which could possibly treat hypertension and COVID-19. The HOIS exhibits exceptional optoelectronic properties with promising applications not only in light-emitting diodes, lasers, or photovoltaics but also for the development of voltammetric sensors due to the ability of the immobilized HOIS lattice to interact with ions. This study involves the synthesis and characterization of an HOIS and its attachment on the surface of a G–SiO2 film electrode in order to develop a nanocomposite, simple, sensitive with a fast-response, low-cost voltammetric sensor for BV6. The modified HOIS electrode was characterized using X-ray diffraction, scanning electron microscopy, and optical and photoluminescence spectroscopy, and its electrochemical behavior was examined using cyclic voltammetry. Under optimal conditions, the modified G–SiO2 film electrode exhibited a higher electrocatalytic activity towards the oxidation of BV6 compared to a bare graphite paste electrode. The results showed that the peak current was proportional to BV6 concentration with a linear response range from 0 to 65 × 10−6 (coefficient of determination, 0.9767) and with a low detection limit of 1.5 × 10−6 M (S/N = 3), estimated based on the area under a voltammogram, while it was 3.5 × 10−6 for peak-based analysis. The sensor demonstrated good stability and reproducibility and was found to be appropriate for the determination of drug compounds such as BV6. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Inorganic Materials)
Show Figures

Graphical abstract

15 pages, 2118 KiB  
Article
Hybrid Bio-Nanocomposites by Integrating Nanoscale Au in Butterfly Scales Colored by Photonic Nanoarchitectures
by Krisztián Kertész, Gábor Piszter, Andrea Beck, Anita Horváth, Gergely Nagy, György Molnár, György Zoltán Radnóczi, Zsolt Endre Horváth, Levente Illés and László Péter Biró
Photonics 2023, 10(11), 1275; https://doi.org/10.3390/photonics10111275 - 17 Nov 2023
Cited by 2 | Viewed by 1449
Abstract
Plasmonic metallic nanoparticles, like Au, can be used to tune the optical properties of photonic nanoarchitectures occurring in butterfly wing scales possessing structural color. The effect of the nanoscale Au depends on the location and the amount deposited in the chitin-based photonic nanoarchitecture. [...] Read more.
Plasmonic metallic nanoparticles, like Au, can be used to tune the optical properties of photonic nanoarchitectures occurring in butterfly wing scales possessing structural color. The effect of the nanoscale Au depends on the location and the amount deposited in the chitin-based photonic nanoarchitecture. The following three types of Au introduction methods were compared regarding the structural and optical properties of the resulting hybrid bio-nanocomposites: (i) growth of Au nanoparticles inside the nanopores of butterfly wing scales by a light-induced in situ chemical reduction of HAuCl4 in aqueous solution containing sodium citrate, as a new procedure we have developed, (ii) drop-drying of the aqueous Au sol formed during procedure (i) in the bulk liquid phase, and (iii) physical vapor deposition of Au thin film onto the butterfly wing. We investigated all three methods at two different Au concentrations on the wings of laboratory-bred blue-colored male Polyommatus icarus butterflies and characterized the optical properties of the resulting hybrid bio-nanocomposites. We found that the drop-drying and the in situ growth produced comparable redshift in the spectral position of the reflectance maximum associated with the chitin-based photonic nanoarchitecture in the wing scales, while the 5 nm or 15 nm thick Au layers vacuum deposited onto the butterfly wing behaved like an optical filter, without inducing spectral shift. The in situ growth in the photonic nanoarchitecture under intense illumination produced uniform Au nanoparticles located in the pores of the biological template, which is more advantageous for further applications. An additional benefit of this method is that the Au nanoparticles do not aggregate on drying, like in the case of drop-drying of preformed Au nanoparticles from the citrate-stabilized sol. Full article
(This article belongs to the Special Issue Recent Advances in Micro-Nano Optics)
Show Figures

Figure 1

Back to TopTop