Hybrid Nanocomposites Based on Poly(3,6-dianiline-2,5-dichloro-1,4-benzoquinone): Synthesis, Structure and Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Composites Based on PDACB and GO
2.2.1. Synthesis of PDACB/GO by Mixing PDACB and GO (Method 1)
2.2.2. Synthesis of PDACB/GO via In Situ Oxidative Polymerization of DACB in the Presence of GO (Method 2)
- -
- Two suspensions were prepared separately using ultrasonic dispersion under cooling (~5 °C): 20 mL of GO weight portion (6 (12) wt% of DACB) in water (10 min) and 0.002 mol of DACB monomer in 30 mL of water (20 min).
- -
- A suspension of GO was added to the vessel with the DACB suspension and additionally dispersed for 20 min.
- -
- Then, 10 mL of HCl solution of the calculated concentration were added to the resulting mixture under stirring (to bring the total molarity of the acid in the reaction solution to the required values) and thermostated at 18 °C.
2.2.3. Synthesis of PDACB/GO Composites by Heating a Suspension of Previously Prepared PDACB and GO in DMF with the Removal of the Solvent (Method 3)
2.3. Materials Characterization
3. Results and Discussion
3.1. Structure of PDACB/GO Composites
3.2. Electrical Conductivity of Composites Based on PDACB and OG
3.3. Thermal Stability of Nanocomposites Based on PDACB and GO
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ibáñez-Marín, F.; Morales-Verdejo, C.; Camarada, M.B. Composites of Electrochemically Reduced Graphene Oxide and Polythiophene and Their Application in Supercapacitors. Int. J. Electrochem. Sci. 2017, 12, 11546–11555. [Google Scholar] [CrossRef]
- Guo, Z.; Lin, L.; Ma, J.; Wang, Y.; Mei, T.; Wang, X. Asymmetric GO-PPy based energy generator via synergistic flowing potential and ionovoltaic effect. J. Mater. Res. Technol. 2023, 27, 2779–2789. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shawon, M.R.; Rahman, M.H.; Alam, I.; Faruk, M.O.; Khan, M.M.R.; Okoli, O. Synthesis of polyaniline-graphene oxide based ternary nanocomposite for supercapacitor application. J. Energy Storage 2023, 67, 107615. [Google Scholar] [CrossRef]
- Gandara, M.; Dalmolin, C.; Gonçalve, E.S. Physicochemical interactions between polyaniline and graphene oxide: The reasons for the stability of their chemical structure and thermal properties. Mater. Today Chem. 2021, 22, 100627. [Google Scholar] [CrossRef]
- Konwer, S. Graphene oxide-polyaniline nanocomposites for high performance supercapacitor and their optical, electrical and electrochemical properties. J. Mater. Sci. Mater. Electron. 2016, 27, 4139–4146. [Google Scholar] [CrossRef]
- Xue, Y.; Gao, C.; Liang, L.; Wang, X.; Chen, G. Nanostructure controlled construction of highperformance thermoelectric materials of polymers and their composites. J. Mater. Chem. A 2018, 6, 22381–22390. [Google Scholar] [CrossRef]
- Mirmohseni, A.; Azizi, M.; Dorraji, M.S.S. Cationic graphene oxide nanosheets intercalated with polyaniline nanofibers: A promising candidate for simultaneous anticorrosion, antistatic, and antibacterial applications. Prog. Org. Coat. 2020, 139, 105419. [Google Scholar] [CrossRef]
- Davoise, L.V.; Capilla, R.P.; Díez-Pascual, A.M. Optical properties of polyaniline/modified graphene oxide nanocomposites. Mater. Today Commun. 2023, 36, 106733. [Google Scholar] [CrossRef]
- Wang, T.; Sun, H.; Peng, T.; Liu, B.; Hou, Y.; Lei, B. Preparation and characterization of polyaniline/p-phenylenediamine grafted graphene oxide composites for supercapacitors. J. Mol. Struct. 2020, 1221, 128835. [Google Scholar] [CrossRef]
- Gandara, M.; Gonçalves, E.S. Polyaniline supercapacitor electrode and carbon fiber graphene oxide: Electroactive properties at the charging limit. Electrochim. Acta 2020, 345, 136197. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, C.-G.; Yan, X.-H.; Gao, H.-L.; Gao, K.-Z.; Cao, Y. Synthesis of Nafion-reduced graphene oxide/polyaniline as novel positive electrode additives for high performance lead-acid batteries. Electrochim. Acta 2023, 466, 143045. [Google Scholar] [CrossRef]
- Rezazadeh, T.; Dalali, N.; Sehati, N. Investigation of adsorption performance of graphene oxide/polyaniline reinforced hollow fiber membrane for preconcentration of Ivermectin in some environmental samples. Spectrochim. Acta A 2018, 204, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Eltayeb, N.E.; Khan, A. Preparation and properties of newly synthesized Polyaniline@Graphene oxide/Ag nanocomposite for highly selective sensor application. J. Mater. Res. Technol. 2020, 9, 10459–10467. [Google Scholar] [CrossRef]
- Kumar, A.; Gupta, G.H.; Singh, G.; More, N.; Sharma, K.M.A.; Jawade, D.; Balu, A.; Kapusetti, G. Ultrahigh sensitive graphene oxide/conducting polymer composite based biosensor for cholesterol and bilirubin detection. Biosens. Bioelectron. X 2023, 13, 100290. [Google Scholar] [CrossRef]
- Wang, L.; Lee, K.; Sun, Y.-Y.; Lucking, M.; Chen, Z.; Zhao, J.J.; Zhang, S.B. Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 2009, 3, 2995–3000. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, L.; Zhang, W.; Li, Y.; Ma, D.; Lei, Q.; Yu, S.; Wang, J.; Wang, Z.; Wei, G. Grafting of polyaniline onto polydopamine-wrapped carbon nanotubes to enhance corrosion protection properties of epoxy coating. Colloids Surf. A Physicochem. Eng. Asp. 2023, 670, 131548. [Google Scholar] [CrossRef]
- Yang, S.; Zhu, S.; Hong, R. Graphene oxide/polyaniline nanocomposites used in anticorrosive coatings for environmental protection. Coatings 2020, 10, 1215. [Google Scholar] [CrossRef]
- Ferrag, C.; Noroozifar, M.; Modarresi-Alam, A.R.; Kerman, K. Graphene oxide hydrogel electrolyte for improving the performance of electropolymerized polyaniline solar cells. J. Power Sources 2022, 542, 231796. [Google Scholar] [CrossRef]
- Singh, S.; Hasan, M.R.; Sharma, P.; Narang, J. Graphene nanomaterials: The wondering material from synthesis to applications. Sens. Int. 2022, 3, 100190. [Google Scholar] [CrossRef]
- Dhamodharan, D.; Ghoderao, P.P.; Dhinakaran, V.; Mubarak, S.; Divakaran, N.; Byun, H.-S. A review on graphene oxide effect in energy storage devices. J. Ind. Eng. Chem. 2022, 106, 20–36. [Google Scholar] [CrossRef]
- Liu, J.; Duan, Y.; Song, L.; Zhang, X. Constructing sandwich-like polyaniline/graphene oxide composites with tunable conjugation length toward enhanced microwave absorption. Org. Electron. 2018, 63, 175–183. [Google Scholar] [CrossRef]
- Meng, Q.-L.; Liu, H.-C.; Huang, Z.; Kong, S.; Lu, X.; Tomkins, P.; Jiang, P.; Bao, X. Mixed Conduction Properties of Pristine Bulk Graphene Oxide. Carbon 2016, 101, 338–344. [Google Scholar] [CrossRef]
- Smirnov, V.A.; Denisov, N.N.; Ukshe, A.E.; Shulga, Y.M. Conductivity of graphene oxide films: Dependence from solvents and photoreduction. Chem. Phys. Lett. 2013, 583, 155–159. [Google Scholar] [CrossRef]
- Eluyemi, M.S.; Eleruja, M.A.; Adedeji, A.V.; Olofinjana, B.; Fasakin, O.; Akinwunmi, O.O.; Ilori, O.O.; Famojuro, A.T.; Ayinde, S.A.; Ajay, E.O.B. Synthesis and Characterization of Graphene Oxide and Reduced Graphene Oxide Thin Films Deposited by Spray Pyrolysis Method. Graphene 2016, 5, 143–154. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, J.; Song, Q.; Guo, Z.; Chen, A.; Chen, G.; Zhou, S. N-substituted Carboxyl Polyaniline Covalent Grafting Reduced Graphene Oxide Nanocomposites and Its Application in Supercapacitor. Electrochim. Acta 2016, 199, 70–79. [Google Scholar] [CrossRef]
- Bhadra, S.; Singha, N.K.; Khastgir, D. Effect of aromatic substitution in aniline on the properties of polyaniline. Eur. Polym. J. 2008, 44, 1763–1770. [Google Scholar] [CrossRef]
- Ozkan, S.Z.; Tkachenko, L.I.; Efimov, O.N.; Karpacheva, G.P.; Nikolaeva, G.V.; Kostev, A.I.; Dremova, N.N.; Kabachkov, E.N. Advanced Electrode Coatings Based on Poly-N-Phenylanthranilic Acid Composites with Reduced Graphene Oxide for Supercapacitors. Polymers 2023, 15, 1896. [Google Scholar] [CrossRef] [PubMed]
- Pisarevskaya, E.Y.; Ozkan, S.Z.; Petrov, V.A.; Efimov, O.N.; Karpacheva, G.P. New electrodes based on composites of polyphenothiazine with carbon nanomaterials. Mater. Chem. Phys. 2024, 312, 128668. [Google Scholar] [CrossRef]
- Hussain, S.; Tahir, M.; Ibraheem; Ali, S.; Muhammad, F.; Gul, Z.; Din, S.I.U.; Brekhna; Wahab, F.; Khan, A.U.; et al. Polypyrrole: Synthesis, characterization and its potential application for humidity sensor. Polym. Bull. 2024, 81, 8869–8882. [Google Scholar] [CrossRef]
- Tran, H.D.; D’Arcy, J.M.; Wang, Y.; Beltramo, P.J.; Strong, V.A.; Kaner, R.B. The oxidation of aniline to produce “polyaniline”: A process yielding many different nanoscale structures. J. Mater. Chem. 2011, 21, 3534–3550. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, Z.; Wan, M. Nanostructures of Polyaniline Doped with Inorganic Acids. Macromolecules 2002, 35, 5937–5942. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, Y.; Liu, J.; Ma, G.; Huang, M. Wormlike acid-doped polyaniline: Controllable electrical properties and theoretical investigation. J. Phys. Chem. C 2018, 122, 2032–2040. [Google Scholar] [CrossRef]
- Goswami, S.; Nandy, S.; Fortunato, E.; Martins, R. Polyaniline and its composites engineering: A class of multifunctional smart energy materials. J. Solid State Chem. Part A 2023, 317, 123679. [Google Scholar] [CrossRef]
- Kailas, S.; Reddy, R.K.K.; Reddy, M.S.B.; Rani, B.G.; Maseed, H.; Sathyavathi, R.; Rao, K.V. High sensitive polyaniline nanosheets (PANINS)@rGO as nonenzymatic glucose sensor. J. Mater. Sci. Mater. Electron. 2020, 31, 2926–2937. [Google Scholar] [CrossRef]
- Cheng, X.; Kumar, V.; Yokozeki, T.; Goto, T.; Takahashi, T.; Koyanagi, J.; Wu, L.; Wang, R. Highly conductive graphene oxide/polyaniline hybrid polymer nanocomposites with simultaneously improved mechanical properties. Compos. Part A Appl. Sci. Manuf. 2016, 82, 100–107. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, M.; Wang, Y.; Pan, Q.; Gong, Q.; Xia, Z.; Li, Y. Remarkably enhanced performances of novel polythiophene-grafting graphene oxide composite via long alkoxy linkage for supercapacitor application. Carbon 2019, 147, 519–531. [Google Scholar] [CrossRef]
- Shabani-Nooshabadi, M.; Zahed, F. Cationic graphene oxide nanosheets intercalated with polyaniline. Electrochim. Acta 2017, 245, 575–586. [Google Scholar] [CrossRef]
- Javadian-Saraf, A.; Hosseini, E.; Wiltshire, B.D.; Zarifi, M.H.; Arjmand, M. Graphene oxide/polyaniline-based microwave split-ring resonator: A versatile platform towards ammonia sensing. J. Hazard. Mater. 2021, 418, 126283. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Qian, C.; Guo, M.; Wang, J.; Yan, X.; Li, H.; Yue, L. Anticorrosive durability of zinc-based waterborne coatings enhanced by highly dispersed and conductive polyaniline/graphene oxide composite. Prog. Org. Coat. 2018, 125, 79–88. [Google Scholar] [CrossRef]
- Zhang, K.; Li, H.; Zh, Y.; Dong, H.; Zhang, W.; Zhao, S.; Choi, H.J. Jellyfish-shaped p-Phenylenediamine Functionalized Graphene Oxide-Polyaniline Fibers and their Electrorheology. Polymer 2019, 168, 29–35. [Google Scholar] [CrossRef]
- Otoukesh, M.; Es’haghi, Z.; Feizy, J.; Nerin, C. Graphene oxide/Layered Double Hydroxides@ Sulfonated Polyaniline: A sorbent for ultrasonic assisted dispersive solid phase extraction of phthalates in distilled herbal beverages. J. Chromatogr. A 2020, 1625, 461307. [Google Scholar] [CrossRef] [PubMed]
- Vallés, C.; Jiménez, P.; Muñoz, E.; Benito, A.M.; Maser, W.K. Simultaneous Reduction of Graphene Oxide and Polyaniline: Doping-Assisted Formation of a Solid-State Charge-Transfer Complex. J. Phys. Chem. C 2011, 115, 10468–10474. [Google Scholar] [CrossRef]
- Mahalakshmi, S.; Sridevi, V. Tailoring the synergy between polyaniline and reduced graphene oxide using organic acid dopant, pTSA for enhanced performance as electrode material for supercapacitor applications. J. Phys. Chem. Solids 2022, 165, 110673. [Google Scholar] [CrossRef]
- Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. Effect of Graphene Oxide on the Properties of Its Composite with Polyaniline. ACS Appl. Mater. Interfaces 2010, 2, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Shulga, Y.M.; Baskakov, S.A.; Abalyaeva, V.V.; Efimov, O.N.; Shulga, N.Y.; Michtchenko, A.; LartundoRojas, L.; Moreno-R, L.A.; Cabañas-Moreno, J.G.; Vasilets, V.N. Composite material for supercapacitors formed by polymerization of aniline in the presence of graphene oxide nanosheets. J. Power Sources 2013, 224, 195–201. [Google Scholar] [CrossRef]
- Abalyaeva, V.V.; Baskakov, S.A.; Dremova, N.N. Composite Materials Based on Reduced Graphene Oxide and Polyaniline. Composition, Morphology, Electrochemical Properties. Russ. J. Electrochem. 2015, 51, 916–924. [Google Scholar] [CrossRef]
- Orlov, A.V.; Kiseleva, S.G.; Karpacheva, G.P.; Muratov, D.G. Peculiarities of Oxidative Polymerization of Diarylaminodichlorobenzoquinones. Polymers 2021, 13, 3657. [Google Scholar] [CrossRef]
- Abalyaeva, V.V.; Nikolaeva, G.V.; Kabachkov, E.N.; Kiseleva, S.G.; Orlov, A.V.; Efimov, O.N.; Karpacheva, G.P. Preparation and comparative study of electrochemical behavior of composite electrodes based on polyaniline and its N-substituted. Polym. Sci. Ser. B Chem. 2018, 60, 511–520. [Google Scholar] [CrossRef]
- Kiseleva, S.G.; Orlov, A.V.; Bondarenko, G.N.; Karpacheva, G.P. Oxidative polymerization of 3,6-dianiline-2,5-dichlorbenzoquinone and its copolymerization with aniline. Polym. Sci. Ser. B Chem. 2018, 60, 717–726. [Google Scholar] [CrossRef]
- Stejskal, J.; Dybal, J.; Trchová, M. The material combining conducting polymer and ionic liquid: Hydrogen bonding interactions between polyaniline and imidazolium salt. Synth. Met. 2014, 197, 168–174. [Google Scholar] [CrossRef]
- Shacklette, L.W. Dipole and hydrogen-bonding interactions in polyaniline: A mechanism for conductivity enhancement. Synth. Met. 1994, 65, 123–130. [Google Scholar] [CrossRef]
- Dmitrieva, E.; Dunsch, L. How Linear Is “Linear” Polyaniline? J. Phys. Chem. B 2011, 115, 6401–6411. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Li, Y.; Zhou, Q.; Hu, X.; Ouyang, S. Integrating FTIR 2D correlation analyses, regular and omics analyses studies on the interaction and algal toxicity mechanisms between grapheme oxide and cadmium. J. Hazard. Mater. Part B 2023, 443, 130298. [Google Scholar] [CrossRef] [PubMed]
- Hosseinia, M.A.; Malekieb, S.; Ebrahimi, N. The analysis of linear dose-responses in gamma-irradiated graphene oxide: Can FTIR analysis be considered a novel approach to examining the linear dose-responses in carbon nanostructures? Radiat. Phys. Chem. 2020, 176, 109067. [Google Scholar] [CrossRef]
- Tucureanu, V.; Matei, A.; Avram, A.M. FTIR Spectroscopy for Carbon Family Study. Crit. Rev. Anal. Chem. 2016, 46, 502–520. [Google Scholar] [CrossRef] [PubMed]
- Akshay, M.D.T.; Paris, C.; Peijie, O.; Charudatta, G.; Kaushik, B.; Arava, L.M.R.; Pulickel, M.A. Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide. J. Phys. Chem. Lett. 2012, 3, 986–991. [Google Scholar] [CrossRef]
- Hu, F.; Li, W.; Zhang, J.; Meng, W. Effect of Graphene Oxide as a Dopant on the Electrochemical Performance of Graphene Oxide/Polyaniline Composite. J. Mater. Sci. Technol. 2014, 30, 321–327. [Google Scholar] [CrossRef]
- Chethan, B.; Prasad, V.; Mathew, S.; Jan, H. Polyaniline/Graphene oxide composite as an Ultra-Sensitive humidity sensor. Inorg. Chem. Commun. 2024, 166, 112633. [Google Scholar] [CrossRef]
- Vargas, L.R.; Poli, A.K.; de Cássia Lazzarini Dutra, R.; De Souza, C.B.; Baldan, M.R.; Gonçalves, E.S. Formation of Composite Polyaniline and Graphene Oxide by Physical Mixture Method. J. Aerosp. Technol. Manag. 2017, 9, 29–38. [Google Scholar] [CrossRef]
- Kudin, K.N.; Ozbas, B.; Schniepp, H.C.; Prud’homme, R.K.; Aksay, I.A.; Car, R. Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. Nano Lett. 2008, 8, 36–41. [Google Scholar] [CrossRef]
- Nia, A.S.; Binder, W.H. Graphene as initiator/catalyst in polymerization chemistry. Prog. Polym. Sci. 2017, 67, 48–76. [Google Scholar] [CrossRef]
- Badi, N.; Roy, A.S.; Al-Aoh, H.A.; Alghamdi, S.A.; Alatawi, A.S.; Alatawi, A.A.; Ignatiev, A. Synthesis of hybrid polyaniline–graphene oxide–sulfur nanocomposite fibers through ice nucleation as a cathode material for lithium-sulfur battery. Mater. Sci. Energy Technol. 2023, 6, 351–358. [Google Scholar] [CrossRef]
- Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. Graphene oxide doped polyaniline for supercapacitors. Electrochem. Commun. 2009, 11, 1158–1161. [Google Scholar] [CrossRef]
- Pinilla-Sanchez, A.; Chavez-Angel, E.; Murcia-Lopez, S.; Carretero, N.M.; Palardonio, S.M.; Xiao, P.; Rueda-García, D.; Torres, C.M.S.; Gomez-Romero, P.; Martorell, J.; et al. Controlling the electrochemical hydrogen generation and storage in graphene oxide by in-situ Raman spectroscopy. Carbon 2022, 200, 227–235. [Google Scholar] [CrossRef]
- Acisli, O.; Khataee, A.; Karaca, S.; Sheydae, M. Modification of nanosized natural montmorillonite for ultrasound enhanced adsorption of Acid Red 17. Ultrason. Sonochem. 2016, 31, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Šedĕnková, I.; Trchová, M.; Stejskal, J. Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water—FTIR and Raman spectroscopic studies. Polym. Degrad. Stab. 2008, 93, 2147–2157. [Google Scholar] [CrossRef]
- Rozlívková, Z.; Trchová, M.; Šeděnková, I.; Špírková, M.; Stejskal, J. Structure and stability of thin polyaniline films deposited in situ on silicon and gold during precipitation and dispersion polymerization of aniline hydrochloride. Thin Solid Film. 2011, 519, 5933–5941. [Google Scholar] [CrossRef]
- Habib, H.; Wania, I.S.; Husain, S. High performance nanostructured symmetric reduced graphene oxide/polyaniline supercapacitor electrode: Effect of polyaniline morphology. J. Energy Storage 2022, 5, 105732. [Google Scholar] [CrossRef]
- Ambrosi, A.; Chua, C.K.; Bonanni, A.; Pumera, M. Electrochemistry of Graphene and Related Materials. Chem. Rev. 2014, 114, 7150–7188. [Google Scholar] [CrossRef]
- Moghadam, M.H.M.; Sabury, S.; Gudarzi, M.M.; Sharif, F. Graphenne oxide-induced polymerization and crystallization to produce highly conductive polyaniline/graphene oxide composite. J. Polym. Sci. Part A Polym. Chem. 2014, 52, 1545–1554. [Google Scholar] [CrossRef]
- Ramezanzadeh, B.; Moghadam, M.H.M.; Shohani, N.; Mahdavian, M. Effects of highly crystalline and conductive polyaniline/graphene oxide composites on the corrosion protection performance of a zinc-rich epoxy coating. Chem. Eng. J. 2017, 320, 363–375. [Google Scholar] [CrossRef]
- Bagri, A.; Mattev, C.; Acik, M.; Chabal, Y.J.; Chhowalla, M.; Shenoy, V.B. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2010, 2, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, C.; Seo, Y.D.; Cho, S.; Kim, J.; Lee, G.; Kim, Y.K.; Jang, J. Fabrication of Various Conducting Polymers Using Graphene Oxide as a Chemical Oxidant. Chem. Mater. 2015, 27, 6238–6248. [Google Scholar] [CrossRef]
- Solonaru, A.M.; Grigora, M. Water-soluble polyaniline/graphene composites as materials for energy storage applications. Express Polym. Lett. 2017, 11, 127–139. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, D.; Liu, W.; Liu, H.; Chen, P.; Zhao, J.; Cheng, Y.; Wang, Q.; Wang, X. Preparation of porous polyaniline/RGO composite and its application in improving the electrochemical properties of Co9S8 hydrogen storage alloy. Int. J. Hydrogen Energy 2021, 46, 40239–40250. [Google Scholar] [CrossRef]
- Umar, A.; Ahmed, F.; Ullah, N.; Ansari, S.A.; Hussain, S.; Ibrahim, A.A.; Qasem, H.; Kumar, S.A.; Alhamami, M.A.; Almehbad, N.; et al. Exploring the potential of reduced graphene oxide/polyaniline (rGO@PANI) nanocomposites for high-performance supercapacitor application. Electrochim. Acta 2024, 479, 143743. [Google Scholar] [CrossRef]
- Das, P.; Deoghare, A.B.; Maity, S.R. Synergistically improved thermal stability and electromagnetic interference shielding effectiveness (EMI SE) of in-situ synthesized polyaniline/sulphur doped reduced graphene oxide (PANI/S-RGO) nanocomposites. Ceram. Int. 2022, 48, 11031–11042. [Google Scholar] [CrossRef]
- Palaniappan, S.; Chang, Y.-T.; Liu, C.-M.; Manisanka, P. Template-free mechanochemical route to prepare crystalline and electroactive polydiphenylamine nanostructures. Mater. Chem. Phys. 2011, 129, 948–954. [Google Scholar] [CrossRef]
- Ma, G.; Bai, W.; Zhou, X.; Yu, D.; Luo, Y.; Gao, T.; Wang, S. Novel sulfonated polyaniline/graphene oxide electrode with high cycling stability for all-solid-state flexible supercapacitors. Int. J. Hydrogen Energy 2024, 68, 105–114. [Google Scholar] [CrossRef]
- Khodabakhshi, S.; Fulvio, P.F.; Walton, K.S.; Kiani, S.; Niu, Y.; Palmer, R.E.; Barron, A.R.; Andreoli, E. High surface area microporous carbon nanocubes from controlled processing of graphene oxide nanoribbons. Carbon 2024, 221, 118940. [Google Scholar] [CrossRef]
- Mahmouda, W.E.; Al-Hazmi, F.S.; Al-Harbi, G.H. Wall by wall controllable unzipping of MWCNTs via intercalation with oxalic acid to produce multilayers graphene oxide ribbon. Chem. Eng. J. 2015, 281, 192–198. [Google Scholar] [CrossRef]
- Jonscher, A.K. The “universal” dielectric response. Nature 1977, 267, 673–679. [Google Scholar] [CrossRef]
- Dyre, J.C.; Schrøder, T.B. Universality of ac conduction in disordered solids. Rev. Mod. Phys. 2000, 72, 873–892. [Google Scholar] [CrossRef]
- Fahmy, T.; Elzanaty, H. AC conductivity and broad band dielectric spectroscopy of a poly(vinyl chloride)/poly(ethyl methacrylate) polymer blend. Bull. Mater. Sci. 2019, 42, 220. [Google Scholar] [CrossRef]
- MacDiarmid, A.G.; Epstein, A.J. Secondary doping in polyaniline. Synth. Met. 1995, 69, 85–92. [Google Scholar] [CrossRef]
- Bednarczyk, K.; Matysiak, W.; Tański, T.; Janeczek, H.; Schab-Balcerzak, E.; Libera, M. Effect of polyaniline content and protonating dopants on electroconductive composites. Sci. Rep. 2021, 11, 7487. [Google Scholar] [CrossRef]
- Ding, L.; Wang, X.; Gregory, R.V. Thermal properties of chemically synthesized polyaniline EB powder. Synth. Met. 1999, 104, 73–78. [Google Scholar] [CrossRef]
- Palaniappan, S.; Narayana, B.H. Conducting polyaniline salts: Thermogravimetric and differential thermal analysis. Thermochim. Acta 1994, 237, 91–97. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Hsu, F.-H.; Wu, T.-M. Enhanced conductivity and thermal stability of conductive polyaniline/graphene composite synthesized by in situ chemical oxidation polymerization with sodium dodecyl sulfate. Synth. Met. 2013, 184, 29–34. [Google Scholar] [CrossRef]
- Eigler, S.; Dotzer, C.; Hirsch, A.; Enzelberger, M.; Müller, P. Formation and Decomposition of CO2 Intercalated Graphene Oxide. Chem. Mater. 2012, 24, 1276–1282. [Google Scholar] [CrossRef]
- Jorge, F.E.; Tienne, L.G.P.; Marques, M.F.V.; Monteiro, S.N. Evaluation of thermoelectric properties of hybrid polyaniline nanocomposites incorporated with graphene oxide and zinc oxide with different morphologies. J. Mater. Res. Technol. 2023, 27, 6822–6832. [Google Scholar] [CrossRef]
- Chuah, R.; Gopinath, S.C.B.; Anbu, P.; Salimi, M.N.; Yaakub, A.R.W.; Lakshmipriya, T. Synthesis and characterization of reduced graphene oxide using the aqueous extract of Eclipta prostrate. 3Biotech 2020, 10, 364. [Google Scholar] [CrossRef]
- Acik, M.; Lee, G.; Mattevi, C.; Pirkle, A.; Wallace, R.M.; Chhowalla, M.; Cho, K.; Chabal, M.Y. The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy. J. Phys. Chem. 2011, 115, 19761–19781. [Google Scholar] [CrossRef]
- Acik, M.; Mattevi, C.; Gong, C.; Lee, G.; Cho, K.; Chhowalla, M.; Chabal, M.Y. The Role of Intercalated Water in Multilayered Graphene Oxide. ACS Nano 2010, 4, 5861–5868. [Google Scholar] [CrossRef] [PubMed]
- Han, M.G.; Lee, Y.J.; Byun, S.W.; Im, S.S. Physical properties and thermal transition of polyaniline film. Synth. Met. 2001, 124, 337–343. [Google Scholar] [CrossRef]
- Dimitriev, O.P.; Kopylov, O.N.; Tracz, A. Mechanisms of polyaniline film formation via solution casting: Intra-chain contraction versus inter-chain association. Eur. Polym. J. 2015, 66, 119–128. [Google Scholar] [CrossRef]
Sample | σdc, S⋅cm−1 | σac (25 Hz), S⋅cm−1 | σac (1 MHz), S⋅cm−1 | n | A, (rad⋅c−1)−n |
---|---|---|---|---|---|
PDACB | 9.1 × 10−2 | 9.3 × 10−2 | 1.2 × 10−1 | 0.74 | 2.6 × 10−7 |
PDACB/GO-1 | 7.6 × 10−3 | 7.9 × 10−3 | 2.8 × 10−2 | 0.52 | 7.4 × 10−6 |
PDACB/GO-2.1 | 1.9 × 10−2 | 1.95 × 10−2 | 2.2 × 10−2 | 0.71 | 3.8 × 10−8 |
PDACB/GO-2.2 | 3.8 × 10−2 | 3.8 × 10−2 | 6.2 × 10−2 | 0.96 | 7.9 × 10−9 |
PDACB/GO-3.1 | 2.0 × 10−3 | 2.1 × 10−3 | 6.3 × 10−3 | 0.75 | 3.6 × 10−8 |
PDACB/GO-3.2 | 2.3 × 10−1 | 2.4 × 10−1 | 5.6 × 10−1 | 0.51 | 1.1 × 10−4 |
Sample | T5%, °C | T50%, °C | Tmax.DTG, °C | mres., % |
---|---|---|---|---|
PDACB | 110.7 | 307.9 | 286.2 | 44.7 |
GO | 61.9 | 210.8 | 51.8 | |
PDACB/GO-1 | 81.4 | >450 | 227.3 | 50.8 |
286.3 | ||||
~330 | ||||
PDACB/GO-2.1 | 123.1 | 324.3 | 288.5 | 46.6 |
PDACB/GO-2.2 | 79.1 | >450 | 293.2 | 52.1 |
PDACB/GO-3.1 | 97.2 | >450 | 297.7 | 53.2 |
PDACB/GO-3.2 | 111.4 | >450 | 178.8 | 55.6 |
298.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiseleva, S.G.; Bondarenko, G.N.; Orlov, A.V.; Muratov, D.G.; Kozlov, V.V.; Vasilev, A.A.; Karpacheva, G.P. Hybrid Nanocomposites Based on Poly(3,6-dianiline-2,5-dichloro-1,4-benzoquinone): Synthesis, Structure and Properties. Polymers 2024, 16, 1832. https://doi.org/10.3390/polym16131832
Kiseleva SG, Bondarenko GN, Orlov AV, Muratov DG, Kozlov VV, Vasilev AA, Karpacheva GP. Hybrid Nanocomposites Based on Poly(3,6-dianiline-2,5-dichloro-1,4-benzoquinone): Synthesis, Structure and Properties. Polymers. 2024; 16(13):1832. https://doi.org/10.3390/polym16131832
Chicago/Turabian StyleKiseleva, Svetlana G., Galina N. Bondarenko, Andrey V. Orlov, Dmitriy G. Muratov, Vladimir V. Kozlov, Andrey A. Vasilev, and Galina P. Karpacheva. 2024. "Hybrid Nanocomposites Based on Poly(3,6-dianiline-2,5-dichloro-1,4-benzoquinone): Synthesis, Structure and Properties" Polymers 16, no. 13: 1832. https://doi.org/10.3390/polym16131832
APA StyleKiseleva, S. G., Bondarenko, G. N., Orlov, A. V., Muratov, D. G., Kozlov, V. V., Vasilev, A. A., & Karpacheva, G. P. (2024). Hybrid Nanocomposites Based on Poly(3,6-dianiline-2,5-dichloro-1,4-benzoquinone): Synthesis, Structure and Properties. Polymers, 16(13), 1832. https://doi.org/10.3390/polym16131832