Sunlight-Driven Synthesis of TiO2/(MA)2SnCl4 Nanocomposite Films for Enhanced Photocatalytic Degradation of Organic Pollutants
Abstract
1. Introduction
2. Results and Discussion
3. Method Preparation and Characterization
3.1. Materials
3.2. Preparation of MA and SnCl2 Mixture
3.3. Synthesis of TiO2/(MA)2SnCl4 Nanocomposite Film
3.4. Characterization
3.5. Photocatalytic Performance Method
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bolisetty, S.; Peydayesh, M.; Mezzenga, R. Sustainable Technologies for Water Purification from Heavy Metals: Review and Analysis. Chem. Soc. Rev. 2019, 48, 463–487. [Google Scholar] [CrossRef]
- Ahmed, S.; Khan, F.S.A.; Mubarak, N.M.; Khalid, M.; Tan, Y.H.; Mazari, S.A.; Karri, R.R.; Abdullah, E.C. Emerging Pollutants and Their Removal Using Visible-Light Responsive Photocatalysis—A Comprehensive Review. J. Environ. Chem. Eng. 2021, 9, 106643. [Google Scholar] [CrossRef]
- Mohamadpour, F.; Mohammad Amani, A. Photocatalytic Systems: Reactions, Mechanism, and Applications. RSC Adv. 2024, 14, 20609–20645. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, L.; Yoo, S.H. Superwetting Materials as Catalysts in Photocatalysis: State-of-the-Art Review. Chem. Eng. J. 2024, 481, 148537. [Google Scholar] [CrossRef]
- Chakravorty, A.; Roy, S. A Review of Photocatalysis, Basic Principles, Processes, and Materials. Sustain. Chem. Environ. 2024, 8, 100155. [Google Scholar] [CrossRef]
- Armaković, S.J.; Savanović, M.M.; Armaković, S. Titanium Dioxide as the Most Used Photocatalyst for Water Purification: An Overview. Catalysts 2023, 13, 26. [Google Scholar] [CrossRef]
- Dharma, H.N.C.; Jaafar, J.; Widiastuti, N.; Matsuyama, H.; Rajabsadeh, S.; Othman, M.H.D.; Rahman, M.A.; Jafri, N.N.M.; Suhaimin, N.S.; Nasir, A.M.; et al. A Review of Titanium Dioxide (TiO2)-Based Photocatalyst for Oilfield-Produced Water Treatment. Membranes 2022, 12, 345. [Google Scholar] [CrossRef]
- Lettieri, S.; Pavone, M.; Fioravanti, A.; Santamaria Amato, L.; Maddalena, P. Charge Carrier Processes and Optical Properties in TiO2 and TiO2-Based Heterojunction Photocatalysts: A Review. Materials 2021, 14, 1645. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, P.; Andrade, L.; Nunes, O.; Mendes, A. Titanium Dioxide Photocatalysis: Fundamentals and Application on Photoinactivation. Rev. Adv. Mater. Sci. 2017, 51, 91–129. [Google Scholar]
- Du, S.; Lian, J.; Zhang, F. Visible Light-Responsive N-Doped TiO2 Photocatalysis: Synthesis, Characterizations, and Applications. Trans. Tianjin Univ. 2022, 28, 33–52. [Google Scholar] [CrossRef]
- Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai, S.C. Visible-Light Activation of TiO2 Photocatalysts: Advances in Theory and Experiments. J. Photochem. Photobiol. C Photochem. Rev. 2015, 25, 1–29. [Google Scholar] [CrossRef]
- Khan, H.; Shah, M.U.H. Modification Strategies of TiO2 Based Photocatalysts for Enhanced Visible Light Activity and Energy Storage Ability: A Review. J. Environ. Chem. Eng. 2023, 11, 111532. [Google Scholar] [CrossRef]
- Wajid Shah, M.; Zhu, Y.; Fan, X.; Zhao, J.; Li, Y.; Asim, S.; Wang, C. Facile Synthesis of Defective TiO2−x Nanocrystals with High Surface Area and Tailoring Bandgap for Visible-Light Photocatalysis. Sci. Rep. 2015, 5, 15804. [Google Scholar] [CrossRef]
- Wang, C.; Ding, Y.; Wang, Y.; Xie, Z.; Zeng, Z.; Li, X.; Ng, Y.H. Metal Halide Perovskites for Solar-to-Chemical Energy Conversion in Aqueous Media. Carbon Energy 2024, 6, e500. [Google Scholar] [CrossRef]
- Purohit, S.; Yadav, K.L.; Satapathi, S. Metal Halide Perovskite Heterojunction for Photocatalytic Hydrogen Generation: Progress and Future Opportunities. Adv. Mater. Interfaces 2022, 9, 2200058. [Google Scholar] [CrossRef]
- Mortan, C.; Hellmann, T.; Buchhorn, M.; Melzi d’Eril, M.; Clemens, O.; Mayer, T.; Jaegermann, W. Preparation of Methylammonium Lead Iodide (CH3NH3PbI3) Thin Film Perovskite Solar Cells by Chemical Vapor Deposition Using Methylamine Gas (CH3NH2) and Hydrogen Iodide Gas. Energy Sci. Eng. 2024, 8, 3165–3173. [Google Scholar] [CrossRef]
- Quarti, C.; Mosconi, E.; Ball, J.M.; D’Innocenzo, V.; Tao, C.; Pathak, S.; Snaith, H.J.; Petrozza, A.; Angelis, F.D. Structural and Optical Properties of Methylammonium Lead Iodide across the Tetragonal to Cubic Phase Transition: Implications for Perovskite Solar Cells. Energy Environ. Sci. 2016, 9, 155–163. [Google Scholar] [CrossRef]
- Pan, L.; Feng, Y.; Kandlakunta, P.; Huang, J.; Cao, L.R. Performance of Perovskite CsPbBr3 Single Crystal Detector for Gamma-Ray Detection. IEEE Trans. Nucl. Sci. 2020, 67, 443–449. [Google Scholar] [CrossRef]
- Baloch, A.; Hossain, M.; Tabet, N.; Alharbi, F. Practical Efficiency Limit of Methylammonium Lead Iodide Perovskite (CH3NH 3PbI3) Solar Cells. J. Phys. Chem. Lett. 2018, 9, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Cuzzupè, D.; Öz, S.; Ling, J.-K.; Illing, E.; Seewald, T.; Jose, R.; Olthof, S.; Fakharuddin, A.; Schmidt-Mende, L. Understanding Methylammonium Chloride-Assisted Crystallization for Improved Performance of Lead–Free Tin Perovskite Solar Cells. Sol. RRL 2023, 7, 2300770. [Google Scholar] [CrossRef]
- Awais, M.; Kirsch, R.L.; Yeddu, V.; Saidaminov, M.I. Tin Halide Perovskites Going Forward: Frost Diagrams Offer Hints. ACS Mater. Lett. 2021, 3, 299–307. [Google Scholar] [CrossRef]
- Kumar, A. Different Methods Used for the Synthesis of TiO2 Based Nanomaterials: A Review. Am. J. Nano Res. Appl. 2018, 6, 1. [Google Scholar] [CrossRef]
- Mani, S.S.; Rajendran, S.; Mathew, T.; Gopinath, S.C. A Review on the Recent Advances in the Design and Structure–Activity Relationship of TiO2-Based Photocatalysts for Solar Hydrogen Production. Energy Adv. 2024, 3, 1472–1504. [Google Scholar] [CrossRef]
- Khalid, A.; Ahmad, P.; Alharthi, A.; Muhammad, S.; Khandaker, M.; Faruque, M.R.; Faruque, I.; Din, I.U.; Alotaibi, M.; Kustov, L. Unmodified Titanium Dioxide Nanoparticles as a Potential Contrast Agent in Photon Emission Computed Tomography. Crystals 2021, 11, 171. [Google Scholar] [CrossRef]
- Yadav, R.; Swain, D.; Kundu, P.P.; Nair, H.S.; Narayana, C.; Elizabeth, S. Dielectric and Raman Investigations of Structural Phase Transitions in (C2H5NH3)2CdCl4. Phys. Chem. Chem. Phys. 2015, 17, 12207–12214. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.-C.; Zhang, S.; Magnanelli, T.; Nguyen, N.; Heilweil, E.; Anthopoulos, T.; Hacker, C. Unraveling the Compositional Heterogeneity and Carrier Dynamics of Alkali Cation Doped 3D/2D Perovskites with Improved Stability. Mater. Adv. 2020, 2, 1253–1262. [Google Scholar] [CrossRef]
- Zhou, Q.; Liang, L.; Hu, J.; Cao, B.; Yang, L.; Wu, T.; Li, X.; Zhang, B.; Gao, P. High-Performance Perovskite Solar Cells with Enhanced Environmental Stability Based on a (p-FC6H4C2H4NH3)2[PbI4] Capping Layer. Adv. Energy Mater. 2019, 9, 1802595. [Google Scholar] [CrossRef]
- Shao, Y.X.; Cai, Y.H.; Dong, D.; Wang, S.; Ang, S.G.; Xu, G.Q. Spectroscopic Study of Propargyl Chloride Attachment on Si(1 0 0) − 2 × 1. Chem. Phys. Lett. 2009, 482, 77–80. [Google Scholar] [CrossRef]
- Bandara, R.M.I.; Jayawardena, K.D.G.I.; Adeyemo, S.O.; Hinder, S.J.; Smith, J.A.; Thirimanne, H.M.; Wong, N.C.; Amin, F.M.; Freestone, B.G.; Parnell, A.J.; et al. Tin(IV) Dopant Removal through Anti-Solvent Engineering Enabling Tin Based Perovskite Solar Cells with High Charge Carrier Mobilities. J. Mater. Chem. C 2019, 7, 8389–8397. [Google Scholar] [CrossRef]
- Alotaibi, M.A.; Alharthi, A.I.; Qahtan, T.F.; Alotibi, S.; Alansi, A.M.; Bakht, M.A. Photocatalytic Synthesis of Coumarin Derivatives Using Visible-Light-Responsive Strawberry Dye-Sensitized Titanium Dioxide Nanoparticles. Catalysts 2023, 13, 3001. [Google Scholar] [CrossRef]
- Kang, S.; Mauchauffé, R.; You, Y.S.; Moon, S.Y. Insights into the Role of Plasma in Atmospheric Pressure Chemical Vapor Deposition of Titanium Dioxide Thin Films. Sci. Rep. 2018, 8, 16684. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Bai, Y.; Wang, S.; Lyu, M.; Yun, J.-H.; Wang, L. In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells. Adv. Funct. Mater. 2018, 28, 1706923. [Google Scholar] [CrossRef]
- Rocks, C.; Švrček, V.; Maguire, P.; Mariotti, D. Understanding Surface Chemistry during MAPbI 3 Spray Deposition and Its Effect on Photovoltaic Performance. J. Mater. Chem. C 2017, 5, 902–916. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, S.; Wan, P.; Sun, J.; Hood, Z. Introducing Ti3+ Defects Based on Lattice Distortion for Enhanced Visible Light Photoreactivity in TiO2 Microspheres. RSC Adv. 2017, 7, 32461–32467. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S.; Wu, J.; Zhou, W. Recent Progress in Defective TiO2 Photocatalysts for Energy and Environmental Applications. Renew. Sustain. Energy Rev. 2022, 156, 111980. [Google Scholar] [CrossRef]
- Pan, X.; Yang, M.-Q.; Fu, X.; Zhang, N.; Xu, Y.-J. Defective TiO2 with Oxygen Vacancies: Synthesis, Properties and Photocatalytic Applications. Nanoscale 2013, 5, 3601–3614. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Ji, Z.; Yan, G.; Li, Z.; Jinliang, L.; Kuang, M.; Jiang, B.; Zeng, L.; Pan, L.; Mai, W. TiO2 Electron Transport Bilayer for All-Inorganic Perovskite Photodetectors with Remarkably Improved UV Stability toward Imaging Applications. J. Mater. Sci. Technol. 2021, 75, 39–47. [Google Scholar] [CrossRef]
- Nguyen, D.; Ding, S.; Thuong, N.; Vân-Anh, N.; Mejía, E. Visible Light-Driven Degradation of Trichloroethylene in Aqueous Phase with Vanadium-Doped TiO 2 Photocatalysts. Sol. RRL 2023, 7. [Google Scholar] [CrossRef]
- Guan, S.; Cheng, Y.; Hao, L.; Yoshida, H.; Tarashima, C.; Zhan, T.; Itoi, T.; Qiu, T.; Lu, Y. Oxygen Vacancies Induced Band Gap Narrowing for Efficient Visible-Light Response in Carbon-Doped TiO2. Sci. Rep. 2023, 13, 14105. [Google Scholar] [CrossRef] [PubMed]
- Chi, M.; Sun, X.; Lozano-Blanco, G.; Tatarchuk, B.J. XPS and FTIR Investigations of the Transient Photocatalytic Decomposition of Surface Carbon Contaminants from Anatase TiO2 in UHV Starved Water/Oxygen Environments. Appl. Surf. Sci. 2021, 570, 151147. [Google Scholar] [CrossRef]
- Alansi, A.M.; Qahtan, T.F.; Al Abass, N.; Al-Qunaibit, M.; Saleh, T.A. In-Situ Sunlight-Driven Tuning of Photo-Induced Electron-Hole Generation and Separation Rates in Bismuth Oxychlorobromide for Highly Efficient Water Decontamination under Visible Light Irradiation. J. Colloid Interface Sci. 2022, 614, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Bastug Azer, B.; Gulsaran, A.; Pennings, J.R.; Saritas, R.; Kocer, S.; Bennett, J.L.; Devdas Abhang, Y.; Pope, M.A.; Abdel-Rahman, E.; Yavuz, M. A Review: TiO2 Based Photoelectrocatalytic Chemical Oxygen Demand Sensors and Their Usage in Industrial Applications. J. Electroanal. Chem. 2022, 918, 116466. [Google Scholar] [CrossRef]
- Wang, Q.; Xiong, J.; Xing, Y.; Gan, X.; Zhu, W.; Xuan, R.; Liu, X.; Huang, L.; Zhu, Y.; Zhang, J. Reductive Sn Compensator for Efficient and Stable Sn-Pb Mixed Perovskite Solar Cells. Adv. Sci. 2024, 11, 2400962. [Google Scholar] [CrossRef] [PubMed]
- Orudzhev, F.; Ramazanov, S.; Isaev, A.; Alikhanov, N.; Sobola, D.; Presniakov, M.Y.; Kaviyarasu, K. Self-Organization of Layered Perovskites on TiO2 Nanotubes Surface by Atomic Layer Deposition. Mater. Today Proc. 2021, 36, 346–367. [Google Scholar] [CrossRef]
- Yu, J.; Xiang, S.; Ge, M.; Zhang, Z.; Huang, J.; Tang, Y.; Sun, L.; Lin, C.; Lai, Y. Rational Construction of LaFeO3 Perovskite Nanoparticle-Modified TiO2 Nanotube Arrays for Visible-Light Driven Photocatalytic Activity. Coatings 2018, 8, 374. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, J.; Geng, J.; Bao, R.; Wang, Z.; Xia, J.; Li, H. Perovskite LaNiO3/TiO2 Step-Scheme Heterojunction with Enhanced Photocatalytic Activity. Appl. Surf. Sci. 2020, 503, 144287. [Google Scholar] [CrossRef]
- Farhan, S.; Hassan Raza, A.; Yang, S.; Yu, Z.; Wu, Y. Boosted Photocatalytic Hydrogen Evolution of S-Scheme N-Doped CeO2-δ@ZnIn2S4 Heterostructure Photocatalyst. J. Colloid Interface Sci. 2024, 669, 430–443. [Google Scholar] [CrossRef]
- Yang, S.; Wang, K.; Chen, Q.; Wu, Y. Enhanced Photocatalytic Hydrogen Production of S-Scheme TiO2/g-C3N4 Heterojunction Loaded with Single-Atom Ni. J. Mater. Sci. Technol. 2024, 175, 104–114. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaiba, A.; Alansi, A.M.; Oubelkacem, A.; Chabri, I.; Hameed, S.T.; Afzal, N.; Rafique, M.; Qahtan, T.F. Sunlight-Driven Synthesis of TiO2/(MA)2SnCl4 Nanocomposite Films for Enhanced Photocatalytic Degradation of Organic Pollutants. Catalysts 2025, 15, 214. https://doi.org/10.3390/catal15030214
Kaiba A, Alansi AM, Oubelkacem A, Chabri I, Hameed ST, Afzal N, Rafique M, Qahtan TF. Sunlight-Driven Synthesis of TiO2/(MA)2SnCl4 Nanocomposite Films for Enhanced Photocatalytic Degradation of Organic Pollutants. Catalysts. 2025; 15(3):214. https://doi.org/10.3390/catal15030214
Chicago/Turabian StyleKaiba, Abdellah, Amani M. Alansi, Ali Oubelkacem, Ilyas Chabri, Salah T. Hameed, Naveed Afzal, Mohsin Rafique, and Talal F. Qahtan. 2025. "Sunlight-Driven Synthesis of TiO2/(MA)2SnCl4 Nanocomposite Films for Enhanced Photocatalytic Degradation of Organic Pollutants" Catalysts 15, no. 3: 214. https://doi.org/10.3390/catal15030214
APA StyleKaiba, A., Alansi, A. M., Oubelkacem, A., Chabri, I., Hameed, S. T., Afzal, N., Rafique, M., & Qahtan, T. F. (2025). Sunlight-Driven Synthesis of TiO2/(MA)2SnCl4 Nanocomposite Films for Enhanced Photocatalytic Degradation of Organic Pollutants. Catalysts, 15(3), 214. https://doi.org/10.3390/catal15030214