Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = hyaluronan synthases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3644 KB  
Article
Anti-Photoaging Effect of Soluble Microneedles Loaded with Hydroxytyrosol
by Jie Wang, Gaofei Zhu, Mengke Han, Xinyu Hou, Yishu Wang, Xiuhua Zhang, Jinhua Zhang, Huarong Shao and Fei Liu
Int. J. Mol. Sci. 2026, 27(2), 1005; https://doi.org/10.3390/ijms27021005 - 20 Jan 2026
Viewed by 191
Abstract
Skin photoaging, marked by structural and functional changes, is mainly caused by long-term ultraviolet (UV) exposure. This study sought to create hydroxytyrosol (HT)-loaded soluble microneedles (HT MNs) and thoroughly assess their anti-photoaging effects and underlying mechanisms in vitro and in vivo. The optimized [...] Read more.
Skin photoaging, marked by structural and functional changes, is mainly caused by long-term ultraviolet (UV) exposure. This study sought to create hydroxytyrosol (HT)-loaded soluble microneedles (HT MNs) and thoroughly assess their anti-photoaging effects and underlying mechanisms in vitro and in vivo. The optimized HT MNs, featuring tips with 10% HT + 5% hyaluronic acid (HA) and a backing layer of 10% polyvinyl pyrrolidone (PVP), demonstrated robust mechanical strength (withstanding an axial force of 10 N without fracture), adequate penetration depth (>200 μm), and efficient skin self-recovery post-removal. In vitro, HT MNs notably boosted cell viability, reduced reactive oxygen species (ROS) levels, and suppressed senescence-associated β-galactosidase (A-β-Gal) expression in UVA-exposed human skin fibroblasts (HSF). In vivo, in a UVA + UVB-irradiated mouse model, HT MNs significantly enhanced skin hydration and elasticity, increased collagen density (confirmed by Masson staining), decreased malondialdehyde (MDA) content, and elevated the activities of glutathione (GSH), catalase (CAT), and glutathione peroxidase (GSH-Px). Western blot analysis further revealed that HT MNs upregulated the expression of collagen type I alpha 1 (COL1A1), elastin (ELN), hyaluronan synthase 2 (HAS2), and filaggrin (FLG), while downregulating matrix metalloproteinase 1. Overall, these findings suggest that HT MNs effectively mitigate UV-induced photoaging through antioxidant, anti-senescence, and extracellular matrix (ECM)-regulating mechanisms, underscoring their potential as a novel transdermal anti-photoaging therapy. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

19 pages, 1940 KB  
Article
Protective Effect of Multifloral Honey on Stem Cell Aging in a Dynamic Cell Culture Model
by Fikriye Fulya Kavak, Sara Cruciani, Giuseppe Garroni, Diletta Serra, Rosanna Satta, Ibrahim Pirim, Melek Pehlivan and Margherita Maioli
Antioxidants 2026, 15(1), 115; https://doi.org/10.3390/antiox15010115 - 16 Jan 2026
Viewed by 424
Abstract
Natural compounds, as honey-derived flavonoids and phenolic compounds, are increasingly investigated for their potential to mitigate skin aging and prevent oxidative stress-induced cellular damages. In this context, a dynamic cell culture model was employed to assess the protective influence of honey pre-treatment on [...] Read more.
Natural compounds, as honey-derived flavonoids and phenolic compounds, are increasingly investigated for their potential to mitigate skin aging and prevent oxidative stress-induced cellular damages. In this context, a dynamic cell culture model was employed to assess the protective influence of honey pre-treatment on stem cell–associated genes and the Wingless-related integration site (Wnt) signaling pathway following ultraviolet (UV)-induced aging. Using a bioreactor, skin stem cells (SSCs) derived from healthy skin biopsies and human skin fibroblasts (HFF1) were pre-treated with 1% honey for 48 h and then exposed to UV. Real-time quantitative polymerase chain reaction (RT-qPCR) analyses were performed on Wnt signaling and anti-aging molecular responses. Honey pre-treatment enhanced the expression of pluripotency markers (Octamer-binding transcription factor 4 (Oct4); SRY-box transcription factor 2 (Sox2)) and reduced senescence-related cell cycle regulators (cyclin-dependent kinase inhibitor 2A (p16); cyclin-dependent kinase inhibitor 1A (p21); tumor protein 53 (p53)) in SSCs. In UV-damaged SSCs, honey also significantly increased Wnt3a expression. In fibroblasts, honey pre-treatment upregulated Heat shock protein 70 (Hsp70) and Hyaluronan synthase 2 (HAS2) expression, while downregulating caspase-8 (CASP8), indicating a protective role against UV-mediated cellular stress. We also analyzed nitric oxide release and the total antioxidant capacity of cells after treatment. Collectively, these findings suggest that honey may safeguard skin stem cells from UV-induced aging by modulating pluripotency and senescence-associated genes and regulating differentiation through alterations in Wnt signaling. Furthermore, Hsp70 upregulation in fibroblasts appears to strengthen cellular stress responses and support homeostatic stability. Full article
(This article belongs to the Special Issue Oxidative Stress in Cell Senescence)
Show Figures

Figure 1

2 pages, 1476 KB  
Correction
Correction: Li et al. Genetic Deficiency of Hyaluronan Synthase 2 in the Developing Limb Mesenchyme Impairs Postnatal Synovial Joint Formation. Biomedicines 2025, 13, 1324
by Yingcui Li, Alexander Tress, Peter Maye, Kemar Edwards, Asiona Findletar, Nathaniel A. Dyment, Yu Yamaguchi, David W. Rowe, Gengyun Le-Chan, Sunny S. K. Chan and Kevin W.-H. Lo
Biomedicines 2026, 14(1), 4; https://doi.org/10.3390/biomedicines14010004 - 19 Dec 2025
Viewed by 220
Abstract
In the original publication [...] Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

25 pages, 6549 KB  
Article
Exploring the Link Between PACAP Signalling and Hyaluronic Acid Production in Melanoma Progression
by Tibor Hajdú, Patrik Kovács, Éva Katona, Minh Ngoc Nguyen, Judit Vágó, Csaba Fillér, Róza Zákány, Gabriella Emri, Gábor Tóth, Dóra Reglődi and Tamás Juhász
Int. J. Mol. Sci. 2025, 26(24), 12049; https://doi.org/10.3390/ijms262412049 - 15 Dec 2025
Viewed by 312
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a small neuropeptide detected first in the hypothalamo–hypophyseal system; recently, it has also been identified in peripheral organs and in tumours. It is well demonstrated that PACAP exerts cell- and tissue-protecting effects in various stressful conditions and [...] Read more.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a small neuropeptide detected first in the hypothalamo–hypophyseal system; recently, it has also been identified in peripheral organs and in tumours. It is well demonstrated that PACAP exerts cell- and tissue-protecting effects in various stressful conditions and helps to maintain tissue homeostasis. In melanoma, the anti-invasive effect of PACAP has been demonstrated; however, there is also existing sporadic data which proves PACAP plays a role in melanoma progression. The major goal of our study was to investigate the signalling targets of PACAP in A2058 and WM35 melanoma cell lines in vitro. Various molecular players of melanocyte differentiation and function responded to PACAP application. SOX9 expression increased while SOX10 expression decreased and CREB signalling did not change. The expression level of TYRP1 decreased, while DCT elevated, and MITF expression showed changes at the mRNA level and in its subcellular localisation. In contrast, the amount of hyaluronan (HA) and expressions of its synthases, as well as RHAMM, increased, indicating the role of PACAP in secretion of an HA-rich matrix. In parallel with these results, we detected elevated hyaluronidase2 (Hyal2) expression in the presence of PACAP. On the other hand, alfaV and beta3 integrin expressions did not alter significantly. Our results demonstrate that exogenous PACAP modulates the expression of multiple target molecules in melanoma cells. Some of the significantly responding molecules take part in hyaluronan homeostasis, suggesting an effect of PACAP on tumour matrix composition, through which it can modulate invasiveness of melanoma cells. Full article
Show Figures

Figure 1

25 pages, 5018 KB  
Review
Antimicrobial Activity Versus Virulence Potential of Hyaluronic Acid: Balancing Advantages and Disadvantages
by Kamila Korzekwa, Kamil Sobolewski, Miriam Wiciejowska and Daria Augustyniak
Int. J. Mol. Sci. 2025, 26(23), 11549; https://doi.org/10.3390/ijms262311549 - 28 Nov 2025
Cited by 1 | Viewed by 947
Abstract
Hyaluronic acid (HA) is a ubiquitous glycosaminoglycan essential for maintaining tissue hydration, structural integrity, and immunological homeostasis in vertebrates. Although traditionally regarded as a host-derived molecule, HA is also produced by a range of microorganisms, most notably Streptococcus spp., through specialized hyaluronan synthases [...] Read more.
Hyaluronic acid (HA) is a ubiquitous glycosaminoglycan essential for maintaining tissue hydration, structural integrity, and immunological homeostasis in vertebrates. Although traditionally regarded as a host-derived molecule, HA is also produced by a range of microorganisms, most notably Streptococcus spp., through specialized hyaluronan synthases (HAS). Microbial HA and host-derived HA fragments play key roles not only in tissue physiology but also in infection biology, influencing microbial virulence, biofilm formation, and immune evasion. In bacteria, HA-rich capsules promote adhesion, shield pathogens from complement-mediated opsonization and phagocytosis, and facilitate dissemination through host tissues. Conversely, HA-degrading enzymes and reactive oxygen species generate low-molecular-weight HA fragments that amplify inflammation by activating—toll-like receptor 2 (TLR2)/toll-like receptor 4 (TLR4) signaling, contributing to chronic inflammatory states. Furthermore, microbial HA modulates biofilm organization in both bacterial and fungal pathogens, enhancing persistence and antimicrobial tolerance. Clinically, widespread use of HA-based dermal fillers has generated increasing concern over delayed biofilm-associated infections, diagnostic challenges, and complications arising from microbial contamination and host–microbe interactions. Recent advances in HA engineering, including anti-microbial HA conjugates and receptor-targeted biomaterials, offer promising strategies to mitigate infection risk while expanding therapeutic applications. This review synthesizes current knowledge on HA biosynthesis across biological kingdoms, its dualistic role in health and disease, and its emerging relevance at the interface of microbiology, immunology, and biomedical applications. Full article
Show Figures

Figure 1

19 pages, 2010 KB  
Article
Bio-Functional Investigation and AI-Driven Target Interaction Prediction of Chrono Control Penta as a Plant Multifunctional Dermo Cosmetic Peptide
by Carmen Lammi, Raffaele Pugliese, Lorenza d’Adduzio, Umberto Maria Musazzi, Gilda Aiello, Melissa Fanzaga, Maria Silvia Musco and Carlotta Bollati
Cosmetics 2025, 12(6), 267; https://doi.org/10.3390/cosmetics12060267 - 27 Nov 2025
Viewed by 806
Abstract
Skin aging is influenced by both internal and external factors, resulting in wrinkles, decreased elasticity and irregular pigmentation. Hyaluronic acid (HA), a key component of the extracellular matrix, is essential for skin hydration and structural support. Peptides, short amino acid chains, have gained [...] Read more.
Skin aging is influenced by both internal and external factors, resulting in wrinkles, decreased elasticity and irregular pigmentation. Hyaluronic acid (HA), a key component of the extracellular matrix, is essential for skin hydration and structural support. Peptides, short amino acid chains, have gained attention in cosmetics due to their multifunctional biological activities. This study explored the moisturizing and metal-chelating properties of Chrono Control Penta (S-Cannabis Sativa-pentapeptide-1), a novel plant-derived peptide whose sequence is WVSPL. In vitro, it chelated iron ions up to 17.86 ± 2.50% and copper ions up to 47.08 ± 1.49% at 10 mM and 3 mM, respectively. Western blot and Enzyme-Linked Immunosorbent Assay (ELISA) analysis showed that, under H2O2-induced stress, Chrono Control Penta increased hyaluronan synthase 2 (HAS2) production by 81.72% in BJ-5ta fibroblasts and enhanced HA secretion by 20.11% compared to simulated aging conditions alone, respectively. Furthermore, experiments carried out with the Franz diffusion cell and human full thickness skin demonstrated the peptide’s ability to penetrate the skin layers and even diffuse laterally with a quantified peptide skin biodistribution accounting for 0.095/0.06 nM/mg in 6 h. Advanced AI-based modeling (AlphaFold2, RosettaFold) and docking analysis revealed stable peptide-peptide transporter 2 (PEPT2) interactions, supporting carrier-mediated skin permeation and linking computational predictions with experimental diffusion data. Hence, this study extends previous evidence on the cosmetic efficacy of Chrono Control Penta by (i) adding mechanistic insights into metal chelation and HAS2/HA modulation, (ii) rigorously quantifying local skin penetration and lateral diffusion with HPLC-MS/MS, and (iii) providing a plausible mechanistic link between skin biodistribution and PEPT2-mediated transport based on deep learning structural models. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

17 pages, 3462 KB  
Article
β-Nicotinamide Mononucleotide Enhances Skin Barrier Function and Attenuates UV-B-Induced Photoaging in Mice
by Sung Jin Kim, Sullim Lee, Yea Jung Choi, Minseo Kang, Junghwan Lee, Gwi Seo Hwang, Seok-Seon Roh, Mu Hyun Jin, Sangki Park, Minji Park, Ho Song Cho and Ki Sung Kang
Antioxidants 2025, 14(12), 1424; https://doi.org/10.3390/antiox14121424 - 27 Nov 2025
Viewed by 2779
Abstract
Ultraviolet B (UV-B) radiation significantly contributes to skin photoaging, which is characterized by epidermal thickening, collagen degradation, wrinkle formation, barrier dysfunction, and oxidative stress. Nicotinamide mononucleotide (NMN), a key precursor of nicotinamide adenine dinucleotide, regulates cellular energy metabolism and antioxidant defense and demonstrates [...] Read more.
Ultraviolet B (UV-B) radiation significantly contributes to skin photoaging, which is characterized by epidermal thickening, collagen degradation, wrinkle formation, barrier dysfunction, and oxidative stress. Nicotinamide mononucleotide (NMN), a key precursor of nicotinamide adenine dinucleotide, regulates cellular energy metabolism and antioxidant defense and demonstrates anti-aging effects in animal models. Here, we investigated the protective effects of oral NMN supplementation against UV-B-induced photoaging in SKH-1 hairless mice. Over a 10-week experimental period, oral NMN administration significantly alleviated epidermal hypertrophy, reduced wrinkle formation and skin surface roughness, improved hydration and elasticity, and restored transepidermal water loss to near-normal levels. Histological analyses revealed marked preservation of collagen fiber density and attenuation of dermal matrix degradation. Furthermore, NMN supplementation inhibited the phosphorylation of MAPK signaling components (ERK, JNK, and p38), suppressed pro-inflammatory cytokine (TNF-α and IL-6) and matrix-degrading enzyme (MMP-1) expression, and restored hyaluronan synthase (HAS-1 and HAS-2) expression. Additionally, NMN enhanced the systemic antioxidant defense, as indicated by the restored superoxide dismutase activity. Thus, NMN has multi-layered protective effects against UV-B–induced skin aging by modulating oxidative stress, inflammatory signaling, extracellular matrix remodeling, and hyaluronic acid metabolism. Full article
(This article belongs to the Special Issue Antioxidants and Multifunction Photoprotection—2nd Edition)
Show Figures

Figure 1

18 pages, 9796 KB  
Article
Integrative Transcriptomic and Proteomic Analysis Reveals CaMK4-Mediated Regulation of Proliferation in Goat Skeletal Muscle Satellite Cells
by He Cong, Lu Xu, Yaolong Liu, Zixuan Wang, Tao Ren, Pengcheng Ruan, Haoyuan Zhang, Chengli Liu, Yanguo Han, Pengfei Hu, Yan Zeng, Simone Ceccobelli and Guangxin E
Animals 2025, 15(21), 3083; https://doi.org/10.3390/ani15213083 - 24 Oct 2025
Viewed by 729
Abstract
CaMK4, a calcium/calmodulin-dependent protein kinase, is an important mediator of cellular signal transduction, yet its role in the regulation of skeletal muscle satellite cells (MuSCs) in goats has remained unclear. In this study, CaMK4 overexpression and knockdown models were established, and integrated [...] Read more.
CaMK4, a calcium/calmodulin-dependent protein kinase, is an important mediator of cellular signal transduction, yet its role in the regulation of skeletal muscle satellite cells (MuSCs) in goats has remained unclear. In this study, CaMK4 overexpression and knockdown models were established, and integrated transcriptomic and proteomic analyses were performed to systematically elucidate its regulatory network. CaMK4 overexpression altered key pathways associated with cell proliferation and muscle development, including cAMP, PI3K-Akt, and actin cytoskeleton regulation, while proteomic data highlighted calcium signaling and JAK-STAT pathways. Conversely, CaMK4 knockdown enhanced MuSC proliferation by upregulating cell cycle-related genes and proteins. Integrated analyses further identified that Galectin-9 (LGALS9), Collagen triple helix repeat containing-1 (CTHRC1), Hyaluronan Synthase 1 (HAS1), and L-Threonine Dehydrogenase (TDH) may serve as potential key nodes regulating cell cycle, apoptosis, and metabolic control. This suggests a regulatory role for CaMK4. Collectively, these findings provide a mechanistic framework for understanding CaMK4 function in ruminant muscle development and may offer insights for improving goat muscle growth, meat quality traits, and production efficiency. Full article
(This article belongs to the Special Issue Genetics and Breeding for Enhancing Production Traits in Ruminants)
Show Figures

Figure 1

17 pages, 6941 KB  
Article
Cancer-Associated Fibroblasts Move and Interact More with Triple-Negative Breast Cancer Cells and Stimulate Their Proliferation in a Hyaluronan-Dependent Manner
by Sz-Ying Hou, Sarah C. Macfarlane, Ariadna Gómez Torijano, Hyejeong Rosemary Kim, Marieke Rosier, Katalin Dobra, Penelope D. Ottewell and Annica K. B. Gad
Cells 2025, 14(21), 1663; https://doi.org/10.3390/cells14211663 - 23 Oct 2025
Viewed by 1225
Abstract
While normal fibroblasts suppress tumor growth, during cancer initiation and progression, this capacity can be lost and even switched to tumor-promoting, for reasons that are not understood. In this study, we aimed to determine differences between patient-derived cancer-associated fibroblasts and fibroblasts from healthy [...] Read more.
While normal fibroblasts suppress tumor growth, during cancer initiation and progression, this capacity can be lost and even switched to tumor-promoting, for reasons that are not understood. In this study, we aimed to determine differences between patient-derived cancer-associated fibroblasts and fibroblasts from healthy breast tissue to identify if and how these changes stimulate Triple-negative breast cancer (TNBC). Two-dimensional and three-dimensional mono and co-cultures of TNBC cells with fibroblasts from healthy breast or TNBC were analyzed for cell contractility, migration, distribution, proliferation, and hyaluronan production by traction force microscopy, live cell imaging, flow cytometry, Western blot, and ELISA. In 3D spheroid co-culture, CAFs migrated into the tumor mass, mixing with tumor cells, whereas normal fibroblasts remained separate. In 2D, CAFs showed increased cell migration and contractile force, and, in both 2D and 3D co-culture, CAFs increased the proliferation of TNBC cells. CAFs showed increased production of hyaluronan, as compared to normal fibroblasts, and loss of hyaluronan synthase 2 reduced CAF-induced stimulation of TNBC proliferation. These findings suggest that increased production of hyaluronan by TNBC CAFs enhances their capacity to mix with and induce the proliferation of cancer cells, and that the production of hyaluronan by CAFs can be a future therapeutic target against TNBC. Full article
(This article belongs to the Special Issue Cancer-Associated Fibroblasts: Challenges and Directions)
Show Figures

Figure 1

12 pages, 631 KB  
Article
Assessment of Migration of the Urethral Bulking Agent Zhoabex G® from the Urethral Injection Site to the Distant Organs in a Rabbit Model
by Bhagath Kumar Potu, Diaa Rizk, Muna Aljishi, Ameera Sultan, Wael Amin Nasr El-Din, Stefano Salvatore and Safa Taha
Int. J. Mol. Sci. 2025, 26(21), 10286; https://doi.org/10.3390/ijms262110286 - 22 Oct 2025
Viewed by 671
Abstract
Hyaluronic acid (HA)-based urethral bulking agents are promising for the treatment of stress urinary incontinence (SUI), but migration risks to distant organs remain a concern. This study evaluated the migration and cytotoxicity of Zhoabex G®, an HA-based bulking agent, in a [...] Read more.
Hyaluronic acid (HA)-based urethral bulking agents are promising for the treatment of stress urinary incontinence (SUI), but migration risks to distant organs remain a concern. This study evaluated the migration and cytotoxicity of Zhoabex G®, an HA-based bulking agent, in a female rabbit model. Twenty-seven female New Zealand white rabbits were randomized into control (no injection), sham (saline), and experimental (Zhoabex G®) groups (n = 9 each). After 5 months, tissues from the kidney, lung, liver, and spleen were analyzed using quantitative RT-PCR for hyaluronan synthase (HAS1, HAS2, HAS3) and hyaluronidase (HYAL2) gene expression, and ELISA for HA concentrations. No significant differences in gene expression were observed across groups (p ≥ 0.05, range: 0.166–0.997), with experimental fold change values near sham baselines (e.g., kidney HAS2: 0.987 ± 0.071, p = 0.422). Similarly, HA concentrations showed no group differences (p = 0.577; e.g., kidney: 119.2–121.8 ng/mL), reflecting organ-specific basal levels. These findings indicate that Zhoabex G® remains localized at the urethral injection site, with no evidence of migration or cytotoxicity in distant organs. The biodegradable and non-particulate nature of Zhoabex G® further supports its safety for SUI treatment, warranting further clinical investigation. Full article
(This article belongs to the Special Issue Molecular Metabolism in Human Health and Disease)
Show Figures

Figure 1

16 pages, 1932 KB  
Article
Synergistic Effects of Injectable Platelet-Rich Fibrin and Bioactive Peptides on Dermal Fibroblast Viability and Extracellular Matrix Gene Expression: An In Vitro Study
by Ana Giulia Lenci Paccola, Thomas Marcelino Couto dos Santos, Maria Clara Minelo, Thais Francini Garbieri, Mariana Liessa Rovis Sanches, Thiago José Dionísio, Rodrigo Cardoso de Oliveira, Carlos Ferreira Santos and Marília Afonso Rabelo Buzalaf
Molecules 2025, 30(16), 3415; https://doi.org/10.3390/molecules30163415 - 19 Aug 2025
Cited by 1 | Viewed by 2173
Abstract
Facial aging is a multifactorial process involving changes in bone, fat compartments, ligaments, muscles, and skin. Collagen biostimulators, including synthetic agents and autologous platelet concentrates, have gained attention for facial rejuvenation. Injectable platelet-rich fibrin (i-PRF), a second-generation autologous concentrate, has shown promising regenerative [...] Read more.
Facial aging is a multifactorial process involving changes in bone, fat compartments, ligaments, muscles, and skin. Collagen biostimulators, including synthetic agents and autologous platelet concentrates, have gained attention for facial rejuvenation. Injectable platelet-rich fibrin (i-PRF), a second-generation autologous concentrate, has shown promising regenerative properties due to its natural composition and growth factors. Cosmetic peptides, such as palmitoyl pentapeptide-4 (Matrixyl) and Tetrapeptide-21 (GEKG), are also studied for their ability to stimulate collagen synthesis and remodel the extracellular matrix. This in vitro study examined the potential synergistic effects of i-PRF combined with Matrixyl or GEKG on human dermal fibroblast viability, proliferation, and ECM-related gene expression. Fibroblasts were cultured under six conditions: control, i-PRF alone, Matrixyl alone, GEKG alone, i-PRF + Matrixyl, and i-PRF + GEKG. Viability and proliferation were assessed via MTT, crystal violet, and RealTime-Glo™ assays. Gene expression of COL1A1, FN1, and HAS1 was measured using RT-qPCR. The combinations, especially i-PRF + GEKG, led to increased cell viability and upregulated ECM-related genes at 72 h. These effects were stronger than the individual treatments, suggesting synergistic effects, especially with GEKG. These findings highlight the clinical potential of combining autologous platelet concentrates with bioactive peptides for dermal regeneration. Further preclinical and clinical studies are warranted. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

12 pages, 1664 KB  
Article
Dual Effect of 4-Methylumbelliferone on INS1E Cells: Enhancing Migration and Glucose-Stimulated Insulin Secretion
by Giorgia Adamo, Daniele Romancino, Paola Gargano, Marta Sarullo, Aldo Nicosia, Sabrina Picciotto, Giulia Smeraldi, Antonella Bongiovanni and Monica Salamone
Int. J. Mol. Sci. 2025, 26(15), 7637; https://doi.org/10.3390/ijms26157637 - 7 Aug 2025
Viewed by 1283
Abstract
Recent studies have demonstrated that the coumarin derivative 4-Methylumbelliferone (4MU) has an antidiabetic effect in rodent models. 4MU is known to decrease the availability of hyaluronan (HA) substrates and inhibit the activity of different HA synthases. Nevertheless, it has been observed that 4MU [...] Read more.
Recent studies have demonstrated that the coumarin derivative 4-Methylumbelliferone (4MU) has an antidiabetic effect in rodent models. 4MU is known to decrease the availability of hyaluronan (HA) substrates and inhibit the activity of different HA synthases. Nevertheless, it has been observed that 4MU may also affect cellular metabolism. In this study, we utilize the rat insulinoma beta cell line (INS-1E) cultured in both two-dimensional (2D) and three-dimensional (3D) experimental settings (pseudo islets), as an in vitro model to study beta cell functionality. For the first time, we observed that treating INS1E cells with 4MU results in improved insulin secretion. Additionally, we discovered that 4MU treatment elicited morphological changes from multilayer to monolayer conditions, along with a varied distribution of insulin granules and cell adhesion properties. Notably, we found that insulin secretion is not correlated with HA production. The same result was observed in co-culture experiments involving INS-1E cells and stromal vascular fraction (SVF) from adipose tissue. These experiments aim to investigate the effects of 4MU on beta cells in the context of its potential use in early-stage type 1 diabetes and in enhancing islet transplantation outcomes. Full article
(This article belongs to the Special Issue New Insights into Hyaluronan in Human Medicine)
Show Figures

Figure 1

17 pages, 2085 KB  
Article
Multifunctional Dermatological Effects of Whole-Plant Bassia scoparia Extract: Skin Repair and Protection
by Seogyun Jeong, Hye-Been Kim, Dong-Geol Lee, Eunjin Park, Seoyeon Kyung, Seunghyun Kang, Dayeon Roo, Sang Hyun Moh, Sung Joo Jang, Jihyeon Jang, HyungWoo Jo and Sanghun Lee
Curr. Issues Mol. Biol. 2025, 47(8), 617; https://doi.org/10.3390/cimb47080617 - 4 Aug 2025
Viewed by 1344
Abstract
Bassia scoparia (Syn. Kochia scoparia (L.) Schrad.) is a medicinal plant whose fruit, Kochiae Fructus, has been extensively studied for its dermatological applications. This study focused on extracts from the whole plant B. scoparia (WPBS), excluding fruits, to address the research gap [...] Read more.
Bassia scoparia (Syn. Kochia scoparia (L.) Schrad.) is a medicinal plant whose fruit, Kochiae Fructus, has been extensively studied for its dermatological applications. This study focused on extracts from the whole plant B. scoparia (WPBS), excluding fruits, to address the research gap regarding the medicinal properties of non-fruit parts. The diverse skin benefits of WPBS, including its anti-photoaging, moisturizing, wound healing, anti-inflammatory, and anti-angiogenic effects, were investigated. The WPBS extract enhanced the viability of keratinocytes (HaCaT) without inducing cytotoxic effects. WPBS significantly reduced matrix metalloproteinase-1 (MMP-1) levels and increased collagen type I alpha 1 (COL1A1) levels (p < 0.01) in fibroblasts exposed to ultraviolet B (UVB) radiation, indicating strong anti-photoaging effects. WPBS upregulated skin hydration markers such as aquaporin-3 (AQP3) and hyaluronan synthase-3 (HAS3) and effectively accelerated fibroblast wound closure compared to the positive control. Furthermore, WPBS substantially downregulated the expression of inflammatory (COX-2 and IL-1β) and angiogenic markers (VEGF). Transcriptome analysis (RNA-seq) confirmed that WPBS suppressed inflammation-related and UV-induced gene expression pathways. Overall, these findings expand the therapeutic scope of B. scoparia beyond its traditional fruit use and suggest that WPBS is a promising botanical ingredient for various skin applications. Full article
Show Figures

Figure 1

27 pages, 3222 KB  
Review
Mechanisms on How Matricellular Microenvironments Sustain Idiopathic Pulmonary Fibrosis
by Nicole Jones, Babita Rahar, Ksenija Bernau, Jefree J. Schulte, Paul J. Campagnola and Allan R. Brasier
Int. J. Mol. Sci. 2025, 26(11), 5393; https://doi.org/10.3390/ijms26115393 - 4 Jun 2025
Cited by 2 | Viewed by 2610
Abstract
In a susceptible individual, persistent, low-level injury to the airway epithelium initiates an exaggerated wound repair response, ultimately leading to idiopathic pulmonary fibrosis (IPF). The mechanisms driving this fibroproliferative response are not fully understood. Here, we review recent spatially resolved transcriptomics and proteomics [...] Read more.
In a susceptible individual, persistent, low-level injury to the airway epithelium initiates an exaggerated wound repair response, ultimately leading to idiopathic pulmonary fibrosis (IPF). The mechanisms driving this fibroproliferative response are not fully understood. Here, we review recent spatially resolved transcriptomics and proteomics studies that provide insight into two distinct matricellular microenvironments important in this pathological fibroproliferation. First, in response to alveolar epithelial injury, alveolar differentiation intermediate (ADI) basal cells arising from Secretoglobin (Scgb1a1) progenitors re-populate the injured alveolus remodeling the extracellular matrix (ECM). ADI cells exhibit an interconnected cellular stress response involving the unfolded protein response (UPR), epithelial–mesenchymal transition (EMT) and senescence pathways. These pathways reprogram cellular metabolism to support fibrillogenic ECM remodeling. In turn, the remodeled ECM tonically stimulates EMT in the ADI population, perpetuating the transitional cell state. Second, fibroblastic foci (FF) are a distinct microenvironment composed of activated aberrant “basaloid” cells supporting transition of adjacent mesenchyme into hyaluronan synthase (HAShi)-expressing fibroblasts and myofibroblasts. Once formed, FF are the major matrix-producing factories that invade and disrupt the alveolar airspace, forming a mature scar. In both microenvironments, the composition and characteristics of the ECM drive persistence of atypical epithelium sustaining matrix production. New approaches to monitor cellular trans-differentiation and matrix characteristics using positron emission tomography (PET)–magnetic resonance imaging (MRI) and optical imaging are described, which hold the potential to monitor the effects of therapeutic interventions to modify the ECM. Greater understanding of the bidirectional interrelationships between matrix and cellular phenotypes will identify new therapeutics and diagnostics to affect the outcomes of this lethal disease. Full article
Show Figures

Figure 1

10 pages, 2302 KB  
Communication
Genetic Deficiency of Hyaluronan Synthase 2 in the Developing Limb Mesenchyme Impairs Postnatal Synovial Joint Formation
by Yingcui Li, Alexander Tress, Peter Maye, Kemar Edwards, Asiona Findletar, Nathaniel A. Dyment, Yu Yamaguchi, David W. Rowe, Gengyun Le-Chan, Sunny S. K. Chan and Kevin W.-H. Lo
Biomedicines 2025, 13(6), 1324; https://doi.org/10.3390/biomedicines13061324 - 28 May 2025
Cited by 2 | Viewed by 1531 | Correction
Abstract
Hyaluronan, a key component of the extracellular matrix, plays a crucial role in joint development and maintenance. In order to determine the role of hyaluronan function in joint development and homeostasis, conditional loss-of-function experiments of Hyaluronan Synthase 2 (Has2) were carried [...] Read more.
Hyaluronan, a key component of the extracellular matrix, plays a crucial role in joint development and maintenance. In order to determine the role of hyaluronan function in joint development and homeostasis, conditional loss-of-function experiments of Hyaluronan Synthase 2 (Has2) were carried out in mice. Has2 depletion in limb mesenchymal cells led to severely shortened limbs with appendicular joints that are deformed, decreased proteoglycan content as characterized by Safranin-O staining, and severely pitted epiphyseal ends of long bones and deformed joints as viewed by micro-CT reconstructions. The embryonic deletion of Has2 in mesoderm mesenchyme of limbs by Prx1-Cre confirmed its involvement in joint development, while in situ hybridization and hyaluronan staining confirmed Has2 expression and abundant accumulation of hyaluronan in the onset of joint formation, the joint interzone. These findings position Has2 as the main hyaluronan-making enzyme in articular cartilage and highlight its essential function in joint formation and retention of proteoglycans of the extracellular matrix of the cartilage. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

Back to TopTop