Genetic Deficiency of Hyaluronan Synthase 2 in the Developing Limb Mesenchyme Impairs Postnatal Synovial Joint Formation
Abstract
:1. Introduction
2. Material and Methods
2.1. Mice
2.2. Mouse Crosses
2.3. Tissue Processing for Histology and Staining
2.4. In Situ Hybridization
2.5. Histochemical Staining
2.6. Microcomputed Tomography
3. Results
3.1. Genetic Loss of Has2 in the Limb Bud Mesenchyme Causes Joint Defects
3.2. Has2 Is Essential for Proper Bone Formation at Synovial Joints
3.3. Has2 and Hyaluronan Are Localized at the Joint Interzone
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chijimatsu, R.; Saito, T. Mechanisms of synovial joint and articular cartilage development. Cell. Mol. Life Sci. 2019, 76, 3939–3952. [Google Scholar] [CrossRef] [PubMed]
- Breeland, G.; Sinkler, M.A.; Menezes, R.G. Embryology, Bone Ossification. [Updated 2023 May 1]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK539718/ (accessed on 25 May 2025).
- Pacifici, M.; Koyama, E.; Shibukawa, Y.; Wu, C.; Tamamura, Y.; Enomoto-Iwamoto, M.; Iwamoto, M. Cellular and molecular mechanisms of synovial joint and articular cartilage formation. Ann. N. Y. Acad. Sci. 2006, 1068, 74–86. [Google Scholar] [CrossRef]
- Roelofs, A.J.; Zupan, J.; Riemen, A.H.; Kania, K.; Ansboro, S.; White, N.; Clark, S.M.; De Bari, C. Joint morphogenetic cells in the adult mammalian synovium. Nat. Commun. 2017, 8, 15040. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Koyama, E.; Saunders, C.M.; Querido, W.; Pleshko, N.; Pacifici, M. Synovial joint cavitation initiates with microcavities in interzone and is coupled to skeletal flexion and elongation in developing mouse embryo limbs. Biol. Open 2022, 11, bio059381. [Google Scholar] [CrossRef]
- Decker, R.S.; Koyama, E.; Pacifici, M. Articular cartilage: Structural and developmental intricacies and questions. Curr. Osteoporos. Rep. 2015, 13, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Asari, A.; Miyauchi, S.; Miyazaki, K.; Hamai, A.; Horie, K.; Takahashi, T.; Sekiguchi, T.; Machida, A.; Kohno, K.; Uchiyama, Y. Intra-and extracellular localization of hyaluronic acid and proteoglycan constituents (chondroitin sulfate, keratan sulfate, and protein core) in articular cartilage of rabbit tibia. J. Histochem. Cytochem. 1992, 40, 1693–1704. [Google Scholar] [CrossRef]
- Li, Y.; Toole, B.P.; Dealy, C.N.; Kosher, R.A. Hyaluronan in limb morphogenesis. Dev. Biol. 2007, 305, 411–420. [Google Scholar] [CrossRef]
- Ma, S.K.Y.; Chan, A.S.F.; Rubab, A.; Chan, W.C.W.; Chan, D. Extracellular matrix and cellular plasticity in musculoskeletal development. Front. Cell Dev. Biol. 2020, 8, 781. [Google Scholar] [CrossRef]
- Bonnevie, E.D.; Galesso, D.; Secchieri, C.; Cohen, I.; Bonassar, L.J. Elastoviscous transitions of articular cartilage reveal a mechanism of synergy between lubricin and hyaluronic acid. PLoS ONE 2015, 10, e0143415. [Google Scholar] [CrossRef]
- Nečas, D.; Vrbka, M.; Galandáková, A.; Křupka, I.; Hartl, M. On the observation of lubrication mechanisms within hip joint replacements. Part I: Hard-on-soft bearing pairs. J. Mech. Behav. Biomed. Mater. 2019, 89, 237–248. [Google Scholar] [CrossRef]
- Rebenda, D.; Vrbka, M.; Čípek, P.; Toropitsyn, E.; Nečas, D.; Pravda, M.; Hartl, M. On the dependence of rheology of hyaluronic acid solutions and frictional behavior of articular cartilage. Materials 2020, 13, 2659. [Google Scholar] [CrossRef] [PubMed]
- Dahl, L.; Dahl, I.; Engström-Laurent, A.; Granath, K. Concentration and molecular weight of sodium hyaluronate in synovial fluid from patients with rheumatoid arthritis and other arthropathies. Ann. Rheum. Dis. 1985, 44, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Buckwalter, J.A.; Mankin, H.J.; Grodzinsky, A.J. Articular cartilage and osteoarthritis. Instr. Course Lect.-Am. Acad. Orthop. Surg. 2005, 54, 465. [Google Scholar]
- Kosinska, M.K.; Ludwig, T.E.; Liebisch, G.; Zhang, R.; Siebert, H.-C.; Wilhelm, J.; Kaesser, U.; Dettmeyer, R.B.; Klein, H.; Ishaque, B. Articular joint lubricants during osteoarthritis and rheumatoid arthritis display altered levels and molecular species. PLoS ONE 2015, 10, e0125192. [Google Scholar] [CrossRef]
- Matsumoto, K.; Li, Y.; Jakuba, C.; Sugiyama, Y.; Sayo, T.; Okuno, M.; Dealy, C.N.; Toole, B.P.; Takeda, J.; Yamaguchi, Y.; et al. Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb. Development 2009, 136, 2825–2835. [Google Scholar] [CrossRef]
- Mack, J.A.; Feldman, R.J.; Itano, N.; Kimata, K.; Lauer, M.; Hascall, V.C.; Maytin, E.V. Enhanced inflammation and accelerated wound closure following tetraphorbol ester application or full-thickness wounding in mice lacking hyaluronan synthases Has1 and Has3. J. Investig. Dermatol. 2012, 132, 198–207. [Google Scholar] [CrossRef]
- Chan, D.D.; Xiao, W.; Li, J.; de la Motte, C.A.; Sandy, J.D.; Plaas, A. Deficiency of hyaluronan synthase 1 (Has1) results in chronic joint inflammation and widespread intra-articular fibrosis in a murine model of knee joint cartilage damage. Osteoarthr. Cartil. 2015, 23, 1879–1889. [Google Scholar] [CrossRef]
- Spicer, A.P.; McDonald, J.A. Characterization and molecular evolution of a vertebrate hyaluronan synthase gene family. J. Biol. Chem. 1998, 273, 1923–1932. [Google Scholar] [CrossRef] [PubMed]
- Knudson, W.; Ishizuka, S.; Terabe, K.; Askew, E.B.; Knudson, C.B. The pericellular hyaluronan of articular chondrocytes. Matrix Biol. 2019, 78, 32–46. [Google Scholar] [CrossRef]
- Roughley, P.J.; Lamplugh, L.; Lee, E.R.; Matsumoto, K.; Yamaguchi, Y. The role of hyaluronan produced by Has2 gene expression in development of the spine. Spine 2011, 36, E914–E920. [Google Scholar] [CrossRef]
- Logan, M.; Martin, J.F.; Nagy, A.; Lobe, C.; Olson, E.N.; Tabin, C.J. Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 2002, 33, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.F.; Olson, E.N. Identification of a prx1 limb enhancer. Genesis 2000, 26, 225–229. [Google Scholar] [CrossRef]
- Martin, J.F.; Bradley, A.; Olson, E.N. The paired-like homeo box gene MHox is required for early events of skeletogenesis in multiple lineages. Genes Dev. 1995, 9, 1237–1249. [Google Scholar] [CrossRef] [PubMed]
- Saalbach, A.; Stein, M.; Lee, S.; Krügel, U.; Haffner-Luntzer, M.; Krohn, K.; Franz, S.; Simon, J.; Tuckermann, J.; Anderegg, U. Bone quality relies on hyaluronan synthesis–Insights from mice with complete knockout of hyaluronan synthase expression. Matrix Biol. Plus 2024, 24, 100163. [Google Scholar] [CrossRef]
- Weigel, P.H.; DeAngelis, P.L. Hyaluronan synthases: A decade-plus of novel glycosyltransferases. J. Biol. Chem. 2007, 282, 36777–36781. [Google Scholar] [CrossRef]
- McLeod, M.J. Differential staining of cartilage and bone in whole mouse fetuses by alcian blue and alizarin red S. Teratology 1980, 22, 299–301. [Google Scholar] [CrossRef]
- Meo Burt, P.; Xiao, L.; Dealy, C.; Fisher, M.C.; Hurley, M.M. FGF2 high molecular weight isoforms contribute to osteoarthropathy in male mice. Endocrinology 2016, 157, 4602–4614. [Google Scholar] [CrossRef]
- Koyama, E.; Shibukawa, Y.; Nagayama, M.; Sugito, H.; Young, B.; Yuasa, T.; Okabe, T.; Ochiai, T.; Kamiya, N.; Rountree, R.B. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev. Biol. 2008, 316, 62–73. [Google Scholar] [CrossRef]
- Garantziotis, S.; Savani, R.C. Hyaluronan biology: A complex balancing act of structure, function, location and context. Matrix Biol. 2019, 78, 1–10. [Google Scholar] [CrossRef]
- Dicker, K.T.; Gurski, L.A.; Pradhan-Bhatt, S.; Witt, R.L.; Farach-Carson, M.C.; Jia, X. Hyaluronan: A simple polysaccharide with diverse biological functions. Acta Biomater. 2014, 10, 1558–1570. [Google Scholar] [CrossRef]
- Xu, Q.; Torres, J.E.; Hakim, M.; Babiak, P.M.; Pal, P.; Battistoni, C.M.; Nguyen, M.; Panitch, A.; Solorio, L.; Liu, J.C. Collagen-and hyaluronic acid-based hydrogels and their biomedical applications. Mater. Sci. Eng. R Rep. 2021, 146, 100641. [Google Scholar] [CrossRef] [PubMed]
- Fink, S.P.; Triggs-Raine, B. Genetic deficiencies of hyaluronan degradation. Cells 2024, 13, 1203. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, Y.; Nishida, Y.; Kozawa, E.; Zhuo, L.; Arai, E.; Hamada, S.; Morita, D.; Ikuta, K.; Kimata, K.; Ushida, T. Conditional knockdown of hyaluronidase 2 in articular cartilage stimulates osteoarthritic progression in a mice model. Sci. Rep. 2017, 7, 7028. [Google Scholar] [CrossRef]
- Little, C.B.; Barai, A.; Burkhardt, D.; Smith, S.; Fosang, A.; Werb, Z.; Shah, M.; Thompson, E. Matrix metalloproteinase 13–deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2009, 60, 3723–3733. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Tress, A.; Maye, P.; Edwards, K.; Findletar, A.; Dyment, N.A.; Yamaguchi, Y.; Rowe, D.W.; Le-Chan, G.; Chan, S.S.K.; et al. Genetic Deficiency of Hyaluronan Synthase 2 in the Developing Limb Mesenchyme Impairs Postnatal Synovial Joint Formation. Biomedicines 2025, 13, 1324. https://doi.org/10.3390/biomedicines13061324
Li Y, Tress A, Maye P, Edwards K, Findletar A, Dyment NA, Yamaguchi Y, Rowe DW, Le-Chan G, Chan SSK, et al. Genetic Deficiency of Hyaluronan Synthase 2 in the Developing Limb Mesenchyme Impairs Postnatal Synovial Joint Formation. Biomedicines. 2025; 13(6):1324. https://doi.org/10.3390/biomedicines13061324
Chicago/Turabian StyleLi, Yingcui, Alexander Tress, Peter Maye, Kemar Edwards, Asiona Findletar, Nathaniel A. Dyment, Yu Yamaguchi, David W. Rowe, Gengyun Le-Chan, Sunny S. K. Chan, and et al. 2025. "Genetic Deficiency of Hyaluronan Synthase 2 in the Developing Limb Mesenchyme Impairs Postnatal Synovial Joint Formation" Biomedicines 13, no. 6: 1324. https://doi.org/10.3390/biomedicines13061324
APA StyleLi, Y., Tress, A., Maye, P., Edwards, K., Findletar, A., Dyment, N. A., Yamaguchi, Y., Rowe, D. W., Le-Chan, G., Chan, S. S. K., & Lo, K. W.-H. (2025). Genetic Deficiency of Hyaluronan Synthase 2 in the Developing Limb Mesenchyme Impairs Postnatal Synovial Joint Formation. Biomedicines, 13(6), 1324. https://doi.org/10.3390/biomedicines13061324