Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = humidity-induced mechanical damage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5613 KB  
Article
Visual and Non-Destructive Testing of ASR Affected Piers from Montreal’s Champlain Bridge
by Leah Kristufek, Leandro F. M. Sanchez, Beatriz Martín-Pérez and Martin Noël
Buildings 2025, 15(18), 3262; https://doi.org/10.3390/buildings15183262 - 10 Sep 2025
Viewed by 605
Abstract
Condition assessment of reinforced concrete structures presents a significant challenge worldwide as structures built in the post-war construction period (1950s–1970s) reach end of service life. The alkali-silica reaction (ASR) is one of several damage mechanisms which commonly affect infrastructure in Canada. Frequent freeze-thaw [...] Read more.
Condition assessment of reinforced concrete structures presents a significant challenge worldwide as structures built in the post-war construction period (1950s–1970s) reach end of service life. The alkali-silica reaction (ASR) is one of several damage mechanisms which commonly affect infrastructure in Canada. Frequent freeze-thaw cycles and heavy use of de-icing salts in winter as well as high heat and humidity in summer are expected to have intensified ASR-induced damage. This work investigates five segments of a pier cap—PC, which had undergone encapsulation repair, and four segments of a pier shaft—PS, which represented dry and semi-submerged conditions, removed from a highway bridge constructed starting in 1957. Preliminary evaluation through visual inspection (conventional, qualitative and quantitative using the cracking index—CI) and non-destructive techniques (rebound hammer—RBH, ultrasonic pulse velocity—UPV and surface resistivity) was conducted on both internal (i.e., cut during decommissioning) and external (i.e., exposed while in service) surfaces of five PC segments and four PS segments. Differences in geometry, exposure conditions and repair history from the two members were found to have limited impact on the results of quantitative tests (i.e., CI, RBH and UPV results with average values of 1.6 mm/m, 37 MPa and 2.4 Km/s, respectively) while still exhibiting qualitative differences in visual determination (i.e., crack patterns, surface appearance and crack widths). Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

35 pages, 3170 KB  
Review
Effects of Moisture Absorption on the Mechanical and Fatigue Properties of Natural Fiber Composites: A Review
by Ana Pavlovic, Lorenzo Valzania and Giangiacomo Minak
Polymers 2025, 17(14), 1996; https://doi.org/10.3390/polym17141996 - 21 Jul 2025
Cited by 3 | Viewed by 957
Abstract
This review critically examines the effects of moisture absorption on the mechanical and fatigue properties of natural fiber composites (NFCs), with a focus on tensile strength, elastic modulus, and long-term durability. Moisture uptake can cause reductions in tensile strength of up to 40% [...] Read more.
This review critically examines the effects of moisture absorption on the mechanical and fatigue properties of natural fiber composites (NFCs), with a focus on tensile strength, elastic modulus, and long-term durability. Moisture uptake can cause reductions in tensile strength of up to 40% and in elastic modulus by 20–30% depending on fiber type, mass fraction (typically in the range of 30–60%), and surface treatments. The review highlights Ithat while surface modifications (e.g., alkaline and silane treatments) significantly mitigate moisture-induced degradation, their effectiveness is highly sensitive to the processing conditions. Additionally, hybridization strategies and optimized fiber orientations show promise in enhancing fatigue resistance under humid environments. Despite substantial progress, major challenges remain, including the lack of standardized testing protocols and the limited understanding of multiscale aging mechanisms. Future research directions include developing predictive models that couple moisture diffusion and mechanical deterioration, implementing advanced in situ monitoring of damage evolution, and exploring novel bio-based treatments. By addressing these gaps, NFCs can become more reliable and widely adopted as sustainable alternatives in structural applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

25 pages, 6918 KB  
Review
A Review of Material-Related Mechanical Failures and Load Monitoring-Based Structural Health Monitoring (SHM) Technologies in Aircraft Landing Gear
by Kailun Deng, Agusmian Partogi Ompusunggu, Yigeng Xu, Martin Skote and Yifan Zhao
Aerospace 2025, 12(3), 266; https://doi.org/10.3390/aerospace12030266 - 20 Mar 2025
Cited by 8 | Viewed by 2921
Abstract
The aircraft landing gear system is vital in ensuring the aircraft’s functional completeness and operational safety. The mechanical structures of the landing gear must withstand significant operational forces, including repeated high-intensity impact loads, throughout their service life. At the same time, they must [...] Read more.
The aircraft landing gear system is vital in ensuring the aircraft’s functional completeness and operational safety. The mechanical structures of the landing gear must withstand significant operational forces, including repeated high-intensity impact loads, throughout their service life. At the same time, they must resist environmental degradation, such as corrosion, temperature fluctuations, and humidity, to ensure structural integrity and long-term reliability. Under this premise, investigating material-related mechanical failures in the landing gear is of great significance for preventing landing gear failures and ensuring aviation safety. Compared to failure investigations, structural health monitoring (SHM) plays a more active role in failure prevention for aircraft landing gears. SHM technologies identify the precursors of potential failures and continuously monitor the operational or health conditions of landing gear structures, which facilitates condition-based maintenance. This paper reviews various landing gear material-related failure investigations. The review suggests a significant portion of these failures can be attributed to material fatigue, which is either induced by abnormal high-stress concentration or corrosion. This paper also reviews a series of load monitoring-based landing gear SHM studies. It is revealed that weight and balance measurement, hard landing detection, and structure load monitoring are the most typical monitoring activities in landing gears. An analytical discussion is also presented on the correlation between reviewed landing gear failures and SHM activities, a comparison of sensors, and the potential shift in load-based landing gear SHM in response to the transition of landing gear design philosophy from safe life to damage tolerance. Full article
(This article belongs to the Special Issue Advances in Landing Systems Engineering)
Show Figures

Figure 1

13 pages, 2712 KB  
Article
Polyphenol–Inorganic Sulfate Complex-Enriched Straightening Shampoo for Reinforcing and Restoring Reduced Hair Integrity
by Tae Min Kim, Heung Jin Bae and Sung Young Park
Biomimetics 2025, 10(3), 132; https://doi.org/10.3390/biomimetics10030132 - 22 Feb 2025
Viewed by 1641
Abstract
Conventional hair-straightening methods that use chemical treatments to break disulfide bonds cause severe damage to the hair shaft, leading to weakened hair that is prone to reverting to its curly form in high humidity. Therefore, a unique haircare coating technology is required to [...] Read more.
Conventional hair-straightening methods that use chemical treatments to break disulfide bonds cause severe damage to the hair shaft, leading to weakened hair that is prone to reverting to its curly form in high humidity. Therefore, a unique haircare coating technology is required to protect hair integrity and provide a long-lasting straightening effect. Herein, we designed a hair-straightening technology by integrating a nature-inspired polyphenol–inorganic sulfate (PIS) redox agent into formulated shampoo, which achieves a desirable straightening effect through sulfate-induced disulfide breakage while preserving hair integrity through a polyphenol-reinforced structure. The interaction between polyphenols and residual thiols from the straightening process maintained a long-lasting straight hair structure and hair strength. Ellman’s assay showed a lower free thiol content from reductant-induced damaged keratin in PIS shampoo-treated hair than in sulfate-treated hair as the polyphenol–thiol bond was formed through the Michael addition reaction, thereby restoring the natural structure of the hair and enhancing its mechanical properties. Owing to the polyphenol coating, PIS shampoo-treated hair exhibited an antistatic effect and high hydrophobicity, indicating healthy hair. Furthermore, the polyphenol coating effectively scavenged radical oxygen species (ROS) in the hair, thereby improving damage protection. Thus, PIS shampoo offers an alternative approach for effective hair straightening. Full article
(This article belongs to the Special Issue Biomimicry and Functional Materials: 4th Edition)
Show Figures

Figure 1

17 pages, 9299 KB  
Article
Preharvest Gibberellic Acid Treatment Increases Both Modulus of Elasticity and Resistance in Sweet Cherry Fruit (cv. ‘Bing’ and ‘Lapins’) at Harvest and Postharvest During Storage at 0 °C
by Alberto Carrión-Antolí, Juan Pablo Zoffoli, María Serrano, Daniel Valero and Paulina Naranjo
Agronomy 2024, 14(11), 2738; https://doi.org/10.3390/agronomy14112738 - 20 Nov 2024
Cited by 1 | Viewed by 1913
Abstract
Fruit firmness in sweet cherries (Prunus avium L.) is a critical quality parameter highly valued by consumers as it is associated with fruit freshness. In general, firm fruit also cope better with storage and handling. Gibberellic acid (GA) is commonly used by [...] Read more.
Fruit firmness in sweet cherries (Prunus avium L.) is a critical quality parameter highly valued by consumers as it is associated with fruit freshness. In general, firm fruit also cope better with storage and handling. Gibberellic acid (GA) is commonly used by sweet cherry producers to increase firmness, soluble solids content and fruit size. This study evaluated the effects of GA on the rheological properties of sweet cherry fruit at harvest and postharvest storage. Specifically, GA’s influence on susceptibility to mechanical damage during handling was evaluated. The following GA treatments were applied to two sweet cherry cultivars ‘Bing’ and ‘Lapins’: T0, control, T30—GA at 15 ppm applied at pit-hardening and straw-colour stages; T45—GA at 25 ppm at pit-hardening and GA at 20 ppm at straw-colour; and T60—GA at 30 ppm applied at pit-hardening and straw-colour. The results indicate that GA delayed harvest by two to four days in both cultivars, with ‘Lapins’ also showing a significant increase in fruit size. Regardless of spray concentration, GA increased the modulus of elasticity and fruit resistance evaluated as stress at the maximum point at harvest. These effects persisted after 35 days of storage at 0 °C and an additional three days of shelf-life at 15 °C. While the strain or deformation capacity of the fruit at bioyield at harvest was constant across treatments, it was, however, lower in the GA-treated fruit than in the controls during storage at 0 °C under the high-humidity conditions of modified atmosphere packaging. The less mature fruit harvested at colour 3.0 (red/mahogany) were stiffer (reduced deformation) and more sensitive to induced mechanical injury than the fruit harvested later at colour 3.5 (mahogany). The GA treatments increased fruit resistance to damage without increasing tissue deformability. Other questions associated with stiffer tissues and lower deformability during storage at 0 °C under high humidity should be further studied, specifically cultivars that are naturally high in box-cracking sensitivity during storage. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

21 pages, 5648 KB  
Article
Photosynthesis and Latex Burst Characteristics in Different Varieties of Rubber Trees (Hevea brasiliensis) under Chilling Stress, Combing Bark Tensile Property and Chemical Component Analysis
by Linlin Cheng, Huichuan Jiang, Guishui Xie, Jikun Wang, Wentao Peng, Lijun Zhou and Feng An
Forests 2024, 15(8), 1408; https://doi.org/10.3390/f15081408 - 11 Aug 2024
Cited by 3 | Viewed by 2971
Abstract
Rubber trees (Hevea brasiliensis) serve as the primary source of natural rubber. Their native habitat is characterized by warm and humid conditions, so they are particularly sensitive to low temperatures. Under such stress, latex burst can cause severe damage to rubber [...] Read more.
Rubber trees (Hevea brasiliensis) serve as the primary source of natural rubber. Their native habitat is characterized by warm and humid conditions, so they are particularly sensitive to low temperatures. Under such stress, latex burst can cause severe damage to rubber trees, which is due to the uniqueness of their economically productive parts. In order to establish a correlation between young and mature rubber trees and provide a novel prospective for investigating the mechanisms of latex burst and chilling resistance in rubber trees, the chlorophyll contents, photosynthesis, and chlorophyll fluorescence parameters in four varieties of one-year-old rubber tree seedlings were analyzed under artificially simulated chilling stress. The latex burst characteristics were subsequently recorded. A comprehensive statistical analysis of the chilling-resistance rank was conducted using the membership function method and the combination weighting method. Meanwhile, chemical compositions and tensile properties of barks from two-year-old twigs of mature rubber trees were ascertained. A correlation analysis between chilling resistance, chemical compositions, and tensile properties was performed to identify any interrelationships among them. The results showed that the number and the total area of latex-burst positions in variety Reken628 seedlings were greater than those in other varieties, and the lowest number and total area of latex-burst positions were observed in variety RRIM600 and variety PR107, respectively. With the exception of variety GT1, nectar secretion was noted in all other varieties of rubber tree seedlings under chilling stress. The chilling resistance of the four varieties decreased in the following order: variety GT1 > variety RRIM600 > variety PR107 > variety Reken628. The chilling resistance was strongly (p < 0.001) negatively correlated with cellulose content and acid-insoluble lignin content, respectively. The total area of latex burst was significantly (p < 0.001) and positively correlated with holocellulose content and maximum load, respectively. Furthermore, this study also provides new insights into the mechanism of nectar secretion induced by low temperatures and its association with the chilling resistance of rubber trees. Full article
Show Figures

Figure 1

20 pages, 9400 KB  
Article
Study on the Mechanism Effect of Bending Loads on the Decay-like Degradation of Composite Insulator GFRP Core Rod
by Xiaoyu Yi, Likun Ding, Hongliang Liu, Jiaxin Zhang, Jie Liu, Zhaohui Li, Yuming Zhang, Ping Wang and Jianghai Geng
Energies 2024, 17(2), 423; https://doi.org/10.3390/en17020423 - 15 Jan 2024
Cited by 4 | Viewed by 1641
Abstract
This paper investigates the deterioration of, and the abnormal temperature rise in, the GFRP core rod material of compact V-string composite insulators subjected to prolonged alternating flexural loading under wind-induced stresses. The axial stress on the GFRP (Glass Fiber Reinforced Plastic) core rod, [...] Read more.
This paper investigates the deterioration of, and the abnormal temperature rise in, the GFRP core rod material of compact V-string composite insulators subjected to prolonged alternating flexural loading under wind-induced stresses. The axial stress on the GFRP (Glass Fiber Reinforced Plastic) core rod, resulting from transverse wind loads, is a focal point of examination. By establishing a stress model and damage model, the paper simulates and computes the evolution of damage in the outer arc material of composite insulator core rods subjected to alternating flexural loads. Additionally, a multi-factor coupled aging platform is set up, integrating humidity, heat, and mechanical stress, to simulate the crazing deterioration process of composite insulators under alternating flexural loads. Experimental results reveal that during 400,000 alternating load cycles, the core rod underwent stages of surface damage, damage increasing, fatigue embrittlement, matrix hydrolysis, and fiber fracture. Simultaneously, the silicone rubber sheath on the outer side of the composite insulator’s bending arc develops cracks over aging time, creating pathways for moisture ingress into the interface and core rod. The dielectric constant and dielectric loss factor of the aging region of the core rod increase to varying degrees compared to the non-aging part. Moreover, the degree of abnormal heating of the samples intensifies with the duration of aging experiments. These findings underscore the significance of understanding the aging and decay-like fracture process of compact line V-string composite insulators. They provide crucial insights for future research aimed at enhancing the material properties of composite insulator core rods. Full article
Show Figures

Figure 1

18 pages, 2008 KB  
Review
Alkali–Silica Reactions: Literature Review on the Influence of Moisture and Temperature and the Knowledge Gap
by Olusola D. Olajide, Michelle R. Nokken and Leandro F. M. Sanchez
Materials 2024, 17(1), 10; https://doi.org/10.3390/ma17010010 - 19 Dec 2023
Cited by 14 | Viewed by 3155
Abstract
The alkali–silica reaction is a universally known destructive mechanism in concrete that can lead to the premature loss of serviceability in affected structures. Quite an enormous number of research studies have been carried out focusing on the mechanisms involved as well as the [...] Read more.
The alkali–silica reaction is a universally known destructive mechanism in concrete that can lead to the premature loss of serviceability in affected structures. Quite an enormous number of research studies have been carried out focusing on the mechanisms involved as well as the mitigation and prevention of the reaction. A few in-depth discussions on the role of moisture and temperature exist in the literature. Nevertheless, moisture and temperature have been confirmed to play a vital role in the reaction. However, critical assessments of their influence on ASR-induced damage are limited. The available moisture in concrete needed to initiate and sustain the reaction has been predominantly quantified with the relative humidity as a result of difficulties in the use of other media, like the degree of capillary saturation, which is more scientific. This paper discussed the current state of understanding of moisture measurement in concrete, the role of moisture and temperature in the kinetics of the reaction, as well as the moisture threshold needed for the reaction. Furthermore, the influence of these exposure conditions on the internal damage caused by ASR-induced deterioration was discussed. Full article
Show Figures

Figure 1

17 pages, 8909 KB  
Review
Implementation of Soil and Water Conservation in Indonesia and Its Impacts on Biodiversity, Hydrology, Soil Erosion and Microclimate
by I Wayan Susi Dharmawan, Pratiwi, Chairil Anwar Siregar, Budi Hadi Narendra, Ni Kadek Erosi Undaharta, Bina Swasta Sitepu, Asep Sukmana, Michael Daru Enggar Wiratmoko, Ilham Kurnia Abywijaya and Nilam Sari
Appl. Sci. 2023, 13(13), 7648; https://doi.org/10.3390/app13137648 - 28 Jun 2023
Cited by 23 | Viewed by 7739
Abstract
Soil and water are natural resources that support the life of various creatures on Earth, including humans. The main problem, so far, is that both resources can be easily damaged or degraded by human-induced drivers. The threat of damage or degradation is increasing [...] Read more.
Soil and water are natural resources that support the life of various creatures on Earth, including humans. The main problem, so far, is that both resources can be easily damaged or degraded by human-induced drivers. The threat of damage or degradation is increasing due to rapid human population growth and humans’ insatiable daily necessities. Indonesia has had various experiences in soil and water conservation (SWC) programmes for a long time, which can be a good lesson learned for future strategy development. This article aims to provide an overview of the benefits of implementing SWC in Indonesia for biodiversity, hydrology, soil erosion, and microclimate to support sustainable ecological landscape management. Various vegetative and mechanical techniques that have been known and implemented can be utilized to improve future SWC strategies. It is expected that proper strategy development in the future for SWC in Indonesia will support the sustainability of ecological landscape management. Forthcoming SWC programmes are also expected to incorporate local knowledge into their implementation. The programmes also require coordination between stakeholders, i.e., local communities, management authorities, policymakers, and scientists, and seamless integration between varying fields and levels of governance. The main findings of this study are that SWC increased the adaptation of native plants to local rainfall and soil conditions; SWC increased infiltration and improved soil hydrological characteristics; and SWC, through vegetation techniques, played a role in lowering temperatures, increasing humidity, and reducing intensity levels. Full article
(This article belongs to the Special Issue Pathways for Water Conservation)
Show Figures

Figure 1

33 pages, 11879 KB  
Review
Heat and Moisture Induced Stress and Strain in Wooden Artefacts and Elements in Heritage Buildings: A Review
by Giulia Grottesi, Guilherme B. A. Coelho and Dimitrios Kraniotis
Appl. Sci. 2023, 13(12), 7251; https://doi.org/10.3390/app13127251 - 17 Jun 2023
Cited by 10 | Viewed by 5132
Abstract
In the world of cultural heritage, a wide range of artefacts and buildings are made of wood and, therefore, are subjected to moisture-induced stress and strain cycles, owing to environmental fluctuations. Simultaneous action of moisture and mechanical loads lead to a mechanosorptive effect [...] Read more.
In the world of cultural heritage, a wide range of artefacts and buildings are made of wood and, therefore, are subjected to moisture-induced stress and strain cycles, owing to environmental fluctuations. Simultaneous action of moisture and mechanical loads lead to a mechanosorptive effect on wood. Therefore, an increase in time-dependent creep, due to mechanical loads, is observed. The assessment of these complex phenomena entails the use of advance and interdisciplinary approaches. Consequently, this article reviews experimental and mathematical methods to study these degradation mechanisms in wooden artefacts and timber elements in heritage buildings. The paper presents the results of a six-step descriptive literature review, providing an overall picture of the ongoing research. Experimental techniques need to be improved so that they are in line with the conservation principles. The combination of experiments and simulations is a reliable predictive approach for better assessing the potential risk damages due to temperature, humidity cycles, and mechanical loads in complex structures. Thus, advanced numerical simulations and mathematical modelling include climate data and experimental measurements. This work also provides an overview of research performed on different categories of cultural heritage characterised by multi-layer structures. The mechanical response to wood–moisture relation is affected by the level of complexity of these structures. Finally, the use of realistic models is limited by knowledge about the material properties and the behaviour of complex structures over time. In addition, research gaps, limitations, and possible future research directions are also provided. This review may represent a starting point for future research on the thermo-hygro-mechanical behaviour of wood heritage. Full article
(This article belongs to the Special Issue Hygrothermal Behaviour of Cultural Heritage and Climate Changes)
Show Figures

Figure 1

24 pages, 7111 KB  
Article
Painted Wood Climate Risk Analysis by the HERIe Model of Building Protection and Conservation Heating Scenarios in Norwegian Medieval Stone Churches
by Terje Grøntoft and Lena P. Stoveland
Heritage 2023, 6(3), 3089-3112; https://doi.org/10.3390/heritage6030165 - 15 Mar 2023
Cited by 5 | Viewed by 2071
Abstract
HERIe was used to model the effect of changes to indoor climate on the risk of humidity-induced mechanical damage (cracking and plastic deformation) to wooden panels painted with stiff gesso in two Norwegian medieval stone churches: Kinn (mean relative humidity (RH, %) = [...] Read more.
HERIe was used to model the effect of changes to indoor climate on the risk of humidity-induced mechanical damage (cracking and plastic deformation) to wooden panels painted with stiff gesso in two Norwegian medieval stone churches: Kinn (mean relative humidity (RH, %) = 79%) on the humid west coast, and Ringsaker (mean RH = 49%) in the drier eastern part of the country. The risk involved in moving cultural heritage objects (paint on wood) between the churches and a conservation studio with more “ideal”, stable conditions was also modeled. A hypothetical reduction in RH to ~65% and, proportionally, of the climate fluctuations in Kinn, and an increase in the RH in Ringsaker to a more stable value of ~63% via conservation heating, were found to improve (Kinn) and uphold (Ringsaker) the conformity to relevant standards and significantly reduce the risk of damage, except in the scenario of moving objects from Ringsaker to a conservation studio, when the risk would increase. The use of conservation heating could save ~50% of the heating cost. The estimated risk reductions may be less relevant for objects kept in situ, where cracks in the original paint and gesso have developed historically. They may be more relevant when moving original objects away from their proofed climate into a conservation studio for treatment. Full article
(This article belongs to the Special Issue Effective Models in Heritage Science)
Show Figures

Figure 1

19 pages, 1011 KB  
Review
Mechanisms and Applications of Bacterial Inoculants in Plant Drought Stress Tolerance
by Priscila Pires Bittencourt, Alice Ferreira Alves, Mariana Barduco Ferreira, Luiz Eduardo Souza da Silva Irineu, Vitor Batista Pinto and Fabio Lopes Olivares
Microorganisms 2023, 11(2), 502; https://doi.org/10.3390/microorganisms11020502 - 17 Feb 2023
Cited by 51 | Viewed by 7270
Abstract
Agricultural systems are highly affected by climatic factors such as temperature, rain, humidity, wind, and solar radiation, so the climate and its changes are major risk factors for agricultural activities. A small portion of the agricultural areas of Brazil is irrigated, while the [...] Read more.
Agricultural systems are highly affected by climatic factors such as temperature, rain, humidity, wind, and solar radiation, so the climate and its changes are major risk factors for agricultural activities. A small portion of the agricultural areas of Brazil is irrigated, while the vast majority directly depends on the natural variations of the rains. The increase in temperatures due to climate change will lead to increased water consumption by farmers and a reduction in water availability, putting production capacity at risk. Drought is a limiting environmental factor for plant growth and one of the natural phenomena that most affects agricultural productivity. The response of plants to water stress is complex and involves coordination between gene expression and its integration with hormones. Studies suggest that bacteria have mechanisms to mitigate the effects of water stress and promote more significant growth in these plant species. The underlined mechanism involves root-to-shoot phenotypic changes in growth rate, architecture, hydraulic conductivity, water conservation, plant cell protection, and damage restoration through integrating phytohormones modulation, stress-induced enzymatic apparatus, and metabolites. Thus, this review aims to demonstrate how plant growth-promoting bacteria could mitigate negative responses in plants exposed to water stress and provide examples of technological conversion applied to agroecosystems. Full article
(This article belongs to the Special Issue 10th Anniversary of Microorganisms: Past, Present and Future)
Show Figures

Figure 1

22 pages, 6020 KB  
Article
Indomethacin: Effect of Diffusionless Crystal Growth on Thermal Stability during Long-Term Storage
by Roman Svoboda, Nicola Koutná, Daniela Košťálová, Miloš Krbal and Alena Komersová
Molecules 2023, 28(4), 1568; https://doi.org/10.3390/molecules28041568 - 6 Feb 2023
Cited by 7 | Viewed by 2111
Abstract
Differential scanning calorimetry and Raman spectroscopy were used to study the nonisothermal and isothermal crystallization behavior of amorphous indomethacin powders (with particle sizes ranging from 50 to 1000 µm) and their dependence on long-term storage conditions, either 0–100 days stored freely at laboratory [...] Read more.
Differential scanning calorimetry and Raman spectroscopy were used to study the nonisothermal and isothermal crystallization behavior of amorphous indomethacin powders (with particle sizes ranging from 50 to 1000 µm) and their dependence on long-term storage conditions, either 0–100 days stored freely at laboratory ambient temperatures and humidity or placed in a desiccator at 10 °C. Whereas the γ-form polymorph always dominated, the accelerated formation of the α-form was observed in situations of heightened mobility (higher temperature and heating rate), increased amounts of mechanically induced defects, and prolonged free-surface nucleation. A complex crystallization behavior with two separated crystal growth modes (originating from either the mechanical defects or the free surface) was identified both isothermally and nonisothermally. The diffusionless glass–crystal (GC) crystal growth was found to proceed during the long-term storage at 10 °C and zero humidity, at the rate of ~100 µm of the γ-form surface crystalline layer being formed in 100 days. Storage at the laboratory temperature (still below the glass transition temperature) and humidity led only to a negligible/nondetectable GC growth for the fine indomethacin powders (particle size below ~150 µm), indicating a marked suppression of GC growth by the high density of mechanical defects under these conditions. The freely stored bulk material with no mechanical damage and a smooth surface exhibited zero traces of GC growth (as confirmed by microscopy) after >150 days of storage. The accuracy of the kinetic predictions of the indomethacin crystallization behavior was rather poor due to the combined influences of the mechanical defects, competing nucleation, and crystal growth processes of the two polymorphic phases as well as the GC growth complex dependence on the storage conditions within the vicinity of the glass transition temperature. Performing paired isothermal and nonisothermal kinetic measurements is thus highly recommended in macroscopic crystallization studies of drugs with similarly complicated crystal growth behaviors. Full article
Show Figures

Figure 1

17 pages, 3945 KB  
Article
The European Standard EN 15757 Concerning Specifications for Relative Humidity: Suggested Improvements for Its Revision
by Dario Camuffo, Antonio Della Valle and Francesca Becherini
Atmosphere 2022, 13(9), 1344; https://doi.org/10.3390/atmos13091344 - 23 Aug 2022
Cited by 14 | Viewed by 3615
Abstract
The European Standard EN 15757: 2010 ‘Conservation of Cultural Property—Specifications for temperature and relative humidity to limit climate-induced mechanical damage in organic hygroscopic materials’ is a guide specifying the allowed limits of variability of the indoor climate, in particular relative humidity (RH) to [...] Read more.
The European Standard EN 15757: 2010 ‘Conservation of Cultural Property—Specifications for temperature and relative humidity to limit climate-induced mechanical damage in organic hygroscopic materials’ is a guide specifying the allowed limits of variability of the indoor climate, in particular relative humidity (RH) to preserve cultural heritage objects and collections composed of climate-vulnerable materials. This paper is finalized to provide useful elements to improve the Standard at its next revision, based on focused research. The methodologies and the mathematical tools used are performed on 18 case studies representing different buildings, climates, and use, including heated and unheated buildings, museums, churches, concert halls, archives, and storage rooms. The first aim is to compare the method based on the centred moving average suggested by Annex A of EN15757 with an alternative method based on percentile interpolation to calculate the reference RH values, and in particular the safe band of RH variability, as well as the upper and lower risky bands. It has been found that the two methods provided the same results, but the latter is easier to manage. The second aim is to verify if the duration of the record necessary for the determination of the safe band is really 13 months of measurements as required by the Standard to account for the specific request of the centred moving average with a 30-day time window. This paper demonstrates that the same goal may be reached with a 12-month record, but extracting from the record itself the two periods required by the time window, i.e., the last 15 days of the year will be copied before the start of the record, and the same with the first 15 days after the end. The third aim is to test if the particular choice of the width of the time window is influential on the width of the safe band, and to assess the relationship between the width of the safe band and the width of the time window. The results show that the safe band logarithmically depends on the length of the time window, so it is crucial to respect the 30-day window established by the Standard. Full article
(This article belongs to the Special Issue Atmospheric Environment and Cultural Heritage Protection)
Show Figures

Figure 1

13 pages, 2970 KB  
Article
Polysiloxane Coatings Biodeterioration in Nature and Laboratory
by Maxim Danilaev, Galina Yakovleva, Sergey Karandashov, Vladimir Kuklin, Hong Quan Le, William Kurdy and Olga Ilinskaya
Microorganisms 2022, 10(8), 1597; https://doi.org/10.3390/microorganisms10081597 - 8 Aug 2022
Cited by 3 | Viewed by 2380
Abstract
Objects and structures made of organic glass require protection from damage caused by external factors. Light, humidity, temperature, dust pollution and, undoubtedly, microorganisms lead to the deterioration of optical and mechanical properties. Polysiloxane-based protective coatings, consisting of silicon–oxygen backbones linked together with organic [...] Read more.
Objects and structures made of organic glass require protection from damage caused by external factors. Light, humidity, temperature, dust pollution and, undoubtedly, microorganisms lead to the deterioration of optical and mechanical properties. Polysiloxane-based protective coatings, consisting of silicon–oxygen backbones linked together with organic side groups attached to the silicon atoms, are widely used. However, the polysiloxane coatings themselves also cannot avoid deterioration during operation that implies the constant development of new protective materials. Here, we created a new cross-linked polysiloxane that covers organic glasses to enhance their resistance to aggressive external factors, and investigated its own resistance to damage induced by micromycetes in natural tropical conditions and in the laboratory. It has been established that the surface of coatings in the tropics is prone to fouling with micromycetes, mainly of the genera Aspergillus and Penicillium, which produce oxalic, malic, lactic, and citric acids contributing to the biodeterioration of polysiloxane. The testing of monolithic polycarbonate, polymethyl methacrylate, and triplex coated with polysiloxane showed that they retained significant resistance to abrasion and transparency at a level of more than 90% under aggressive natural conditions. Under artificial laboratory conditions, the infection of samples with micromycete spores also revealed their growth on surfaces and a similar trend of damage. Full article
(This article belongs to the Special Issue Microbial Biodegradation and Biotransformation)
Show Figures

Figure 1

Back to TopTop