Implementation of Soil and Water Conservation in Indonesia and Its Impacts on Biodiversity, Hydrology, Soil Erosion and Microclimate
Abstract
:1. Introduction
2. Soil and Water Conservation Programmes in Indonesia: Past, Present, and Future
- Integration, coordination, and supervision related to SWC between stakeholders are essential. In this case, strong political will is needed.
- Current disasters are actually a reflection that these resources are not properly conserved. Therefore, there is a need for watershed management that is integrated with the upstream–downstream mechanism so that when there is damage in the upstream area, as well as in the downstream area, the consequences of damages are addressed in both upstream and downstream areas.
- Institutions and policies related to SWC should be fully implemented. Additionally, existing technologies must be implemented in the field accordingly.
- Upstream watersheds must be conserved because currently they are widely used for tourism and settlement purposes.
- Community participation through agroforestry or social forestry systems should be enhanced to widen the programme’s scope and impact.
3. Soil and Water Conservation and Its Impacts on Biodiversity
4. Soil and Water Conservation and Its Impacts on Hydrology and Soil Erosion
4.1. Impact on Runoff
4.2. Impact on Soil Erosion
5. Soil and Water Conservation and Its Impacts on Microclimate
6. The Way Forward
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaafari, A.; Janizadeh, S.; Abdo, H.G.; Mafi-Gholami, D.; Adeli, B. Understanding land degradation induced by gully erosion from the perspective of different geoenvironmental factors. J. Environ. Manag. 2022, 315, 115181. [Google Scholar] [CrossRef] [PubMed]
- Rasul, G. Managing the food, water, and energy nexus for achieving the Sustainable Development Goals in South Asia. Environ. Dev. 2016, 18, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Chu, E.W.; Karr, J.R. Environmental impact: Concept, consequences, measurement. Ref. Modul. Life Sci. 2017, 1–22. [Google Scholar] [CrossRef]
- Mohammadi, M.; Darvishan, A.K.; Spalevic, V.; Dudic, B.; Billi, P. Analysis of the impact of land use changes on soil erosion intensity and sediment yield using the intero model in the talar watershed of Iran. Water 2021, 13, 881. [Google Scholar] [CrossRef]
- Suprapto, A. Land and water resources development in Indonesia. In Investment in Land and Water, Proceedings of the Regional Consultation, Bangkok, Thailand, 3–5 October 2001; FAO: Rome, Italy, 2001; Available online: https://www.fao.org/3/ac623e/ac623e0g.htm (accessed on 11 March 2023).
- Mulyanto, B. Characteristics and Genesis of Minimum Disturbed Soils of Two Watersheds in West Java, Indonesia. Ph.D. Thesis, ITC-Ghent University, Gent, Belgium, 1995. [Google Scholar]
- Adimihardja, A. Teknologi dan strategi konservasi tanah dalam kerangka revitalisasi pertanian. Pengemb. Inov. Pertan. 2008, 1, 105–124. Available online: https://repository.pertanian.go.id/handle/123456789/17968 (accessed on 7 April 2023).
- Pratiwi; Sari, N. Upaya Perbaikan Hutan dan Lahan Terdegradasi Melalui Penerapan Teknik-Teknik Konservasi Tanah dan Air. In Bunga Rampai Implementasi Program Rehabilitasi Hutan dan Lahan dalam Perspektif Konservasi Tanah dan Air; Mulyanto, B., Dharmawan, I.W.S., Narendra, B.H., Sukmana, A., Eds.; IPB Press: Bogor, Indonesia, 2022; pp. 21–40. [Google Scholar]
- Nugroho, H.Y.S.H.; Basuki, T.M.; Pramono, I.B.; Savitri, E.; Purwanto; Indrawati, D.R.; Wahyuningrum, N.; Adi, R.N.; Indrajaya, Y.; Supangat, A.B.; et al. Forty Years of Soil and Water Conservation Policy, Implementation, Research and Development in Indonesia: A Review. Sustainability 2022, 14, 2972. [Google Scholar] [CrossRef]
- Sumiahadi, A.; Acar, R. Soil erosion in Indonesia and its control. In Proceedings of the International Symposium for Environmental Science and Engineering Research, Konya, Turkey, 25–27 May 2019; pp. 545–554. Available online: https://iseser.com/doc/2019/ISESER2019-PROCEEDING-BOOK.pdf?e10 (accessed on 25 March 2023).
- Kumawat, A.; Yadav, D.; Samadharmam, K.; Rashmi, I. Soil and Water Conservation Measures for Agricultural Sustainability. In Soil Moisture Importance; Meena, R.S., Datta, R., Eds.; IntechOpen: London, UK, 2021; pp. 1–22. Available online: https://www.intechopen.com/chapters/72642 (accessed on 11 April 2023).
- Godif, G.; Manjunatha, B.R. Prioritizing sub-watersheds for soil and water conservation via morphometric analysis and the weighted sum approach: A case study of the Geba river basin in Tigray, Ethiopia. Heliyon 2022, 8, e12261. [Google Scholar] [CrossRef]
- Chalise, D.; Kumar, L. Land Degradation by Soil Erosion in Nepal: A Review. Soil Syst. 2019, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Gregory, A.S.; Ritz, K.; McGrath, S.P.; Quinton, J.N.; Goulding, K.W.T.; Jones, R.J.A.; Harris, J.A.; Bol, R.; Wallace, P.; Pilgrim, E.S.; et al. A review of the impacts of degradation threats on soil properties in the UK. Soil Use Manag. 2016, 31, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Issaka, S.; Ashraf, M.A. Impact of soil erosion and degradation on water quality: A review. Geol. Ecol. Landsc. 2017, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- MoEF (Ministry of Environment and Forestry). Statistik 2019 Kementerian Lingkungan Hidup dan Kehutanan; Ministry of Environment and Forestry, Republic of Indonesia: Jakarta, Indonesia, 2019; pp. 1–250. Available online: https://www.menlhk.go.id/site/single_post/3714/statistik-klhk-2019 (accessed on 25 March 2023).
- Haryanti, N. Dysfunction of conservation institutions and its impacts on the failures of soil and water conservation technologies adoption, case study at Wonogiri and Temanggung Regencies, Central Java Province. J. Penelit. Sos. Dan Ekon. Kehutan. 2014, 11, 44–58. Available online: http://ejournal.forda-mof.org/ejournal-litbang/index.php/JPSEK/article/view/682 (accessed on 13 April 2023). [CrossRef]
- Shiferaw, B.A.; Okello, J.; Reddy, R.V. Adoption and adaptation of natural resource management innovations in smallholder agriculture: Reflections on key lessons and best practices. Environ. Dev. Sustain. 2009, 11, 601–619. [Google Scholar] [CrossRef] [Green Version]
- FAO. Global Soil Partnership: Voluntary Guidelines for Sustainable Soil Management; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; pp. 1–607. [Google Scholar]
- Nawir, A.A.; Murniati; Rumboko, L. Forest Rehabilitation in Indonesia: Where to after Three Decades; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2007; pp. 1–269. [Google Scholar]
- Roni, N.G.K. Soil and Water Conservation; Faculty of Animal Husbandry, Udayana University: Denpasar, Indonesia, 2015; pp. 1–30. [Google Scholar]
- Mursidin; Priyo, T.; Achlil, R.; Yuliarsana, N.; Soewondho; Wartam; Basuki, B.; Sudarto. 35 Tahun Penghijauan di Indonesia. Presidium Kelompok Pelestari Sumberdaya Alam, Direktorat Jenderal Reboisasi dan Rehabilitasi Lahan; Departemen Kehutanan, Direktorat Jenderal Pembangunan Daerah Departemen Dalam Negeri: Jakarta, Indonesia, 1997.
- de Graaff, J.; Aklilub, A.; Ouessar, M.; Asins-Velis, S.; Kessler, A. The development of soil and water conservation policies and practices in five selected countries from 1960 to 2010. Land Use Policy 2013, 32, 165–174. [Google Scholar] [CrossRef]
- Hairiah, K.; Sardjono, M.A.; Sabarnurdin, S. Pengantar Agroforestri; World Agroforestry Center (ICRAF): Bogor, Indonesia, 2003. [Google Scholar]
- Istomo, B.W.; Prihatiningtyas, E. Pengaruh agroforestri Jarak pagar (Jatropha curcas Linn.) terhadap produktivitas lahan dan kualitas lingkungan di areal Perum Perhutani KHP Bogor. J. Trop. For. Sci. 2011, 3, 113–118. Available online: https://journal.ipb.ac.id/index.php/jsilvik/article/download/4158/2845/ (accessed on 9 March 2023).
- Octavia, D.; Suharti, S.; Murniati; Dharmawan, I.W.S.; Nugroho, H.Y.S.H.; Supriyanto, B.; Rohadi, D.; Njurumana, G.N.; Yeny, I.; Hani, A.; et al. Mainstreaming smart agroforestry for social forestry implementation to support sustainable Development Goals in Indonesia: A review. Sustainability 2022, 14, 9313. [Google Scholar] [CrossRef]
- Tofani, I.; Supriyadi, A.A.; Prihatno, Y. Strategi pengelolaan berkelanjutan suplai air Daerah Aliran Sungai (DAS) Kampar berbasis sistem informasi geografis dalam mendukung sistem pertahanan negara. J. Teknol. Penginderaan 2021, 3, 11–32. [Google Scholar]
- Sudaryanti, S.; Soemarno; Marsoedi; Yanuwiadi, B. Integrated watershed management planning: A rationale for sustainable aquatic ecosystem thinking. Indones. Green Technol. J. 2021, 10, 28–38. [Google Scholar]
- Wahyudi. Teknik konservasi tanah serta implementasinya pada lahan terdegradasi dalam kawasan hutan. J. Sains Teknol. Lingkung. 2014, 6, 71–85. [Google Scholar] [CrossRef]
- Hakim, L. Cultural Landscape Preservation and Ecotourism Development in Blambangan Biosphere Reserve, East Java. In Landscape Ecology for Sustainable Society; Hong, S.K., Nakagoshi, N., Eds.; Springer: New York, NY, USA, 2017; pp. 341–358. [Google Scholar]
- Pratiwi, P.; Narendra, B.H. Enhancing the productivity of degraded land through soil and water conservation technique in Carita Research Forest, West Java. Indones. J. For. Res. 2012, 9, 81–90. [Google Scholar] [CrossRef] [Green Version]
- MoEF. Statistik 2020 Kementerian Lingkungan Hidup dan Kehutanan; Ministry of Environment and Forestry, Republic of Indonesia: Jakarta, Indonesia, 2021.
- Bollom, M.W. Impact Indicators: An Alternative Tool for the Evaluation of Watershed Management; Indo-German Bilateral Project ‘Watershed Management’: New Delhi, India, 1998. [Google Scholar]
- Agung, P.; Bakar, B.A.; Kusdian, R.D. Kajian dampak pembangunan embung konservasi mendekati zero run off dalam pengendalian banjir kawasan. Techno-Socio Ekon. 2020, 12, 47–60. [Google Scholar] [CrossRef]
- Bertault, J.G.; Sist, P. An experimental comparison of different harvesting intensities with reduced-impact and conventional logging in East Kalimantan, Indonesia. For. Ecol. Manag. 1997, 94, 209–218. [Google Scholar] [CrossRef]
- Ruslim, Y. Penerapan reduced impact logging menggunakan Monocable Winch. J. Man. Hut. Trop. 2011, 17, 103–110. [Google Scholar]
- Ellis, P.W.; Gopalakrishna, T.; Goodman, R.C.; Putz, F.E.; Roopsind, A.; Umunay, P.M.; Zalman, J.; Ellis, E.A.; Mo, K.; Gregoire, T.G.; et al. Reduced-impact logging for climate change mitigation (RIL-C) can halve selective logging emissions from tropical forests. For. Ecol. Manag. 2019, 438, 255–266. [Google Scholar] [CrossRef]
- Griscom, B.W.; Ellis, P.W.; Burivalova, Z.; Halperin, J.; Marthinus, D.; Runting, R.K.; Shoch, D.; Putz, F.E. Reduced-impact logging in Borneo to minimize carbon emissions and impacts on sensitive habitats while maintaining timber yields. For. Ecol. Manag. 2019, 438, 176–185. [Google Scholar] [CrossRef]
- Butarbutar, T.; Soedirman, S.; Neupane, P.R.; Köhl, M. Carbon recovery following selective logging in tropical rainforests in Kalimantan, Indonesia. For. Ecosyst. 2019, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- von Rintelen, K.; Arida, E.; Häuser, C. A review of biodiversity-related issues and challenges in megadiverse Indonesia and other Southeast Asian countries. Res. Ideas Outcomes 2017, 3, e20860. [Google Scholar] [CrossRef] [Green Version]
- Turubanova, S.; Potapov, P.V.; Tyukavina, A.; Hansen, M.C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 2018, 13, 074028. [Google Scholar] [CrossRef] [Green Version]
- López-Vicente, M.; Wu, G.L. Soil and water conservation in agricultural and forestry systems. Water 2019, 11, 1937. [Google Scholar] [CrossRef] [Green Version]
- Meresa, M.; Tadesse, M.; Zeray, N. Effects of Soil and Water Conservation Measures on Plant Species Diversity: Wenago, Southern Regional State, Ethiopia. J. Vaccines Vaccin. 2021, 13, 1–11. [Google Scholar]
- Maridi, M.; Agustina, P.; Saputra, A. Vegetation analysis of Samin watershed, Central Java as water and soil conservation efforts. Biodiversitas 2014, 15, 215–223. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, C.Y.; Xu, Z.L.; Wang, Y.; Peng, H.H. Effect of vegetation on soil water retention and storage in a semi-arid alpine forest catchment. J. Arid. Land 2013, 5, 207–219. [Google Scholar] [CrossRef]
- Surtikanti, H.K.; Surakusumah, W.; Safaria, T.; Irawan, A.; Qadaryanti, A. Releksi fungsi lahan terhadap biodiversitas tumbuhan di Daerah Aliran Sungai Cilaja, Ujung Berung. J. Biodjati 2016, 1, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Sayed, O.H.; Masrahi, Y.S.; Remesh, M.; Al-Ammari, B.S. Coffee production in southern Saudi Arabian highlands: Current status and water conservation. Saudi J. Biol. Sci. 2019, 26, 1911–1914. [Google Scholar] [CrossRef]
- Maridi; Agustina, P.; Saputra, A. Potential vegetation for soil and water conservation: Case study in Samin watershed, Central Java. In Proceedings of the International Conference on Science, Technology and Humanity, Solo, Indonesia, 7 August 2015. [Google Scholar]
- Bai, J.; Zhou, Z.; Zou, Y.; Pulatov, B.; Siddique, K.H.M. Watershed drought and ecosystem services: Spatiotemporal characteristics and gray relational analysis. ISPRS Int. J. Geo-Inf. 2021, 10, 43. [Google Scholar] [CrossRef]
- Shi, P.; Li, P.; Li, Z.; Sun, J.; Wang, D.; Min, Z. Effects of grass vegetation coverage and position on runoff and sediment yields on the slope of Loess Plateau, China. Agric. Water Manag. 2022, 259, 107231. [Google Scholar] [CrossRef]
- Hasanuddin. Jenis tumbuhan Moraceae di kawasan Stasiun Ketambe Taman Nasional Gunung Leuser Aceh Tenggara. Semin. Nas. Biot. 2017, 5, 45–50. [Google Scholar]
- Zhang, W.; An, S.; Xu, Z.; Cui, J.; Xu, Q. The impact of vegetation and soil on runoff regulation in headwater streams on the east Qinghai-Tibet Plateau, China. Catena 2011, 87, 182–189. [Google Scholar] [CrossRef]
- van Dijk, A.I.J.M.; Bruijnzeel, L.A.; Purwanto, E. Soil Conservation in upland Java, Indonesia: Past failures, recent findings and future prospects. In Proceedings of the 13th International Soil Conservation Organisation Conference, Brisbane, Australia, 4–8 July 2004; Volume 218, pp. 1–12. [Google Scholar]
- Matsvange, D.; Sagonda, R.; Kaundikiza, M. The role of communities in sustainable land and forest management: The case of Nyanga, Zvimba and Guruve districts of Zimbabwe. Jamba J. Disaster Risk Stud. 2016, 8, 1–11. [Google Scholar] [CrossRef]
- Trisakti, B. Soil erosion rate estimation using Landsat and SPOT. J. Penginderaan Jauh 2014, 11, 88–101. [Google Scholar]
- Widiatmoko, N.; Tarigan, S.D.; Wahjunie, E.D. Analisis respons hidrologi untuk mendukung perencanaan pengelolaan Sub-DAS Opak Hulu, Daerah Istimewa Yogyakarta. J. Ilmu Pertan. Indones. 2020, 25, 503–514. [Google Scholar] [CrossRef]
- Wolka, K.; Mulder, J.; Biazin, B. Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan Africa: A review. Agric. Water Manag. 2018, 207, 67–79. [Google Scholar] [CrossRef]
- Utami, W.U.; Wahjunie, E.D.; Tarigan, S.D. Karakteristik hidrologi dan pengelolaannya dengan model hidrologi Soil and Water Assessment Tool Sub DAS Cisadane Hulu. J. Ilmu Pertan. Indones. 2020, 25, 342–348. [Google Scholar] [CrossRef]
- Qalbi, A.H.; Tarigan, S.D.; Wahjunie, E.D.; Baskoro, D.P.T. Soil hydrological characteristics under Pine (Pinus merkusii), Merawan (Hopea odorata Roxb), and African Mahogany (Khaya anthoteca) Stands. J. Ilmu Tanah Dan Lingkung. 2018, 20, 7–12. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, G.; Dang, Y.; Weindorf, D.C.; Sheng, J. Afforestation and the impacts on soil and water conservation at decadal and regional scales in Northwest China. J. Arid. Environ. 2016, 130, 98–104. [Google Scholar] [CrossRef]
- Demissie, S.; Meshesha, D.T.; Adgo, E.; Haregeweyn, N.; Tsunekawa, A.; Ayana, M.; Mulualem, T.; Wubet, A. Effects of soil bund spacing on runoff, soil loss, and soil water content in the Lake Tana Basin of Ethiopia. Agric. Water Manag. 2022, 274, 107926. [Google Scholar] [CrossRef]
- Sahoo, D.C.; Madhu, M.G.; Bosu, S.S.; Khola, O.P.S. Farming methods impact on soil and water conservation efficiency under tea [Camellia sinensis (L.)] plantation in Nilgiris of South India. Int. Soil Water Conserv. Res. 2016, 4, 195–198. [Google Scholar] [CrossRef] [Green Version]
- Nursari, E.; Rachman, L.M.; Baskoro, D.P.T. Alternative of soil and water conservation techniques in Cilemer Watershed, Banten. J. Ilmu Tanah Dan Lingkung. 2018, 20, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Kristofery, L.; Murtilaksono, K.; Baskoro, D.P.T. Simulation of land use change against the hidrological characteristics of the ciliman watershed. J. Soil Sci. Environ 2020, 21, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Munggaran, G.; Hidayat, Y.; Tarigan, S.D.; Baskoro, D.P.T. Analysis of hydrology response and simulation of soil and water conservation enginerring in upstream Cimanuk Sub Watershed. J. Ilmu Tanah Dan Lingkung. 2017, 19, 26–32. [Google Scholar] [CrossRef] [Green Version]
- National Standardization Agency of Indonesia. SNI 7943:2014 Panduan Konservasi Tanah dan Air Untuk Penanggulangan Degradasi Lahan; National Standardization Agency of Indonesia: Jakarta, Indonesia, 2014. [Google Scholar]
- Ariyanti, M.; Yahya, S.; Murtilaksono, K.; Suwarto; Siregar, H.H. The influence of cover crop Nephrolepis biserrata and ridge terrace against run off and the growth of oil palm (Elaeis guineensis Jacq.). J. Kultiv. 2016, 15, 121–127. [Google Scholar]
- Satriawan, H.; Fuady, Z.; Agusni, A. Soil conservation techniques in oil palm cultivation for sustainable agriculture. J. Nat. Resour. Environ. Manag. 2017, 7, 178–183. [Google Scholar] [CrossRef]
- Stroosnijder, L. Modifying land management in order to improve efficiency of rainwater use in the African highlands. Soil Tillage Res. 2009, 103, 247–256. [Google Scholar] [CrossRef]
- Ouédraogo, E.; Mando, A.; Brussaard, L. Soil macrofauna affect crop nitrogen and water use efficiencies in semi-arid West Africa. Eur. J. Soil Biol. 2006, 42 (Suppl. S1), S275–S277. [Google Scholar] [CrossRef]
- Zribi, W.; Aragüés, R.; Medina, E.; Faci, J.M. Efficiency of inorganic and organic mulching materials for soil evaporation control. Soil Tillage Res. 2015, 148, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Gao, X.; Zhou, Y.; Wu, P.; Zhao, X. Impact of conservation practices on soil hydrothermal properties and crop water use efficiency in a dry agricultural region of the Tibetan plateau. Soil Tillage Res. 2020, 200, 104619. [Google Scholar] [CrossRef]
- Ren, X.; Chen, X.; Cai, T.; Wei, T.; Wu, Y.; Ali, S.; Zhang, P.; Jia, Z. Effects of ridge-furrow system combined with different degradable mulching materials on soil water conservation and crop production in semi-humid areas of China. Front. Plant Sci. 2017, 8, 1877. [Google Scholar] [CrossRef] [Green Version]
- Mo, F.; Wang, J.Y.; Zhou, H.; Luo, C.L.; Zhang, X.F.; Li, X.Y.; Li, F.M.; Xiong, L.B.; Kavagi, L.; Nguluu, S.N.; et al. Ridge-furrow plastic-mulching with balanced fertilization in rainfed maize (Zea mays L.): An adaptive management in East African Plateau. Agric. For. Meteorol. 2017, 236, 100–112. [Google Scholar] [CrossRef]
- Mupangwa, W.; Twomlow, S.; Walker, S. Dead level contours and infiltration pits for risk mitigation in smallholder cropping systems of southern Zimbabwe. Phys. Chem. Earth 2012, 47–48, 166–172. [Google Scholar] [CrossRef]
- Lacombe, G.; Cappelaere, B.; Leduc, C. Hydrological impact of water and soil conservation works in the Merguellil catchment of central Tunisia. J. Hydrol. 2008, 35, 210–224. [Google Scholar] [CrossRef]
- Nasri, S.; Lamachère, J.M.; Albergel, J. The impact of contour ridges on runoff from a small catchment. Rev. Sci. Eau. 2004, 17, 265–289. [Google Scholar]
- Devianti; Yunus, Y.; Bulan, R.; Sartika, T.D.; Sitorus, A. Silt pit application in tropical palm dates plantation: Case study in Aceh Province, Indonesia. Int. J. Sci. Technol. Res. 2020, 9, 42–48. [Google Scholar]
- Pimentel, D. Soil erosion: A food and environmental threat. Environ. Dev. Sustain. 2006, 8, 119–137. [Google Scholar] [CrossRef]
- Schiettecatte, W.; Ouessar, M.; Gabriels, D.; Tanghe, S.; Heirman, S.; Abdelli, F. Impact of water harvesting techniques on soil and water conservation: A case study on a micro catchment in southeastern Tunisia. J. Arid. Environ. 2005, 61, 297–313. [Google Scholar] [CrossRef]
- Kusdaryanto, S.; Baskoro, D.P.T.; Tarigan, S.D. Study of reservoir effect on hydrological response of Pesanggrahan Watershed using HEC-HMS model. J. Soil Sci. Environ. 2010, 12, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Kiepe, P. No Runoff, No Soil Loss: Soil and Water Conservation in Hedgerow Barrier Systems; van de Landbouwuniversiteit: Wageningen, The Netherlands, 1995. [Google Scholar]
- Arsyad, S. Soil and Water Conservation, 2nd ed.; IPB Press: Bogor, Indonesia, 2010. [Google Scholar]
- Idjudin, A.A. The role of land conservation in plantation management. J. Land Resour. 2011, 5, 103–116. [Google Scholar]
- Baumhardt, R.L.; Blanco-Canqui, H. Soil: Conservation Practices. In Encyclopedia of Agriculture and Food Systems; van Alfen, N.K., Ed.; Academic Press: London, UK, 2014; pp. 153–165. [Google Scholar] [CrossRef]
- Kusumadewi, D.A.; Djakfar, L.; Bisri, M. Spatial direction of drainage technology to reduce flooding in the lower watershed of the Watu River. J. Irrig. Eng. 2012, 3, 258–276. [Google Scholar]
- Michalec, B. The use of modified Annandale’s method in the estimation of the sediment distribution in small reservoirs—A Case Study. Water 2014, 6, 2993–3011. [Google Scholar] [CrossRef] [Green Version]
- Rahayu, T.; Suyanto; Solichin. Evaluation of sediment control building function (check dam) in Pengkol based on changes in land use in Keduang River, Wonogiri Regency. Matriks Tek. Sipil 2017, 5, 16–22. [Google Scholar]
- Yustika, R.D.; Agus, F. The Role of Soil Conservation in Adapting to Climate Change. In Soil and Water Conservation in the Face of Climate Change; Agus, F., Subardja, D., Soelaeman, Y., Eds.; IAARD Press: Bogor, Indonesia, 2014. [Google Scholar]
- Sanger, Y.Y.J.; Rogi, J.E.X.; Rombang, J. Pengaruh tipe tutupan lahan terhadap iklim mikro di kota Bitung. Agri-Sosioekonomi 2016, 12, 105–116. [Google Scholar] [CrossRef]
- Fandeli, C.; Muhammad. Prinsip-Prinsip Dasar Mengkoservasi Lanskap; UGM Press: Yogyakarta, Indonesia, 2009. [Google Scholar]
- Fitrani, A.; Hatta, G.M.; Asrar, K. Perbandingan iklim mikro pada hutan sekunder yang terjadi sukses di Tahura Sultan Adam Mandiangin Kabupaten Banjar Kalimantan Selatan. J. Hutan Trop. 2016, 4, 154–166. [Google Scholar]
- Sudaryono. Pengaruh bahan pengkondisi tanah terhadap iklim mikro pada lahan berpasir. J. Teknol. Lingkung. 2001, 2, 175–184. [Google Scholar]
- Kader, M.; Senge, M.; Mojid, M.; Ito, K. Recent advances in mulching materials and methods for modifying soil environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Jia, Q.; Sun, L.; Ali, S.; Zhang, Y.; Liu, D.; Kamran, M.; Zhang, P.; Jia, Z.; Ren, Z. Effect of planting density and pattern on maize yield and rainwater use efficiency in the Loess Plateau in China. Agric. Water Manag. 2018, 202, 19–32. [Google Scholar] [CrossRef]
- Taparauskiene, L.; Miseckaite, O. Effect of mulch on soil moisture depletion and strawberry yield in sub-humid area. Pol. J. Environ. Stud. 2014, 23, 475–482. [Google Scholar]
- Yu, Y.; Turner, N.; Gong, Y.; Li, F.; Fang, C.; Ge, L.; Ye, J.-S. Benefits and limitations to straw- and plastic-film mulch on maize yield and water use efficiency: A meta-analysis across hydrothermal gradients. Eur. J. Agron. 2018, 99, 138–147. [Google Scholar] [CrossRef]
- Dharmawan, I.W.S. Konservasi Tanah dan Air: Belajar dari Kisah Sukses Warga; Green Indonesia: Bogor, Indonesia, 2023. [Google Scholar]
- Van Noordwijk, M.; Bayala, J.; Hairiah, K.; Lusiana, B.; Muthuri, C.W.; Khasanah, N.; Mulia, R. Agroforestry Solutions for Buffering Climate Variability and Adapting to Change. In Climate Change Impact and Adaptation in Agricultural System; CAB International: Wallingford, UK, 2014; pp. 216–232. [Google Scholar]
- Oldeman, L.R.; Hakkeling, R.T.A.; Sombroek, W.G. World Map of the Status of Human-Induced Soil Degradation; ISRIC: Wageningen, The Netherlands, 1991. [Google Scholar]
- Gunawan, G.; Sutjiningsih, D.; Soeryantono, H.; Sulistioweni, W. Soil erosion estimation based on gis and remote sensing for supporting integrated water resources conservation management. Int. J. Technol. 2013, 4, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.S.B.N.; Mustafa, F.B.; Yusoff, S.Y.M.; Didams, G. A systematic review of soil erosion control practices on the agricultural land in Asia. Int. Soil Water Conserv. Res. 2020, 8, 103–115. [Google Scholar] [CrossRef]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Dimtsu, G.Y.; Kifle, M.; Darcha, G. Effect of soil and water conservation on rehabilitation of degraded lands and crop productivity in Maego watershed, North Ethiopia. J. Degrad. Min. Lands Manag. 2018, 5, 1191–1205. [Google Scholar] [CrossRef] [Green Version]
- Belayneh, M.; Yirgu, T.; Tsegaye, D. Effects of soil and water conservation practices on soil physicochemical properties in Gumara watershed, Upper Blue Nile Basin, Ethiopia. Ecol. Process. 2019, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Lennox, J.; Proctor, W.; Russell, S. Structuring stakeholder participation in New Zealand’s water resource governance. Ecol. Econ. 2011, 70, 1381–1394. [Google Scholar] [CrossRef]
- Schwilch, G.; Bachmann, F.; Valente, S.; Coelho, C.; Moreira, J.; Laouina, A.; Chaker, M.; Aderghal, M.; Santos, P.; Reed, M.S. A structured multi-stakeholder learning process for Sustainable Land Management. J. Environ. Manag. 2012, 107, 52–63. [Google Scholar] [CrossRef]
- Baartman, J.E.M.; Masselink, R.; Keesstra, S.D.; Temme, A.J.A.M. Linking landscape morphological complexity and sediment connectivity. Earth Surf. Process. Landf. 2013, 38, 1457–1471. [Google Scholar] [CrossRef]
- Undaharta, N.K.E.; Wee, A.K.S. Policy forum: Sacred forests—An opportunity to combine conservation management of threatened tree species with cultural preservation. For. Policy Econ. 2020, 121, 102312. [Google Scholar] [CrossRef]
- Basiago, A.D. Sustainable development in Indonesia: A case study of an indigenous regime of environmental law and policy. Int. J. Sustain. Dev. World Ecol. 1995, 2, 199–211. [Google Scholar] [CrossRef]
- Suwarno; Nirwansyah, A.W.; Sutomo; Demirdag, I.; Sarjanti, E.; Bramasta, D. The existence of indigenous knowledge and local landslide mitigation: A case study of Banyumas people in Gununglurah Village, Central Java, Indonesia. Sustainability 2022, 14, 12765. [Google Scholar] [CrossRef]
- Lubis, M.R.; Kaskoyo, H.; Budi, Y.S.; Wulandari, C. Kearifan lokal dalam pengelolaan mata air di Desa Sungai Langka, Kecamatan Gedong Tataan, Kabupaten Pesawaran, Provinsi Lampung. J. Hutan Trop. 2018, 6, 90–97. [Google Scholar] [CrossRef]
- Huang, B.; Yuan, Z.; Zheng, M.; Liao, Y.; Nguyen, K.L.; Nguyen, T.H.; Sombatpanit, S.; Li, D. Soil and water conservation techniques in tropical and subtropical Asia: A review. Sustainability 2022, 14, 5035. [Google Scholar] [CrossRef]
- Steiner, J.L.; Lin, X.; Cavallaro, N.; Basso, G.; Sassenrath, G. Climate change impacts on soil, water, and biodiversity conservation. J. Soil Water Conserv. 2023, 78, 27A–32A. [Google Scholar] [CrossRef]
Year | Area (ha) | Cumulative Area (ha) |
---|---|---|
2015 | 200,452 | 200,452 |
2016 | 198,346 | 398,797 |
2017 | 200,990 | 599,776 |
2018 | 188,630 | 787,603 |
2019 | 395,169 | 995,253 |
2020 | 112,419 | 1,108,226 |
2021 | 151,073 | 1,259,299 |
No. | Cover Crop; Hydrology Condition | Runoff Coefficient for Rainfall Rate | ||
---|---|---|---|---|
25 mm/h | 100 mm/h | 200 mm/h | ||
1. | Plants in rows; bad | 0.63 | 0.65 | 0.66 |
2. | Plants in rows; good | 0.47 | 0.56 | 0.62 |
3. | Paddy; bad | 0.38 | 0.38 | 0.38 |
4. | Paddy; good | 0.18 | 0.21 | 0.22 |
5. | Grass, crop rotation; good | 0.29 | 0.36 | 0.39 |
6. | Grass, steady development; good | 0.02 | 0.17 | 0.23 |
7. | Forest; good | 0.02 | 0.10 | 0.15 |
No. | Soil Characteristics and Substratum | Tolerable Erosion Value (mm/year) |
---|---|---|
1. | Very shallow soil over rocks | 0.0 |
2. | Very shallow soil over weathered material (unconsolidated) | 0.4 |
3. | The shallow soil above the material has weathered | 0.8 |
4. | Soil of medium depth above the material has weathered | 1.2 |
5. | Deep soil with impermeable subsoil water on a weathered substrate | 1.4 |
6. | Deep soil with undersoil slow permeability, on top of the substrate has weathered | 1.6 |
7. | Deep soil with subsoil medium permeability, above the substrate has weathered | 2.0 |
8. | Deep soil with a deep permeable subsoil, over the substrate has weathered | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dharmawan, I.W.S.; Pratiwi; Siregar, C.A.; Narendra, B.H.; Undaharta, N.K.E.; Sitepu, B.S.; Sukmana, A.; Wiratmoko, M.D.E.; Abywijaya, I.K.; Sari, N. Implementation of Soil and Water Conservation in Indonesia and Its Impacts on Biodiversity, Hydrology, Soil Erosion and Microclimate. Appl. Sci. 2023, 13, 7648. https://doi.org/10.3390/app13137648
Dharmawan IWS, Pratiwi, Siregar CA, Narendra BH, Undaharta NKE, Sitepu BS, Sukmana A, Wiratmoko MDE, Abywijaya IK, Sari N. Implementation of Soil and Water Conservation in Indonesia and Its Impacts on Biodiversity, Hydrology, Soil Erosion and Microclimate. Applied Sciences. 2023; 13(13):7648. https://doi.org/10.3390/app13137648
Chicago/Turabian StyleDharmawan, I Wayan Susi, Pratiwi, Chairil Anwar Siregar, Budi Hadi Narendra, Ni Kadek Erosi Undaharta, Bina Swasta Sitepu, Asep Sukmana, Michael Daru Enggar Wiratmoko, Ilham Kurnia Abywijaya, and Nilam Sari. 2023. "Implementation of Soil and Water Conservation in Indonesia and Its Impacts on Biodiversity, Hydrology, Soil Erosion and Microclimate" Applied Sciences 13, no. 13: 7648. https://doi.org/10.3390/app13137648
APA StyleDharmawan, I. W. S., Pratiwi, Siregar, C. A., Narendra, B. H., Undaharta, N. K. E., Sitepu, B. S., Sukmana, A., Wiratmoko, M. D. E., Abywijaya, I. K., & Sari, N. (2023). Implementation of Soil and Water Conservation in Indonesia and Its Impacts on Biodiversity, Hydrology, Soil Erosion and Microclimate. Applied Sciences, 13(13), 7648. https://doi.org/10.3390/app13137648