Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = human-centric training

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 772 KB  
Article
Strategic Human Resource Management in the Digital Era: Technology, Transformation, and Sustainable Advantage
by Carmen Nastase, Andreea Adomnitei and Anisoara Apetri
Merits 2025, 5(4), 23; https://doi.org/10.3390/merits5040023 - 11 Nov 2025
Viewed by 541
Abstract
The rapid integration of emerging technologies into organizational processes has fundamentally redefined the role of strategic human resource management (SHRM). This paper explores how digital innovations—such as artificial intelligence (AI), robotic process automation (RPA), blockchain, and immersive technologies—are reshaping the workforce and transforming [...] Read more.
The rapid integration of emerging technologies into organizational processes has fundamentally redefined the role of strategic human resource management (SHRM). This paper explores how digital innovations—such as artificial intelligence (AI), robotic process automation (RPA), blockchain, and immersive technologies—are reshaping the workforce and transforming the way organizations attract, develop, and retain talent. In the context of the digital era, human capital is no longer a passive input but a strategic enabler of sustainable competitive advantage. The purpose of the study is to analyze how SHRM practices must evolve to align with technology-driven organizational models, combining insights from a systematic literature review, institutional reports, and illustrative corporate cases. Findings indicate that agility, continuous reskilling, ethical AI governance, and employee well-being are critical levers for sustainable advantage. Comparative tables highlight differences between traditional HRM and SHRM in the digital era, while case studies (IBM, Walmart, Unilever, and UiPath) demonstrate the strategic value of predictive analytics, diversity and inclusion programs, virtual training, and people analytics. By proposing a conceptual model that links emerging technologies, SHRM, and competitiveness, the paper contributes to current debates on the transformation of work and organizational resilience. The study offers practical implications for HR leaders, policymakers, and academics navigating digital transformation while reinforcing human-centric performance and sustainability. Full article
Show Figures

Figure 1

20 pages, 768 KB  
Article
Sustainable Supply Chains in the Industry X.0 Era: Overcoming Integration Challenges in the UAE
by Khaoula Khlie, Aruna Pugalenthi and Ikhlef Jebbor
Adm. Sci. 2025, 15(11), 417; https://doi.org/10.3390/admsci15110417 - 27 Oct 2025
Viewed by 506
Abstract
This paper reveals profound obstacles to sustainable supply chain integration in Industry X.0 in the United Arab Emirates (UAE) by utilizing a hybrid Fuzzy Delphi-TOPSIS approach and enriching the viewpoints of 102 experts in oil/gas (45%), logistics (30%), government (15%), and academia (10%). [...] Read more.
This paper reveals profound obstacles to sustainable supply chain integration in Industry X.0 in the United Arab Emirates (UAE) by utilizing a hybrid Fuzzy Delphi-TOPSIS approach and enriching the viewpoints of 102 experts in oil/gas (45%), logistics (30%), government (15%), and academia (10%). The top obstacles are a lack of favorable leadership (Fuzzy Delphi Threshold (FDT), FDT = 0.82) and insufficiency of sustainability professionals (FDT = 0.82), with strategy prioritization training (Rank 1, Closeness Coefficient Index (cci) cci = 0.1255) and employee engagement (Rank 2, cci = 0.1499) being among the most important solutions as opposed to technological solutions. Most importantly, AI-related technologies had a low ranking of seventh place because of their lack of implementation, which proves that human capital enhancement is always prioritized before technological adaptation. The oil/gas industry values AI with respect to regulatory compliance commitments to emissions monitoring, whereas SMEs accentuate the problem of training because of the limited resources available to them, which also indicates the societal relevance of the concept of AI to social entrepreneurship and the blockchain-based transparency and access to green technologies. This study contributes (1) a decision-oriented framework bridging the traditional 2050 vision of the UAE and the realities it faces day to day, (2) empirical insights into the need for cultural principals within governance so as to prevent the so-called paperwork syndrome, and (3) a theoretical advancement that sees AI as an enhancer of human-centric methodologies. The conclusions provide policymakers with knowledge of the importance of the ability to contextualize investments in organizational culture prior to technology implementation in order to provide effective sustainability transitions. Full article
Show Figures

Figure 1

38 pages, 24426 KB  
Article
ClinSegNet: Towards Reliable and Enhanced Histopathology Screening
by Boyang Yu, Hannah Markham, Karwan Moutasim, Vipul Foria and Haiming Liu
Bioengineering 2025, 12(11), 1156; https://doi.org/10.3390/bioengineering12111156 - 25 Oct 2025
Viewed by 567
Abstract
In histopathological image segmentation, existing methods often show low sensitivity to small lesions and indistinct boundaries, leading to missed detections. Since, in clinical diagnosis, the consequences of missed detection are more serious than false alarms, this study proposes ClinSegNet, a recall-oriented and human-centred [...] Read more.
In histopathological image segmentation, existing methods often show low sensitivity to small lesions and indistinct boundaries, leading to missed detections. Since, in clinical diagnosis, the consequences of missed detection are more serious than false alarms, this study proposes ClinSegNet, a recall-oriented and human-centred framework for reliable histopathology screening. ClinSegNet employs a composite optimisation strategy, termed HistoLoss, which balances stability and boundary refinement while prioritising recall. An uncertainty-driven refinement mechanism is further introduced to target high-uncertainty cases with limited fine-tuning cost. In addition, a clinical data processing pipeline was developed, where pixel-level annotations were automatically derived from IHC-to-H&E mapping and combined with public datasets, enabling effective training under limited clinical data conditions. Experiments on the NuInsSeg and NuInsSeg-UHS datasets showed that ClinSegNet achieved recall scores of 0.8803 and 0.8917, further improved to 0.8983 and 0.9053 with HITL refinement, while maintaining competitive Dice and IoU. Comparative and ablation studies confirmed the complementary design of the framework and its advantage in capturing small or complex lesions. In conclusion, ClinSegNet provides a clinically oriented, recall-prioritised framework that enhances lesion coverage, reduces the risk of missed diagnosis, and offers both a methodological basis for future human-in-the-loop systems and a feasible pipeline for leveraging limited clinical data. Full article
(This article belongs to the Special Issue Artificial Intelligence-Based Medical Imaging Processing)
Show Figures

Graphical abstract

14 pages, 6970 KB  
Article
Rehearsal-Free Continual Learning for Emerging Unsafe Behavior Recognition in Construction Industry
by Tao Wang, Saisai Ye, Zimeng Zhai, Weigang Lu and Cunling Bian
Sensors 2025, 25(21), 6525; https://doi.org/10.3390/s25216525 - 23 Oct 2025
Viewed by 342
Abstract
In the realm of Industry 5.0, the incorporation of Artificial Intelligence (AI) in overseeing workers, machinery, and industrial systems is essential for fostering a human-centric, sustainable, and resilient industry. Despite technological advancements, the construction industry remains largely labor intensive, with site management and [...] Read more.
In the realm of Industry 5.0, the incorporation of Artificial Intelligence (AI) in overseeing workers, machinery, and industrial systems is essential for fostering a human-centric, sustainable, and resilient industry. Despite technological advancements, the construction industry remains largely labor intensive, with site management and interventions predominantly reliant on manual judgments, leading to inefficiencies and various challenges. This research emphasizes identifying unsafe behaviors and risks within construction environments by employing AI. Given the continuous emergence of unsafe behaviors that requires certain caution, it is imperative to adapt to these novel categories while retaining the knowledge of existing ones. Although deep convolutional neural networks have shown excellent performance in behavior recognition, they traditionally function as predefined multi-way classifiers, which exhibit limited flexibility in accommodating emerging unsafe behavior classes. Addressing this issue, this study proposes a versatile and efficient recognition model capable of expanding the range of unsafe behaviors while maintaining the recognition of both new and existing categories. Adhering to the continual learning paradigm, this method integrates two types of complementary prompts into the pre-trained model: task-invariant prompts that encode knowledge shared across tasks, and task-specific prompts that adapt the model to individual tasks. These prompts are injected into specific layers of the frozen backbone to guide learning without requiring a rehearsal buffer, enabling effective recognition of both new and previously learned unsafe behaviors. Additionally, this paper introduces a benchmark dataset, Split-UBR, specifically constructed for continual unsafe behavior recognition on construction sites. To rigorously evaluate the proposed model, we conducted comparative experiments using average accuracy and forgetting as metrics, and benchmarked against state-of-the-art continual learning baselines. Results on the Split-UBR dataset demonstrate that our method achieves superior performance in terms of both accuracy and reduced forgetting across all tasks, highlighting its effectiveness in dynamic industrial environments. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

30 pages, 1428 KB  
Review
Healthcare 5.0-Driven Clinical Intelligence: The Learn-Predict-Monitor-Detect-Correct Framework for Systematic Artificial Intelligence Integration in Critical Care
by Hanene Boussi Rahmouni, Nesrine Ben El Hadj Hassine, Mariem Chouchen, Halil İbrahim Ceylan, Raul Ioan Muntean, Nicola Luigi Bragazzi and Ismail Dergaa
Healthcare 2025, 13(20), 2553; https://doi.org/10.3390/healthcare13202553 - 10 Oct 2025
Viewed by 1044
Abstract
Background: Healthcare 5.0 represents a shift toward intelligent, human-centric care systems. Intensive care units generate vast amounts of data that require real-time decisions, but current decision support systems lack comprehensive frameworks for safe integration of artificial intelligence. Objective: We developed and validated the [...] Read more.
Background: Healthcare 5.0 represents a shift toward intelligent, human-centric care systems. Intensive care units generate vast amounts of data that require real-time decisions, but current decision support systems lack comprehensive frameworks for safe integration of artificial intelligence. Objective: We developed and validated the Learn–Predict–Monitor–Detect–Correct (LPMDC) framework as a methodology for systematic artificial intelligence integration across the critical care workflow. The framework improves predictive analytics, continuous patient monitoring, intelligent alerting, and therapeutic decision support while maintaining essential human clinical oversight. Methods: Framework development employed systematic theoretical modeling integrating Healthcare 5.0 principles, comprehensive literature synthesis covering 2020–2024, clinical workflow analysis across 15 international ICU sites, technology assessment of mature and emerging AI applications, and multi-round expert validation by 24 intensive care physicians and medical informaticists. Each LPMDC phase was designed with specific integration requirements, performance metrics, and safety protocols. Results: LPMDC implementation and aggregated evidence from prior studies demonstrated significant clinical improvements: 30% mortality reduction, 18% ICU length-of-stay decrease (7.5 to 6.1 days), 45% clinician cognitive load reduction, and 85% sepsis bundle compliance improvement. Machine learning algorithms achieved an 80% sensitivity for sepsis prediction three hours before clinical onset, with false-positive rates below 15%. Additional applications demonstrated effectiveness in predicting respiratory failure, preventing cardiovascular crises, and automating ventilator management. Digital twins technology enabled personalized treatment simulations, while the integration of the Internet of Medical Things provided comprehensive patient and environmental surveillance. Implementation challenges were systematically addressed through phased deployment strategies, staff training programs, and regulatory compliance frameworks. Conclusions: The Healthcare 5.0-enabled LPMDC framework provides the first comprehensive theoretical foundation for systematic AI integration in critical care while preserving human oversight and clinical safety. The cyclical five-phase architecture enables processing beyond traditional cognitive limits through continuous feedback loops and system optimization. Clinical validation demonstrates measurable improvements in patient outcomes, operational efficiency, and clinician satisfaction. Future developments incorporating quantum computing, federated learning, and explainable AI technologies offer additional advancement opportunities for next-generation critical care systems. Full article
(This article belongs to the Section Artificial Intelligence in Healthcare)
Show Figures

Figure 1

26 pages, 4563 KB  
Article
Personalized Smart Home Automation Using Machine Learning: Predicting User Activities
by Mark M. Gad, Walaa Gad, Tamer Abdelkader and Kshirasagar Naik
Sensors 2025, 25(19), 6082; https://doi.org/10.3390/s25196082 - 2 Oct 2025
Viewed by 1056
Abstract
A personalized framework for smart home automation is introduced, utilizing machine learning to predict user activities and allow for the context-aware control of living spaces. Predicting user activities, such as ‘Watch_TV’, ‘Sleep’, ‘Work_On_Computer’, and ‘Cook_Dinner’, is essential for improving occupant comfort, optimizing energy [...] Read more.
A personalized framework for smart home automation is introduced, utilizing machine learning to predict user activities and allow for the context-aware control of living spaces. Predicting user activities, such as ‘Watch_TV’, ‘Sleep’, ‘Work_On_Computer’, and ‘Cook_Dinner’, is essential for improving occupant comfort, optimizing energy consumption, and offering proactive support in smart home settings. The Edge Light Human Activity Recognition Predictor, or EL-HARP, is the main prediction model used in this framework to predict user behavior. The system combines open-source software for real-time sensing, facial recognition, and appliance control with affordable hardware, including the Raspberry Pi 5, ESP32-CAM, Tuya smart switches, NFC (Near Field Communication), and ultrasonic sensors. In order to predict daily user activities, three gradient-boosting models—XGBoost, CatBoost, and LightGBM (Gradient Boosting Models)—are trained for each household using engineered features and past behaviour patterns. Using extended temporal features, LightGBM in particular achieves strong predictive performance within EL-HARP. The framework is optimized for edge deployment with efficient training, regularization, and class imbalance handling. A fully functional prototype demonstrates real-time performance and adaptability to individual behavior patterns. This work contributes a scalable, privacy-preserving, and user-centric approach to intelligent home automation. Full article
(This article belongs to the Special Issue Sensor-Based Human Activity Recognition)
Show Figures

Graphical abstract

26 pages, 2248 KB  
Article
Exploring Critical Success Factors of AI-Integrated Digital Twins on Saudi Construction Project Deliverables: A PLS-SEM Approach
by Aljawharah A. Alnaser and Haytham Elmousalami
Buildings 2025, 15(19), 3543; https://doi.org/10.3390/buildings15193543 - 2 Oct 2025
Viewed by 838
Abstract
Artificial intelligence-enhanced digital twins are widely acknowledged as effective instruments for facilitating digital transformation in the building industry. Nonetheless, their implementation remains uneven, with little knowledge regarding the organizational conditions that convert these technologies into enhanced project outcomes. This study investigates the critical [...] Read more.
Artificial intelligence-enhanced digital twins are widely acknowledged as effective instruments for facilitating digital transformation in the building industry. Nonetheless, their implementation remains uneven, with little knowledge regarding the organizational conditions that convert these technologies into enhanced project outcomes. This study investigates the critical success factors (CSFs) that shape the effectiveness of AI-integrated digital twins in Saudi Arabia’s construction industry. A hierarchical structural equation model was developed to capture three dimensions of CSFs, including human-centric, technological, and governance-related, and to evaluate their impact on project deliverables, including time, cost, resource utilization, quality, and risk. Data from a survey of 120 industry professionals were assessed utilizing a PLS-SEM approach, incorporating rigorous measurement and structural assessments. Results indicate that technology and infrastructural factors have the most significant impact on critical success factors, followed by governance and human-related enablers. Consequently, CSFs substantially forecast project outcomes, mediating the influences of all three domains. These findings underscore the importance of investing in data quality, scalable infrastructure, and governance frameworks, complemented by workforce training and incentives, to realize the benefits of AI-enabled digital transformations fully. The study presents a validated paradigm that elucidates how enabling conditions enhance performance improvements, providing practical direction for industry players and policymakers. Full article
(This article belongs to the Special Issue The Power of Knowledge in Enhancing Construction Project Delivery)
Show Figures

Figure 1

23 pages, 2663 KB  
Article
Towards Sustainable Personalized Assembly Through Human-Centric Digital Twins
by Marina Crnjac Zizic, Nikola Gjeldum, Marko Mladineo, Bozenko Bilic and Amanda Aljinovic Mestrovic
Sensors 2025, 25(18), 5662; https://doi.org/10.3390/s25185662 - 11 Sep 2025
Viewed by 547
Abstract
New trends in industry emphasize green and sustainable production on the one hand and personalized or individualized production on the other hand. Introducing new manufacturing technologies and materials to integrate the customer’s specific requirements into the product, while keeping the focus on environmental [...] Read more.
New trends in industry emphasize green and sustainable production on the one hand and personalized or individualized production on the other hand. Introducing new manufacturing technologies and materials to integrate the customer’s specific requirements into the product, while keeping the focus on environmental footprint, becomes a serious challenge. As a result, new production paradigms are developed to keep up with new trends. The most known Industry 4.0 paradigm is oriented towards new technologies and digitalization. Recently, Industry 5.0 appeared as a supplement to the existing Industry 4.0 paradigm, oriented to sustainability and the worker. A multidisciplinary approach is necessary to address these challenges. The Industry 5.0 paradigm’s main pillars—human centricity, resilience, and sustainability—are also pillars of the multidisciplinary approach used in this research. A human-centric approach includes workforce reskilling and acquiring new technologies to ensure that technology serves to enhance human work, while creating a supportive and inclusive work environment and prioritizing employee engagement and wellbeing. Resilience as a second pillar is related to the ability of manufacturing systems and processes to adapt to changing conditions to remain robust and flexible, and sustainability is an important and long-term requirement of this multidisciplinary approach. Based on the research part of the Erasmus+ ExCurS project, particularly research focused on application and training related to digital twins, an advanced concept of organizational sustainability is presented in this paper. The concept of organizational sustainability is realized through the usage of key digital twin technologies aligned with human-centric approaches. A new prototype of a digital twin that optimizes an assembly system based on a developed algorithm and humanoid decision-making is provided as a proof of concept. The human-centric digital twin for industrial application is presented through a case study of personalized products. Full article
Show Figures

Figure 1

23 pages, 1783 KB  
Article
Training for Industry 5.0: Evaluating Effectiveness and Mapping Emerging Competences
by Alexios Papacharalampopoulos, Olga Maria Karagianni, Matteo Fedeli, Philipp Lackner, Gintare Aleksandraviciene, Massimo Ippolito, Unai Elorza, Antonius Johannes Schröder and Panagiotis Stavropoulos
Machines 2025, 13(9), 825; https://doi.org/10.3390/machines13090825 - 7 Sep 2025
Viewed by 742
Abstract
As Industry 5.0 emerges as a human-centric evolution of industrial systems, this study investigates the effectiveness of training interventions in companies aimed at supporting the transition to Industry 5.0, emphasizing human-centric and resilient skill development. Drawing from multiple case studies involving engineers and [...] Read more.
As Industry 5.0 emerges as a human-centric evolution of industrial systems, this study investigates the effectiveness of training interventions in companies aimed at supporting the transition to Industry 5.0, emphasizing human-centric and resilient skill development. Drawing from multiple case studies involving engineers and operators, the research applies both meta-analysis and meta-regression to assess the added value of experiential learning approaches such as Teaching and Learning Factories. In addition, a novel methodology combining quantitative analyses with qualitative interpretation of emerging competences is presented. Principal Component Analysis and classification frameworks are employed to identify and organize key competence clusters along technological, organizational, and social dimensions. Special attention is given to the emergence of human-centered competences such as decision empowerment, which are shown to complement traditional operational capabilities. The findings confirm that experiential training interventions enhance both self-efficacy and adaptive operational readiness, while the use of fusion techniques enables the generalization of results across heterogeneous corporate settings. This work contributes to ongoing discourse on Industry 5.0 readiness by linking training design to strategic company incentives and highlights the role of structured evaluation in informing future policy and implementation pathways. Full article
Show Figures

Figure 1

11 pages, 1251 KB  
Article
AI-Enhanced Model for Integrated Performance Prediction and Classification of Vibration-Reducing Gloves for Hand-Transmitted Vibration Control
by Yumeng Yao, Wei Xiao, Alireza Moezi, Marco Tarabini, Paola Saccomandi and Subhash Rakheja
Actuators 2025, 14(9), 436; https://doi.org/10.3390/act14090436 - 3 Sep 2025
Viewed by 539
Abstract
This study presents a human-centric, data-driven modeling framework for the intelligent evaluation and classification of vibration-reducing (VR) gloves used in hand-transmitted vibration environments. Recognizing the trade-offs between protection and functionality, the integrated performance assessment incorporates three critical and often conflicting metrics: manual dexterity, [...] Read more.
This study presents a human-centric, data-driven modeling framework for the intelligent evaluation and classification of vibration-reducing (VR) gloves used in hand-transmitted vibration environments. Recognizing the trade-offs between protection and functionality, the integrated performance assessment incorporates three critical and often conflicting metrics: manual dexterity, grip strength, and distributed vibration transmissibility at the palm and fingers. Three independent experiments involving fifteen participants were conducted to evaluate the individual performance of ten commercially available VR gloves fabricated from air bladders, polymers, and viscoelastic gels. The effects of VR gloves on manual dexterity, grip strength, and distributed vibration transmission were investigated. The resulting experimental data were used to train and tune seven different machine learning models. The results suggested that the AdaBoost model demonstrated superior predictive performance, achieving 92% accuracy in efficiently evaluating the integrated performance of VR gloves. It is further shown that the proposed data-driven model could be effectively applied to classify the performances of VR gloves in three workplace conditions based on the dominant vibration frequencies (low-, medium-, and high-frequency). The proposed framework demonstrates the potential of AI-enhanced intelligent actuation systems to support personalized selection of wearable protective equipment, thereby enhancing occupational safety, usability, and task efficiency in vibration-intensive environments. Full article
Show Figures

Figure 1

23 pages, 3781 KB  
Article
Evaluating Urban Visual Attractiveness Perception Using Multimodal Large Language Model and Street View Images
by Qianyu Zhou, Jiaxin Zhang and Zehong Zhu
Buildings 2025, 15(16), 2970; https://doi.org/10.3390/buildings15162970 - 21 Aug 2025
Cited by 4 | Viewed by 1805
Abstract
Visual attractiveness perception—an individual’s capacity to recognise and evaluate the visual appeal of urban scene safety—has direct implications for well-being, economic vitality, and social cohesion. However, most empirical studies rely on single-source metrics or algorithm-centric pipelines that under-represent human perception. Addressing this gap, [...] Read more.
Visual attractiveness perception—an individual’s capacity to recognise and evaluate the visual appeal of urban scene safety—has direct implications for well-being, economic vitality, and social cohesion. However, most empirical studies rely on single-source metrics or algorithm-centric pipelines that under-represent human perception. Addressing this gap, we introduce a fully reproducible, multimodal framework that measures and models this domain-specific facet of human intelligence by coupling Generative Pre-trained Transformer 4o (GPT-4o) with 1000 Street View images. The pipeline first elicits pairwise aesthetic judgements from GPT-4o, converts them into a latent attractiveness scale via Thurstone’s law of comparative judgement, and then validates the scale against 1.17 M crowdsourced ratings from MIT’s Place Pulse 2.0 benchmark (Spearman ρ = 0.76, p < 0.001). Compared with a Siamese CNN baseline (ρ = 0.60), GPT-4o yields both higher criterion validity and an 88% reduction in inference time, underscoring its superior capacity to approximate human evaluative reasoning. In this study, we introduce a standardised and reproducible streetscape evaluation pipeline using GPT-4o. We then combine the resulting attractiveness scores with network-based accessibility modelling to generate a “aesthetic–accessibility map” of urban central districts in Chongqing, China. Cluster analysis reveals four statistically distinct street types—Iconic Core, Liveable Rings, Transit-Rich but Bland, and Peripheral Low-Appeal—providing actionable insights for landscape design, urban governance, and tourism planning. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

21 pages, 3746 KB  
Article
DCP: Learning Accelerator Dataflow for Neural Networks via Propagation
by Peng Xu, Wenqi Shao and Ping Luo
Electronics 2025, 14(15), 3085; https://doi.org/10.3390/electronics14153085 - 1 Aug 2025
Cited by 1 | Viewed by 880
Abstract
Deep neural network (DNN) hardware (HW) accelerators have achieved great success in improving DNNs’ performance and efficiency. One key reason is the dataflow in executing a DNN layer, including on-chip data partitioning, computation parallelism, and scheduling policy, which have large impacts on latency [...] Read more.
Deep neural network (DNN) hardware (HW) accelerators have achieved great success in improving DNNs’ performance and efficiency. One key reason is the dataflow in executing a DNN layer, including on-chip data partitioning, computation parallelism, and scheduling policy, which have large impacts on latency and energy consumption. Unlike prior works that required considerable efforts from HW engineers to design suitable dataflows for different DNNs, this work proposes an efficient data-centric approach, named Dataflow Code Propagation (DCP), to automatically find the optimal dataflow for DNN layers in seconds without human effort. It has several attractive benefits that prior studies lack, including the following: (i) We translate the HW dataflow configuration into a code representation in a unified dataflow coding space, which can be optimized by back-propagating gradients given a DNN layer or network. (ii) DCP learns a neural predictor to efficiently update the dataflow codes towards the desired gradient directions to minimize various optimization objectives, e.g., latency and energy. (iii) It can be easily generalized to unseen HW configurations in a zero-shot or few-shot learning manner. For example, without using additional training data, Extensive experiments on several representative models such as MobileNet, ResNet, and ViT show that DCP outperforms its counterparts in various settings. Full article
(This article belongs to the Special Issue Applied Machine Learning in Data Science)
Show Figures

Figure 1

51 pages, 5654 KB  
Review
Exploring the Role of Digital Twin and Industrial Metaverse Technologies in Enhancing Occupational Health and Safety in Manufacturing
by Arslan Zahid, Aniello Ferraro, Antonella Petrillo and Fabio De Felice
Appl. Sci. 2025, 15(15), 8268; https://doi.org/10.3390/app15158268 - 25 Jul 2025
Cited by 2 | Viewed by 2563
Abstract
The evolution of Industry 4.0 and the emerging paradigm of Industry 5.0 have introduced disruptive technologies that are reshaping modern manufacturing environments. Among these, Digital Twin (DT) and Industrial Metaverse (IM) technologies are increasingly recognized for their potential to enhance Occupational Health and [...] Read more.
The evolution of Industry 4.0 and the emerging paradigm of Industry 5.0 have introduced disruptive technologies that are reshaping modern manufacturing environments. Among these, Digital Twin (DT) and Industrial Metaverse (IM) technologies are increasingly recognized for their potential to enhance Occupational Health and Safety (OHS). However, a comprehensive understanding of how these technologies integrate to support OHS in manufacturing remains limited. This study systematically explores the transformative role of DT and IM in creating immersive, intelligent, and human-centric safety ecosystems. Following the PRISMA guidelines, a Systematic Literature Review (SLR) of 75 peer-reviewed studies from the SCOPUS and Web of Science databases was conducted. The review identifies key enabling technologies such as Virtual Reality (VR), Augmented Reality (AR), Extended Reality (XR), Internet of Things (IoT), Artificial Intelligence (AI), Cyber-Physical Systems (CPS), and Collaborative Robots (COBOTS), and highlights their applications in real-time monitoring, immersive safety training, and predictive hazard mitigation. A conceptual framework is proposed, illustrating a synergistic digital ecosystem that integrates predictive analytics, real-time monitoring, and immersive training to enhance the OHS. The findings highlight both the transformative benefits and the key adoption challenges of these technologies, including technical complexities, data security, privacy, ethical concerns, and organizational resistance. This study provides a foundational framework for future research and practical implementation in Industry 5.0. Full article
Show Figures

Figure 1

32 pages, 2740 KB  
Article
Vision-Based Navigation and Perception for Autonomous Robots: Sensors, SLAM, Control Strategies, and Cross-Domain Applications—A Review
by Eder A. Rodríguez-Martínez, Wendy Flores-Fuentes, Farouk Achakir, Oleg Sergiyenko and Fabian N. Murrieta-Rico
Eng 2025, 6(7), 153; https://doi.org/10.3390/eng6070153 - 7 Jul 2025
Cited by 2 | Viewed by 7701
Abstract
Camera-centric perception has matured into a cornerstone of modern autonomy, from self-driving cars and factory cobots to underwater and planetary exploration. This review synthesizes more than a decade of progress in vision-based robotic navigation through an engineering lens, charting the full pipeline from [...] Read more.
Camera-centric perception has matured into a cornerstone of modern autonomy, from self-driving cars and factory cobots to underwater and planetary exploration. This review synthesizes more than a decade of progress in vision-based robotic navigation through an engineering lens, charting the full pipeline from sensing to deployment. We first examine the expanding sensor palette—monocular and multi-camera rigs, stereo and RGB-D devices, LiDAR–camera hybrids, event cameras, and infrared systems—highlighting the complementary operating envelopes and the rise of learning-based depth inference. The advances in visual localization and mapping are then analyzed, contrasting sparse and dense SLAM approaches, as well as monocular, stereo, and visual–inertial formulations. Additional topics include loop closure, semantic mapping, and LiDAR–visual–inertial fusion, which enables drift-free operation in dynamic environments. Building on these foundations, we review the navigation and control strategies, spanning classical planning, reinforcement and imitation learning, hybrid topological–metric memories, and emerging visual language guidance. Application case studies—autonomous driving, industrial manipulation, autonomous underwater vehicles, planetary rovers, aerial drones, and humanoids—demonstrate how tailored sensor suites and algorithms meet domain-specific constraints. Finally, the future research trajectories are distilled: generative AI for synthetic training data and scene completion; high-density 3D perception with solid-state LiDAR and neural implicit representations; event-based vision for ultra-fast control; and human-centric autonomy in next-generation robots. By providing a unified taxonomy, a comparative analysis, and engineering guidelines, this review aims to inform researchers and practitioners designing robust, scalable, vision-driven robotic systems. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

17 pages, 1584 KB  
Article
Evaluating Genetic Regulators of MicroRNAs Using Machine Learning Models
by Mert Cihan, Uchenna Alex Anyaegbunam, Steffen Albrecht, Miguel A. Andrade-Navarro and Maximilian Sprang
Int. J. Mol. Sci. 2025, 26(12), 5757; https://doi.org/10.3390/ijms26125757 - 16 Jun 2025
Cited by 1 | Viewed by 1015
Abstract
This study explores the genetic regulators of microRNAs (miRNAs) using a set of machine learning models to predict miRNA expression levels from gene expression data. Employing machine learning, we accurately predicted the expression of 353 human miRNAs (R2 > 0.5), revealing robust [...] Read more.
This study explores the genetic regulators of microRNAs (miRNAs) using a set of machine learning models to predict miRNA expression levels from gene expression data. Employing machine learning, we accurately predicted the expression of 353 human miRNAs (R2 > 0.5), revealing robust miRNA–gene regulatory relationships. By analyzing the coefficients of these predictive models, we identified genetic regulators for each miRNA and highlighted the multifactorial nature of miRNA regulation. Further network analysis uncovered that miRNAs with higher predictive accuracy are more densely connected to their top predictive genes, reflecting strong regulatory control within miRNA–gene networks. To refine these insights, we filtered the miRNA–gene interaction networks to identify miRNAs specifically associated with enriched pathways, such as synaptic function and cardiovascular processes. From this pathway-centric analysis, we present a curated list of miRNAs and their genetic regulators, pinpointing their activity within distinct biological contexts. Additionally, our study provides a comprehensive set of metrics and coefficients for the genes most predictive of miRNA expression, along with a filtered subnetwork of miRNAs linked to specific pathways and phenotypes. By integrating miRNA expression predictors with network analysis and pathway enrichment, this work advances our understanding of miRNA regulatory mechanisms and their roles across distinct biological systems. Our approach enables researchers to train custom models using TCGA data and predict miRNA expression from gene expression inputs. Full article
(This article belongs to the Special Issue Applications of Machine Learning in Bioinformatics and Biomedicine)
Show Figures

Graphical abstract

Back to TopTop