Exploring Critical Success Factors of AI-Integrated Digital Twins on Saudi Construction Project Deliverables: A PLS-SEM Approach
Abstract
1. Introduction
2. Literature Review
2.1. AI-Enabled Digital Twins in the Construction Industry
2.2. Comparative Analysis and Research Gap
- ▪
- Isolated focus in prior models: BIM, IoT–DT, and AI-driven frameworks often emphasize a single dimension (e.g., technology, monitoring, or analytics) without integrating human, technological, and governance factors.
- ▪
- Limited attention to human-centric enablers: Workforce readiness, training, and incentive structures are frequently overlooked, despite their central role in sustaining adoption.
- ▪
- Lack of governance integration: Few studies incorporate standards, leadership commitment, and ethical AI practices as formal determinants of digital twin success.
- ▪
- Absence of validated hierarchical models: Previous work rarely employs higher-order constructs that capture the combined influence of multiple enablers on project deliverables.
- ▪
- Narrow link to outcomes: Existing studies often demonstrate technical potential; however, they stop short of empirically linking success factors to measurable deliverables such as cost, schedule, quality, and risk.
2.3. Critical Success Factors (CSFs) Taxonomy
2.3.1. Human-Centric Factors (HCFs)
Code | Factors | References |
---|---|---|
HCF | Human-centric factors | |
HCF1 | Training and Education (e.g., Upskilling in AI, ML, BIM, and data analytics). | [4,11,16,22,23,24,32] |
HCF2 | Incentives and Rewards (Motivation for adoption). | [3,11,24,26,27,33] |
HCF3 | Skilled Workforce Readiness (e.g., BIM proficiency, AI/ML literacy, data analytics competence). | [4,24,27,29,30,31,32] |
2.3.2. Technology and Infrastructure-Centric Factors (TIFs)
Code | Factors | References |
---|---|---|
TIF | ||
TIF1 | Data Quality and Management (Accuracy, consistency, and real-time updates). | [14,15,16,17,18,30,31,32,35,36] |
TIF2 | IT Infrastructure Availability (Hardware, software, and network reliability). | [15,18,19,29,37,38] |
TIF3 | Scalable Infrastructure (Cloud/edge computing for real-time analytics). | [19,39,40,43,44] |
TIF4 | Vendor Support (Tech partnerships, system compatibility). | [11,19,20,35,41] |
TIF5 | Cybersecurity: Data Security (Encryption, access controls, GDPR compliance) and Privacy (Secure storage, access control, and breach prevention). | [16,19,20,32,37,38] |
2.3.3. Governance and Standards-Centric Factors (GSFs)
Code | Factors | References |
---|---|---|
GSF | Governance and Standard-centric factors | |
GSF1 | National guidelines/Codes of practice, Adherence to ISO 19650 for BIM, ISO 23247 for DT, local laws, and Project frameworks. | [3,15,18,29,45,46] |
GSF2 | Ethical use, and ethical AI Use (Bias mitigation, transparency, and accountability). | [3,6,35,47,48,54] |
GSF3 | Continuous Data Integrity and Auditing (Regular checks on data integrity and system performance). | [4,18,20,29,49,50] |
GSF4 | Leadership commitment (Top management support, C-level sponsorship). | [4,11,29,51,52] |
2.4. Project Deliverables (PDs)
2.5. Conceptual Model and Hypotheses
3. Methodology
3.1. Questionnaire Survey Development and Data Collection
3.2. Targeted Participants and Sampling Technique
3.3. Development of PLS-SEM Model
4. Results
4.1. Participant’s Demography
4.2. Measurement Model
4.3. Structural Model
4.4. Indirect Effects (Mediation via CSFs)
4.5. Robustness/Diagnostics (Multicollinearity)
5. Discussion
5.1. Discussion of the Model’s Results
5.2. Research Limitations
5.3. Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Term |
AI | Artificial Intelligence |
AVE | Average Variance Extracted |
BCa | Bias-Corrected and Accelerated (Bootstrapping) |
BIM | Building Information Modeling |
CMV | Common Method Variance |
CR | Composite Reliability |
CSFs | Critical Success Factors |
DT | Digital Twin |
GSF | Governance and Standards Factors |
HCFs | Human-Centric Factors |
HTMT | Heterotrait–Monotrait Ratio |
ISO 19650 | International Standard for Organization and Digitization of Information about Buildings and Civil Engineering Works, including Building Information Modeling (BIM) Information Management using BIM |
ISO 23247 | International Standard for Digital Twin Framework for Manufacturing (applied here to DT in construction) |
IT | Information Technology |
KSA | Kingdom of Saudi Arabia |
ML | Machine Learning |
PDs | Project Deliverables |
PLS-SEM | Partial Least Squares Structural Equation Modeling |
R2 | Coefficient of Determination (Explained Variance) |
TIFs | Technology and Infrastructure Factors |
VIF | Variance Inflation Factor |
References
- Baduge, S.K.; Thilakarathna, S.; Perera, J.S.; Arashpour, M.; Sharafi, P.; Teodosio, B.; Shringi, A.; Mendis, P. Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Autom. Constr. 2022, 141, 104440. [Google Scholar] [CrossRef]
- Debrah, C.; Chan, A.P.; Darko, A. Artificial intelligence in green building. Autom. Constr. 2022, 137, 104192. [Google Scholar] [CrossRef]
- Alnaser, A.A.; Elmousalami, H. Benefits and Challenges of AI-Based Digital Twin Integration in the Saudi Arabian Construction Industry: A Correspondence Analysis (CA) Approach. Appl. Sci. 2025, 15, 4675. [Google Scholar] [CrossRef]
- Alnaser, A.A.; Maxi, M.; Elmousalami, H. AI-Powered Digital Twins and Internet of Things for Smart Cities and Sustainable Building Environment. Appl. Sci. 2024, 14, 12056. [Google Scholar] [CrossRef]
- Deng, M.; Menassa, C.C.; Kamat, V.R. From BIM to digital twins: A systematic review of the evolution of intelligent building representations in the AEC-FM industry. J. Inf. Technol. Constr. 2021, 26, 58–83. Available online: https://itcon.org/papers/2021_05-ITcon-Deng.pdf (accessed on 13 October 2024). [CrossRef]
- Ali, A.H.; El Rifaee, M.; Abdulai, S.F.; Elmousalami, H.H. A holistic model for assessing key success factors in mitigating challenges to modular Integrated construction. Int. J. Constr. Manag. 2025, 26, 1–21. [Google Scholar] [CrossRef]
- Almarri, K.; Boussabaine, H. Critical success factors for public–private partnerships in smart city infrastructure projects. Constr. Innov. 2025, 25, 224–247. [Google Scholar] [CrossRef]
- Alfaro-Viquez, D.; Zamora-Hernandez, M.; Fernandez-Vega, M.; Garcia-Rodriguez, J.; Azorin-Lopez, J. A Comprehensive Review of AI-Based Digital Twin Applications in Manufacturing: Integration Across Operator, Product, and Process Dimensions. Electronics 2025, 14, 646. [Google Scholar] [CrossRef]
- Rahman, M.A.; Shahrior, M.F.; Iqbal, K.; Abushaiba, A.A. Enabling Intelligent Industrial Automation: A Review of Machine Learning Applications with Digital Twin and Edge AI Integration. Automation 2025, 6, 37. [Google Scholar] [CrossRef]
- Faye, S.; Camelo, M.; Sottet, J.-S.; Sommer, C.; Franke, M.; Baudouin, J.; Castellanos, G.; Decorme, R.; Fanti, M.P.; Fuladi, R. Integrating network digital twinning into future ai-based 6g systems: The 6g-twin vision. In Proceedings of the 2024 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Antwerp, Belgium, 3–6 June 2024; pp. 883–888. Available online: https://ieeexplore.ieee.org/abstract/document/10597058/ (accessed on 24 August 2025).
- Shahzad, M.; Shafiq, M.T.; Douglas, D.; Kassem, M. Digital Twins in Built Environments: An Investigation of the Characteristics, Applications, and Challenges. Buildings 2022, 12, 120. [Google Scholar] [CrossRef]
- Brilakis, I.; Pan, Y.; Borrmann, A.; Mayer, H.-G.; Rhein, F.; Vos, C.; Pettinato, E.; Wagner, S. Built Environment Digital Twining. In International Workshop on Built Environment Digital Twinning Presented by TUM Institute for Advanced Study and Siemens AG; Technical University of Munich: Munich, Germany, 2019. [Google Scholar] [CrossRef]
- Madubuike, O.C.; Anumba, C.J.; Khallaf, R. A review of digital twin applications in construction. J. Inf. Technol. Constr. 2022, 27, 145–172. [Google Scholar] [CrossRef]
- Xie, M.; Pan, W. Opportunities and Challenges of Digital Twin Applications in Modular Integrated Construction. In Proceedings of the 37th ISARC, Kitakyushu, Japan, 27–29 October 2020. [Google Scholar] [CrossRef]
- Attaran, M.; Celik, B.G. Digital Twin: Benefits, use cases, challenges, and opportunities. Decis. Anal. J. 2023, 6, 100165. [Google Scholar] [CrossRef]
- Piras, G.; Muzi, F.; Tiburcio, V.A. Digital Management Methodology for Building Production Optimization through Digital Twin and Artificial Intelligence Integration. Buildings 2024, 14, 2110. [Google Scholar] [CrossRef]
- Patwary, M.; Ramchandran, P.; Tibrewala, S.; Lala, T.K.; Kautz, F.; Coronado, E.; Riggio, R.; Ganugapati, S.; Ranganathan, S.; Liu, L. INGR Roadmap Edge Services and Automation Chapter. In Proceedings of the 2023 IEEE Future Networks World Forum (FNWF), Baltimore, MD, USA, 13–15 November 2023; pp. 1–68. Available online: https://ieeexplore.ieee.org/abstract/document/10520517/ (accessed on 24 August 2025).
- Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital Twin: Challenges and Open Research. IEEE Access 2020, 8, 108952–108971. [Google Scholar] [CrossRef]
- Velayudhan, N.K.; Pradeep, P.; Rao, S.N.; Devidas, A.R.; Ramesh, M.V. IoT-enabled water distribution systems—A comparative technological review. IEEE Access 2022, 10, 101042–101070. [Google Scholar] [CrossRef]
- Menges, D.; Rasheed, A. Digital Twin for Autonomous Surface Vessels: Enabler for Safe Maritime Navigation. arXiv 2024, arXiv:2411.03465. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, C.; Zhang, T.; Zhang, Z.; Doan, D.T. Digital Twins in Construction: Architecture, Applications, Trends and Challenges. Buildings 2024, 14, 2616. Available online: https://openrepository.aut.ac.nz/items/df976548-881f-4a83-9ca5-05a8ab42d969 (accessed on 13 October 2024). [CrossRef]
- Chen, J.; Shi, Y. Generative AI over mobile networks for human digital twin in human-centric applications: A comprehensive survey. TechRxiv 2024. Available online: https://www.techrxiv.org/doi/full/10.36227/techrxiv.172349525.50239637 (accessed on 24 August 2025).
- Modoni, G.E.; Sacco, M. A Human Digital-Twin-Based Framework Driving Human Centricity towards Industry 5.0. Sensors 2023, 23, 6054. [Google Scholar] [CrossRef] [PubMed]
- Raja, M.V.; Thaker, H.; Katragadda, S.R.; Kadam, S. A Review of Human-Centric AI in Industry 5.0: Integrating Data Science with Mechanical Automation. J. Econ. Finance Account. Stud. 2025, 7, 42–53. [Google Scholar] [CrossRef]
- Alnaser, A.A. The Effect of Rumors on BIM Implementation Processes in Saudi Architectural Engineering (AE) Firms. J. Archit. Plan.—King Saud Univ. 2023, 35, 391–409. [Google Scholar] [CrossRef]
- Bucci, I.; Fani, V.; Bandinelli, R. Towards Human-Centric Manufacturing: Exploring the Role of Human Digital Twins in Industry 5.0. Sustainability 2024, 17, 129. [Google Scholar] [CrossRef]
- Krupas, M.; Kajati, E.; Liu, C.; Zolotova, I. Towards a Human-Centric Digital Twin for Human–Machine Collaboration: A Review on Enabling Technologies and Methods. Sensors 2024, 24, 2232. [Google Scholar] [CrossRef] [PubMed]
- Amabile, T.M.; Patterson, C.; Mueller, J.; Wojcik, T.; Kramer, S.J.; Odomirok, P.W.; Marsh, M. Academic-Practitioner Collaboration In Management Research: A Case of Cross-Profession Collaboration. Acad. Manag. J. 2001, 44, 418–431. [Google Scholar] [CrossRef]
- Alnaser, A.A.; Ali, A.H.; Elmousalami, H.H.; Elyamany, A.; Mohamed, A.G. Assessment Framework for BIM-Digital Twin Readiness in the Construction Industry. Buildings 2024, 14, 268. [Google Scholar] [CrossRef]
- Awotunde, J.B.; Muduli, K.; Brahma, B. Computational Intelligence for Analysis of Trends in Industry 4.0 and 5.0, 1st ed.; Auerbach Publications: New York, NY, USA, 2025; Volume 29. [Google Scholar] [CrossRef]
- Bukowski, L.; Werbinska-Wojciechowska, S. Towards Maintenance 5.0: Resilience-Based Maintenance in AI-Driven Sustainable and Human-Centric Industrial Systems. Sensors 2025, 25, 5100. [Google Scholar] [CrossRef]
- Elmousalami, H.; Maxy, M.; Hui, F.K.P.; Aye, L. AI in automated sustainable construction engineering management. Autom. Constr. 2025, 175, 106202. [Google Scholar] [CrossRef]
- Elmousalami, H.; Hui, F.K.P.; Aye, L. Electroencephalography (EEG) for psychological hazards and mental health in construction safety automation: Algorithmic Systematic Review (ASR). Autom. Constr. 2025, 177, 106346. [Google Scholar] [CrossRef]
- Elmousalami, H.H.; Elshaboury, N.A.T.; Maxi, M.M.I.; Ibrahim, A.H.; Elyamany, A.H. Bayesian Optimized Ensemble Learning System for Predicting Conceptual Cost and Construction Duration of Irrigation Improvement Systems. KSCE J. Civ. Eng. 2024, 29, 100014. [Google Scholar] [CrossRef]
- Rane, N. ChatGPT and Similar Generative Artificial Intelligence (AI) for Building and Construction Industry: Contribution, Opportunities and Challenges of Large Language Models for Industry 4.0, Industry 5.0, and Society 5.0. SSRN Electron. J. 2023, 2, 10–17. [Google Scholar] [CrossRef]
- Srivastava, S.; Singh, M.; Elamer, A.A. Digital Twins for Inclusive Urban Planning to Empowering Communities in a Data-Driven Future. In Digital Twins Smart Cities Urban Plan, 1st ed.; CRC Press: Boca Raton, FL, USA, 2025; p. 19. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003510338-2/digital-twins-inclusive-urban-planning-empowering-communities-data-driven-future-sonali-srivastava-manisha-singh-ahmed-elamer (accessed on 30 March 2025).
- Hossain, M.S.; Sikdar, M.S.H.; Chowdhury, A.; Bhuiyan, S.M.Y.; Mobin, S.M. AI-driven aggregate planning for sustainable supply chains: A systematic literature review of models, applications, and industry impacts. Am. J. Adv. Technol. Eng. Solut. 2025, 1, 382–437. [Google Scholar] [CrossRef]
- Zeng, F.; Chen, A.; Xu, S.; Chan, H.K.; Xu, L. Digitalization of the maritime shipping service: Defining the digital freight forwarder. Int. J. Phys. Distrib. Logist. Manag. 2025, 55, 869–893. [Google Scholar] [CrossRef]
- Drici, H.; Carpio-Pinedo, J. Urban land use mix and AI: A systematic review. Cities 2025, 165, 2. [Google Scholar] [CrossRef]
- Seth, N. Human Edge in the AI Age: Eight Timeless Mantras for Success; Penguin Random House India Private Limited: Gurugram, India, 2025; Available online: https://books.google.com.au/books?hl=en&lr=&id=Z1tzEQAAQBAJ&oi=fnd&pg=PA1986&dq=Technology+%26+Infrastructure-centric+factors+in+AI-Based+Digital+Twin+Integration+&ots=kFhBo8i-vo&sig=ohCOPosRyjio4u982UpJJIkIoSo (accessed on 24 August 2025).
- Sylla, T.; Mendiboure, L.; Maaloul, S.; Aniss, H.; Chalouf, M.A.; Delbruel, S. Multi-connectivity for 5G networks and beyond: A survey. Sensors 2022, 22, 7591. [Google Scholar] [CrossRef]
- Elmousalami, H.; Alnaser, A.A.; Hui, F.K.P. Advancing Smart Zero-Carbon Cities: High-Resolution Wind Energy Forecasting to 36 Hours Ahead. Appl. Sci. 2024, 14, 11918. Available online: https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=20763417&AN=181961393&h=LZ%2BrcfGrIiIyxFDmDXfzPLxyWP55gYKHPq%2BJ%2FBMYn6%2BacJ90t%2FH3ivtD8UCJJGRHYG0%2B8S4KbplZsE9Xd4welQ%3D%3D&crl=c (accessed on 2 March 2025). [CrossRef]
- Elmousalami, H.; Hui, F.K.P.; Alnaser, A.A. Enhancing Smart and Zero-Carbon Cities Through a Hybrid CNN-LSTM Algorithm for Sustainable AI-Driven Solar Power Forecasting (SAI-SPF). Buildings 2025, 15, 2785. [Google Scholar] [CrossRef]
- Elshaboury, N.; Elmousalami, H. Wind speed and power forecasting using Bayesian optimized machine learning models in Gabal Al-Zayt, Egypt. Sci. Rep. 2025, 15, 28500. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X. Smart Compliance Checking Frameworks for BIM Standards. Ph.D. Thesis, Cardiff University, Cardiff, UK, 2024. Available online: https://orca.cardiff.ac.uk/id/eprint/169050/ (accessed on 24 August 2025).
- Malla, V.; Tummalapudi, M.; Delhi, V.S.K. Perceptions of Built-Environment Professionals on Using ISO 19650 Standards for Information Management. J. Leg. Aff. Dispute Resolut. Eng. Constr. 2024, 16, 04523045. [Google Scholar] [CrossRef]
- Yalim, C.; Handley, H.A.H. Integrating Data Management Plans Into the Unified Architecture Framework Standards Views. Syst. Eng. 2025, e70002. [Google Scholar] [CrossRef]
- Dhoundiyal, H.; Mohanty, P. Artificial Intelligence and Robotics Driving Tourism 4.0: An Exploration. In Handbook of Technology Application in Tourism in Asia; Hassan, A., Ed.; Springer Nature: Singapore, 2022; pp. 1265–1285. [Google Scholar] [CrossRef]
- Rathee, S.; Chobe, A. Getting Started with Open Source Technologies: Applying Open Source Technologies with Projects and Real Use Cases; Apress: Berkeley, CA, USA, 2022. [Google Scholar] [CrossRef]
- Cook, K.S.; Fogelberg, K.; Butterbrodt, P.; Jolley, K.; Raghavan, M.; Smith, J.R. Assessing Student Learning: Exams, Quizzes, and Remediation. In Educational Principles and Practice in Veterinary Medicine, 1st ed.; Fogelberg, K., Ed.; Wiley: Hoboken, NJ, USA, 2023; pp. 287–312. [Google Scholar] [CrossRef]
- El-Din, M.N.; Pereira, P.F.; Martins, J.P.; Ramos, N.M. Digital twins for construction assets using BIM standard specifications. Buildings 2022, 12, 2155. [Google Scholar] [CrossRef]
- Liang, H.; Moya, B.; Seah, E.; Weng, A.N.K.; Baillargeat, D.; Joerin, J.; Zhang, X.; Chinesta, F.; Chatzi, E. Harnessing Hybrid Digital Twinning for Decision-Support in Smart Infrastructures. 2024. Available online: https://engrxiv.org/preprint/download/3838/7913/6530 (accessed on 24 August 2025).
- Elmousalami, H.; Elmesalami, H.H.; Maxi, M.; Farid, A.A.M.; Elshaboury, N.A.T. A comprehensive evaluation of machine learning and deep learning algorithms for wind speed and power prediction. Decis. Anal. J. 2024, 13, 100527. [Google Scholar] [CrossRef]
- Elmousalami, H.; Alnaser, A.A.; Hui, F.K.P. Sustainable AI-driven wind energy forecasting: Advancing zero-carbon cities and environmental computation. Artif. Intell. Rev. 2025, 58, 191. [Google Scholar] [CrossRef]
- Min, Q.; Lu, Y.; Liu, Z.; Su, C.; Wang, B. Machine Learning Based Digital Twin Framework for Production Optimiza-tion in Petrochemical Industry. Int. J. Inf. Manag. 2019, 49, 502–519. [Google Scholar] [CrossRef]
- Salem, T.; Dragomir, M.; Chatelet, E. Strategic integration of drone technology and digital twins for optimal construction project management. Appl. Sci. 2024, 14, 4787. [Google Scholar] [CrossRef]
- Serugga, J. Digital Twins and AI Decision Models: Advancing Cost Modelling in Off-Site Construction. Eng 2025, 6, 22. [Google Scholar] [CrossRef]
- Kor, M.; Yitmen, I.; Alizadehsalehi, S. An investigation for integration of deep learning and digital twins towards Construction 4.0. Smart Sustain. Built Environ. 2023, 12, 461–487. Available online: https://www.emerald.com/insight/content/doi/10.1108/sasbe-08-2021-0148/full/html (accessed on 24 August 2025). [CrossRef]
- Aktürk, B.; Çakmak, P.I. Digital twins for enhanced construction project management. Smart Sustain. Built Environ. 2024, 10. Available online: https://www.emerald.com/insight/content/doi/10.1108/sasbe-03-2024-0082/full/html (accessed on 24 August 2025). [CrossRef]
- Elmousalami, H.; Elshaboury, N.; Elyamany, A.H. Green artificial intelligence for cost-duration variance prediction (CDVP) for irrigation canals rehabilitation projects. Expert Syst. Appl. 2024, 249, 123789. [Google Scholar] [CrossRef]
- Elmousalami, H.H.; Ali, A.H.; Kineber, A.F.; Elyamany, A. A novel conceptual cost estimation decision-making model for field canal improvement projects. Int. J. Constr. Manag. 2023, 24, 651–663. [Google Scholar] [CrossRef]
- Hakimi, O.; Liu, H.; Abudayyeh, O. Digital twin-enabled smart facility management: A bibliometric review. Front. Eng. Manag. 2024, 11, 32–49. [Google Scholar] [CrossRef]
- Elmousalami, H.H. Closure to “Artificial Intelligence and Parametric Construction Cost Estimate Modeling: State-of-the-Art Review” by Haytham H. Elmousalami. J. Constr. Eng. Manag. 2021, 147, 07021002. [Google Scholar] [CrossRef]
- Ghafari, R.; Samaei, S.R. Integrated AI and digital twin technologies for green project management in resilient coastal and port infrastructure systems. In Proceedings of the Third International Conference on Advanced Research in Civil Engineering, Architecture, and Urban Planning, Munich, Germany, 21 November 2025; Available online: https://www.researchgate.net/profile/Rasoul-Ghafari/publication/390535785_Integrated_AI_and_Digital_Twin_Technologies_for_Green_Project_Management_in_Resilient_Coastal_and_Port_Infrastructure_Systems/links/67f33da903b8d7280e2b1f38/Integrated-AI-and-Digital-Twin-Technologies-for-Green-Project-Management-in-Resilient-Coastal-and-Port-Infrastructure-Systems.pdf (accessed on 24 August 2025).
- Sadri, H. AI-driven integration of digital twins and blockchain for smart building management systems: A multi-stage empirical study. J. Build. Eng. 2025, 105, 112439. [Google Scholar] [CrossRef]
- Reja, V.K.; Pradeep, M.S.; Varghese, K. Digital Twins for Construction Project Management (DT-CPM): Applications and Future Research Directions. J. Inst. Eng. India Ser. A 2024, 105, 793–807. [Google Scholar] [CrossRef]
- Omrany, H.; Al-Obaidi, K.M.; Husain, A.; Ghaffarianhoseini, A. Digital twins in the construction industry: A comprehensive review of current implementations, enabling technologies, and future directions. Sustainability 2023, 15, 10908. [Google Scholar] [CrossRef]
- Broo, D.G.; Schooling, J. Digital twins in infrastructure: Definitions, current practices, challenges and strategies. Int. J. Constr. Manag. 2023, 23, 1254–1263. [Google Scholar] [CrossRef]
- Moser, B.R.; Grossmann, W. Digital Twins of Complex Projects. In The Digital Twin; Crespi, N., Drobot, A.T., Minerva, R., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 677–702. [Google Scholar] [CrossRef]
- Zahedi, F.; Alavi, H.; Sardroud, J.M.; Dang, H. Digital twins in the sustainable construction industry. Buildings 2024, 14, 3613. [Google Scholar] [CrossRef]
- Mazzetto, S. A review of urban digital twins integration, challenges, and future directions in smart city development. Sustainability 2024, 16, 8337. [Google Scholar] [CrossRef]
- Vetrivel, S.C.; Sowmiya, K.C.; Sabareeshwari, V. Digital twins: Revolutionizing business in the age of AI. In Harnessing AI and Digital Twin Technologies in Businesses; IGI Global: Hershey, PA, USA, 2024; pp. 111–131. Available online: https://www.igi-global.com/chapter/digital-twins/352164 (accessed on 24 August 2025).
- Olanrewaju, O.I.; Kineber, A.F.; Chileshe, N.; Edwards, D.J. Modelling the impact of building information modelling (BIM) implementation drivers and awareness on project lifecycle. Sustainability 2021, 13, 8887. [Google Scholar] [CrossRef]
- Ringle, C.; da Silva, D.; Bido, D. Structural Equation Modeling with the SmartPLS. Rev. Bras. Mark./REMark 2015, 13, 56–73. [Google Scholar] [CrossRef]
Framework | Core Focus | Constructs Considered | Scope and Limitations | Contribution to Outcomes | References |
---|---|---|---|---|---|
BIM Integration Models | Information management, design coordination | Emphasis on data sharing, interoperability, collaboration | Primarily focused on technological maturity, with limited attention to governance and workforce readiness. | Supports project coordination and design efficiency but less on holistic deliverables | [11,12,15,16] |
IoT–Digital Twin Models | Real-time data capture, monitoring, and control | Sensors, IoT platforms, cloud computing | Strong on technological infrastructure, but fragmented on governance and human enablers | Enhance monitoring and automation; limited in addressing organizational adoption factors | [13,17,18,19,20] |
AI–DT Application Models | Predictive and prescriptive analytics in construction | Machine learning, simulation, anomaly detection | Focus on technical capability; governance and workforce issues are often overlooked. | Improve forecasting, cost, and risk management, but rarely embedded in a unified CSF framework. | [3,16,21] |
Present paper: Higher-Order CSFs Model (AI-enabled DTs) | Integrated success conditions for adoption and performance | Human-centric factors (HCFs), Technology/Infrastructure (TIFs), Governance/Standards (GSFs) | Explicitly unifies human, technological, and governance domains into a hierarchical construct | Validated PLS-SEM model showing CSFs significantly predict project deliverables (time, cost, resources, quality, risk) | This paper |
Code | Impact of Integrating AI with Digital Twins on Project Deliverables | References |
---|---|---|
PD1 | Time/schedule | [11,55,57,58,59,60,61] |
PD2 | Cost | [14,15,21,55,56,62,63] |
PD3 | Resources | [3,16,64,65,66] |
PD4 | Quality Management | [3,12,15,67,68,69] |
PD5 | Risk Management | [3,4,12,14,70,71,72] |
Cronbach’s Alpha | Composite Reliability (rho_a) | Composite Reliability (rho_c) | Average Variance Extracted (AVE) | |
---|---|---|---|---|
CSFs | 0.938 | 0.94 | 0.947 | 0.598 |
GSF | 0.93 | 0.938 | 0.95 | 0.827 |
HCFs | 0.901 | 0.902 | 0.938 | 0.835 |
PDs | 0.952 | 0.966 | 0.963 | 0.839 |
TIFs | 0.928 | 0.928 | 0.946 | 0.777 |
CSFs | GSF | HCFs | PDs | TIFs | |
---|---|---|---|---|---|
CSFs | 0.77 | ||||
GSF | 0.89 | 0.91 | |||
HCFs | 0.75 | 0.54 | 0.91 | ||
PDs | 0.46 | 0.42 | 0.45 | 0.92 | |
TIFs | 0.9 | 0.69 | 0.54 | 0.33 | 0.88 |
Path Coefficients | |
---|---|
Critical Success Factors (CSFs) -> Project Deliverables (PDs) | 0.457 |
GSF -> Critical Success Factors (CSFs) | 0.414 |
HCFs -> Critical Success Factors (CSFs) | 0.276 |
TIFs -> Critical Success Factors (CSFs) | 0.471 |
Original Sample (O) | Sample Mean (M) | Standard Deviation (STDEV) | T Statistics | p Values | |
---|---|---|---|---|---|
GSF -> Project Deliverables (PDs) | 0.189 | 0.192 | 0.035 | 5.480 | 0.000 |
HCFs -> Project Deliverables (PDs) | 0.126 | 0.129 | 0.027 | 4.757 | 0.000 |
TIFs -> Project Deliverables (PDs) | 0.215 | 0.219 | 0.039 | 5.528 | 0.000 |
Original Sample (O) | Sample Mean (M) | 2.5% | 97.5% | |
---|---|---|---|---|
GSF -> Project Deliverables (PDs) | 0.189 | 0.192 | 0.122 | 0.258 |
HCFs -> Project Deliverables (PDs) | 0.126 | 0.129 | 0.077 | 0.182 |
TIFs -> Project Deliverables (PDs) | 0.215 | 0.219 | 0.141 | 0.296 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alnaser, A.A.; Elmousalami, H. Exploring Critical Success Factors of AI-Integrated Digital Twins on Saudi Construction Project Deliverables: A PLS-SEM Approach. Buildings 2025, 15, 3543. https://doi.org/10.3390/buildings15193543
Alnaser AA, Elmousalami H. Exploring Critical Success Factors of AI-Integrated Digital Twins on Saudi Construction Project Deliverables: A PLS-SEM Approach. Buildings. 2025; 15(19):3543. https://doi.org/10.3390/buildings15193543
Chicago/Turabian StyleAlnaser, Aljawharah A., and Haytham Elmousalami. 2025. "Exploring Critical Success Factors of AI-Integrated Digital Twins on Saudi Construction Project Deliverables: A PLS-SEM Approach" Buildings 15, no. 19: 3543. https://doi.org/10.3390/buildings15193543
APA StyleAlnaser, A. A., & Elmousalami, H. (2025). Exploring Critical Success Factors of AI-Integrated Digital Twins on Saudi Construction Project Deliverables: A PLS-SEM Approach. Buildings, 15(19), 3543. https://doi.org/10.3390/buildings15193543