Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = human osteoblast-like MG63 cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2153 KiB  
Article
Interaction of MG63 Human Osteosarcoma-Derived Cells on S53P4 Bioactive Glass: An In Vitro Study
by Valentin Schmidt, Beáta Polgár, Vanda Ágnes Nemes, Tímea Dergez, László Janovák, Péter Maróti, Szilárd Rendeki, Kinga Turzó and Balázs Patczai
J. Funct. Biomater. 2025, 16(8), 275; https://doi.org/10.3390/jfb16080275 - 29 Jul 2025
Viewed by 360
Abstract
Bioactive glass materials have been used for decades in orthopedic surgery, traumatology, and oral and maxillofacial surgery to repair bone defects. This study aimed to evaluate in vitro the survival and proliferation of MG63 human osteosarcoma-derived cells on S53P4 bioactive glass (BonAlive® [...] Read more.
Bioactive glass materials have been used for decades in orthopedic surgery, traumatology, and oral and maxillofacial surgery to repair bone defects. This study aimed to evaluate in vitro the survival and proliferation of MG63 human osteosarcoma-derived cells on S53P4 bioactive glass (BonAlive® granules). Microscopic visualization was performed to directly observe the interactions between the cells and the material. Osteoblast-like cells were examined on non-adherent test plates, on tissue culture (TC)-treated plates and on the surface of the bioglass to assess the differences. Cell survival and proliferation were monitored using a CCK-8 optical density assay. Comparing the mean OD of MG63 cells in MEM on TC-treated plates with cells on BG, we detected a significant difference (p < 0.05), over each time of observation. The sustained cell proliferation confirmed the non-cytotoxic property of the bioglass, as the cell number increased continuously at 48, 72, 96, and 168 h and even did not plateau after 168 h. Since the properties of bioglasses can vary significantly depending on their composition and environment, a thorough characterization of their biocompatibility is crucial to ensure their effective and appropriate application—for example, during hip and knee prosthesis insertion. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

16 pages, 6631 KiB  
Article
Green Tea Extract Containing Epigallocatechin-3-Gallate Facilitates Bone Formation and Mineralization by Alleviating Iron-Overload-Induced Oxidative Stress in Human Osteoblast-like (MG-63) Cells
by Honghong Xu, Orawan Khantamat, Woranontee Korsieporn, Narisara Paradee, Jin Li, Yanping Zhong, Somdet Srichairatanakool and Pimpisid Koonyosying
Antioxidants 2025, 14(7), 874; https://doi.org/10.3390/antiox14070874 - 17 Jul 2025
Viewed by 345
Abstract
Secondary iron overload exacerbates osteoporosis by elevating reactive oxygen species (ROS), which suppress osteoblast function and enhance osteoclast activity, disrupting bone remodeling. Reducing iron overload and oxidative stress may improve bone health. Epigallocatechin-3-gallate (EGCG), the main bioactive compound in green tea extract (GTE), [...] Read more.
Secondary iron overload exacerbates osteoporosis by elevating reactive oxygen species (ROS), which suppress osteoblast function and enhance osteoclast activity, disrupting bone remodeling. Reducing iron overload and oxidative stress may improve bone health. Epigallocatechin-3-gallate (EGCG), the main bioactive compound in green tea extract (GTE), is recognized for its antioxidant and iron-chelating properties. This study examined the effect of GTE on bone formation and mineralization in iron-overloaded human osteoblast-like MG-63 cells. An iron-overloaded model was established using ferric ammonium citrate (FAC), followed by treatment with GTE, deferiprone (DFP), or their combination. GTE significantly reduced intracellular iron, ROS levels, and lipid peroxidation while upregulating the osteogenic marker BGLAP, the anti-resorptive marker OPG, and osteogenic mineralization, indicating restored bone health. These results suggest that EGCG-containing GTE mitigates iron-induced oxidative stress and promotes osteogenesis, highlighting its potential as a natural therapeutic supplement for managing iron-overload-associated osteoporosis. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

29 pages, 16106 KiB  
Article
Development of Chrome-Doped Hydroxyapatite in a PVA Matrix Enriched with Amoxicillin for Biomedical Applications
by Steluta Carmen Ciobanu, Daniela Predoi, Simona Liliana Iconaru, Krzysztof Rokosz, Steinar Raaen, Coralia Bleotu and Mihai Valentin Predoi
Antibiotics 2025, 14(5), 455; https://doi.org/10.3390/antibiotics14050455 - 30 Apr 2025
Viewed by 694
Abstract
Background/Objectives: In this paper, we report the development of the first chrome-doped hydroxyapatite in a poly (vinyl alcohol) (PVA) matrix enriched with amoxicillin for biomedical applications. The development of chromium-doped hydroxyapatite coatings in a PVA matrix enriched with amoxicillin aims to provide [...] Read more.
Background/Objectives: In this paper, we report the development of the first chrome-doped hydroxyapatite in a poly (vinyl alcohol) (PVA) matrix enriched with amoxicillin for biomedical applications. The development of chromium-doped hydroxyapatite coatings in a PVA matrix enriched with amoxicillin aims to provide new biomaterials with improved physico-chemical and biological properties, making them promising candidates for biomedical applications. Methods: Through ultrasound studies, we obtained valuable information on the stability of the samples. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, metallographic microscopy (MM), and atomic force microscopy (AFM) were employed for the characterization of the samples. The biocompatibility of the CrHApAPV and CrHApAPV-Ax coatings was assessed using the MG63 human osteoblast-like cell line. To evaluate the cytotoxic potential of these coatings, the cell viability was quantified using the MTT assay after 24 h of incubation. The antibacterial activity of the coatings was evaluated with the aid of the reference strain Pseudomonas aeruginosa ATCC 27853 (P. aeruginosa). Results: The XRD patterns of CrHApAPV and CrHApAPV-Ax samples were examined to evaluate the effects of PVA and amoxicillin on the lattice parameters, unit cell volume, and average crystallite sizes. The results of the in vitro antibacterial assay demonstrated that both the CrHApAPV and CrHApAPV-Ax coatings exhibited very good antibacterial properties for all the tested time intervals. Conclusions: Our results underline the stability of the analyzed samples. Moreover, our physico-chemical and biological studies highlight that CrHApAPV and CrHApAPV-Ax coatings could be considered promising materials for biomedical uses. Full article
(This article belongs to the Special Issue Nanotechnology-Based Antimicrobials and Drug Delivery Systems)
Show Figures

Figure 1

15 pages, 7308 KiB  
Article
Novel Ti6Al4V Surface Treatment for Subperiosteal Dental Implants: Evaluation of Osteoblast-like Cell Proliferation and Osteogenic Response
by Roberto Campagna, Valentina Schiavoni, Loredana Rao, Fabrizio Bambini, Andrea Frontini, Francesco Sampalmieri, Eleonora Salvolini and Lucia Memé
Materials 2025, 18(6), 1234; https://doi.org/10.3390/ma18061234 - 11 Mar 2025
Cited by 1 | Viewed by 727
Abstract
Nowadays, custom-made subperiosteal implants are emerging as a solution in all those cases where there is lack of healthy bone tissue to support endosseous implants. The development of innovative techniques has allowed the production of grids that precisely match the patient’s anatomy. Elucidating [...] Read more.
Nowadays, custom-made subperiosteal implants are emerging as a solution in all those cases where there is lack of healthy bone tissue to support endosseous implants. The development of innovative techniques has allowed the production of grids that precisely match the patient’s anatomy. Elucidating the impact of laser-melted Ti6Al4V grids on both hard and soft tissues with which they come into contact is, therefore, mandatory. In this study, we analyzed the effects of five different surface treatments on a human osteoblast-like cell line (MG-63). In particular, the cell proliferation and osteogenic response were evaluated. Taken together, our data demonstrate that in our in vitro setting, the new surface treatment developed by Al Ti color could enhance osteogenesis and improve the stabilization of the implant to the residual bone by stimulating the best osteogenic response in MG-63 cells. Although further studies are required to validate our data in an in vivo model, our results provide the basis for future advances in implantology for the long-term maintenance of osseointegration. Full article
(This article belongs to the Special Issue Biomaterials for Bone Tissue Engineering (Second Edition))
Show Figures

Figure 1

11 pages, 2296 KiB  
Article
TNF-α Activates NF-κB Signalling Pathway in MG-63 Cells on Titanium and Zirconia Implant Surfaces
by Khaled Mukaddam, Sabrina Ruggiero, Steffen M. Berger, Dietmar Cholewa, Gabriela Dekany, Andreas Bartenstein, Milan Milošević, Sebastian Kühl, Michael M. Bornstein, Farah Alhawasli and Elizaveta Fasler-Kan
Materials 2025, 18(4), 884; https://doi.org/10.3390/ma18040884 - 18 Feb 2025
Viewed by 791
Abstract
Dental implant therapy is a widely used clinical procedure for restoring missing teeth in patients. Zirconia implants were introduced as an alternative to titanium implants due to their excellent biocompatibility and esthetic properties. The nuclear factor kappa B (NF-κB) signalling pathway is responsible [...] Read more.
Dental implant therapy is a widely used clinical procedure for restoring missing teeth in patients. Zirconia implants were introduced as an alternative to titanium implants due to their excellent biocompatibility and esthetic properties. The nuclear factor kappa B (NF-κB) signalling pathway is responsible for multiple aspects of innate and adaptive immune functions and serves as a significant and crucial mediator of inflammatory processes. The dysregulation of NF-κB activation induces pathological processes in multiple diseases. The purpose of this study was to investigate the activation of the NF-κB pathway upon stimulation with tumour necrosis factor (TNF)-α in osteoblast-like cells (MG-63) cultured on zirconia surfaces in comparison to titanium surfaces. Several methods such as immunoblot, immunofluorescence, MTT assay, and flow cytometry were used in this study. We observed that human recombinant TNF-α caused a strong activation of the NF-κB pathway on both zirconia and titanium discs and in wells without any discs. This activation was marked by the upregulation of MHC class I proteins in MG-63 cells grown on both titanium and zirconia discs; however, there was no effect on MHC class II protein expression. In summary, the present study has shown that TNF-α stimulation equally activates the NF-κB pathway in MG-63 cells cultured on both titanium and zirconia surfaces. Full article
(This article belongs to the Topic Advances in Dental Materials)
Show Figures

Figure 1

19 pages, 3661 KiB  
Article
Assessing Cytotoxicity, Proteolytic Stability, and Selectivity of Antimicrobial Peptides: Implications for Orthopedic Applications
by Davide Campoccia, Giulia Bottau, Andrea De Donno, Gloria Bua, Stefano Ravaioli, Eleonora Capponi, Giovanna Sotgiu, Chiara Bellotti, Silvia Costantini and Carla Renata Arciola
Int. J. Mol. Sci. 2024, 25(24), 13241; https://doi.org/10.3390/ijms252413241 - 10 Dec 2024
Cited by 2 | Viewed by 1361
Abstract
In orthopedics, the use of anti-infective biomaterials is considered the most promising strategy to contrast the bacterial contamination of implant surfaces and reduce the infection rate. KSL, KSL-W, and Dadapin-1 are three antimicrobial peptides (AMPs) that possess significant antibacterial properties, making them promising [...] Read more.
In orthopedics, the use of anti-infective biomaterials is considered the most promising strategy to contrast the bacterial contamination of implant surfaces and reduce the infection rate. KSL, KSL-W, and Dadapin-1 are three antimicrobial peptides (AMPs) that possess significant antibacterial properties, making them promising candidates for producing anti-infective biomaterials not based on antibiotics. To fully assess their true potential, this study explores in detail their cytocompatibility on human osteoblast-like MG63 cells, murine fibroblastoid L929 cells, and hMSCs. To this end, the cytotoxicity of the AMPs in terms of IC50 was tested over a range of concentrations of 450–0.22 µg/mL using the ATP bioluminescence assay. The tests were performed both in the presence and absence of bovine serum to assess the effects of serum components on peptide stability. IC50 values obtained under the most stringent conditions were used to extrapolate the selectivity index (S.I.) toward salient bacterial species. In medium containing serum, all AMPs exhibited minimal to no cytotoxicity, with IC50 values exceeding 100 µg/mL. Dadapin-1 was the peptide that exhibited the lowest cytotoxicity, KSL-W exhibited the highest stability, and KSL exhibited the highest selectivity. Overall, these findings highlight the potential of these AMPs for the future production of anti-infective materials. Full article
(This article belongs to the Special Issue Natural Compounds: Advances in Antimicrobial Activity)
Show Figures

Figure 1

32 pages, 7450 KiB  
Review
Antibacterial Properties and Biocompatibility of Multicomponent Titanium Oxides: A Review
by Boris B. Straumal, Evgenii N. Kurkin, Igor L. Balihin, Elisaveta Klyatskina, Peter B. Straumal, Natalia Yu. Anisimova and Mikhail V. Kiselevskiy
Materials 2024, 17(23), 5847; https://doi.org/10.3390/ma17235847 - 28 Nov 2024
Cited by 1 | Viewed by 989
Abstract
The simple oxides like titania, zirconia, and ZnO are famous with their antibacterial (or even antimicrobial) properties as well as their biocompatibility. They are broadly used for air and water filtering, in food packaging, in medicine (for implants, prostheses, and scaffolds), etc. However, [...] Read more.
The simple oxides like titania, zirconia, and ZnO are famous with their antibacterial (or even antimicrobial) properties as well as their biocompatibility. They are broadly used for air and water filtering, in food packaging, in medicine (for implants, prostheses, and scaffolds), etc. However, these application fields can be broadened by switching to the composite multicomponent compounds (for example, titanates) containing in their unit cell, together with oxygen, several different metallic ions. This review begins with a description of the synthesis methods, starting from wet chemical conversion through the manufacturing of oxide (nano)powders toward mechanosynthesis methods. The morphology of these multicomponent oxides can also be very different (like thin films, complicated multilayers, or porous scaffolds). Further, we discuss in vitro tests. The antimicrobial properties are investigated with Gram-positive or Gram-negative bacteria (like Escherichia coli or Staphylococcus aureus) or fungi. The cytotoxicity can be studied, for example, using mouse mesenchymal stem cells, MSCs (C3H10T1/2), or human osteoblast-like cells (MG63). Other human osteoblast-like cells (SaOS-2) can be used to characterize the cell adhesion, proliferation, and differentiation in vitro. The in vitro tests with individual microbial or cell cultures are rather far away from the real conditions in the human or animal body. Therefore, they have to be followed by in vivo tests, which permit the estimation of the real applicability of novel materials. Further, we discuss the physical, chemical, and biological mechanisms determining the antimicrobial properties and biocompatibility. The possible directions of future developments and novel application areas are described in the concluding section of the review. Full article
Show Figures

Figure 1

18 pages, 3160 KiB  
Article
Investigating the Biological Efficacy of Albumin-Enriched Platelet-Rich Fibrin (Alb-PRF): A Study on Cytokine Dynamics and Osteoblast Behavior
by Emanuelle Stellet Lourenço, Neilane Rodrigues Santiago Rocha, Renata de Lima Barbosa, Rafael Coutinho Mello-Machado, Victor Hugo de Souza Lima, Paulo Emilio Correa Leite, Mariana Rodrigues Pereira, Priscila Ladeira Casado, Tomoyuki Kawase, Carlos Fernando Mourão and Gutemberg Gomes Alves
Int. J. Mol. Sci. 2024, 25(21), 11531; https://doi.org/10.3390/ijms252111531 - 27 Oct 2024
Cited by 3 | Viewed by 1949
Abstract
The development of effective biomaterials for tissue regeneration has led to the exploration of blood derivatives such as leucocyte- and platelet-rich fibrin (L-PRF). A novel variant, Albumin-Enriched Platelet-Rich Fibrin (Alb-PRF), has been introduced to improve structural stability and bioactivity, making it a promising [...] Read more.
The development of effective biomaterials for tissue regeneration has led to the exploration of blood derivatives such as leucocyte- and platelet-rich fibrin (L-PRF). A novel variant, Albumin-Enriched Platelet-Rich Fibrin (Alb-PRF), has been introduced to improve structural stability and bioactivity, making it a promising candidate for bone regeneration. This study aimed to evaluate Alb-PRF’s capacity for cytokine and growth factor release, along with its effects on the proliferation, differentiation, and mineralization of human osteoblasts in vitro. Alb-PRF membranes were analyzed using histological, scanning electron microscopy, and fluorescence microscopy techniques. Cytokine and growth factor release was quantified over seven days, and osteoinductive potential was evaluated with MG-63 osteoblast-like cells. Structural analysis showed Alb-PRF as a biphasic, highly cellularized material that releases lower levels of inflammatory cytokines and higher concentrations of platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) compared to L-PRF. Alb-PRF exhibited higher early alkaline phosphatase activity and in vitro mineralization (p < 0.05) and significantly increased the OPG/RANKL mRNA ratio (p < 0.05). These results indicate that Alb-PRF has promising potential as a scaffold for bone repair, warranting further in vivo and clinical assessments to confirm its suitability for clinical applications. Full article
(This article belongs to the Special Issue Research and Application of Platelet-Rich Plasma (PRP))
Show Figures

Figure 1

14 pages, 2076 KiB  
Article
Zibibbo Grape Seeds’ Polyphenolic Profile: Effects on Bone Turnover and Metabolism
by Mariagiovanna Settino, Samantha Maurotti, Luca Tirinato, Simona Greco, Anna Rita Coppoletta, Antonio Cardamone, Vincenzo Musolino, Tiziana Montalcini, Arturo Pujia and Rosario Mare
Pharmaceuticals 2024, 17(11), 1418; https://doi.org/10.3390/ph17111418 - 23 Oct 2024
Cited by 1 | Viewed by 1246
Abstract
Background: The consumption of seeds as food has become increasingly common due to their numerous health benefits. Among these, the seeds of the Zibibbo grape from Pantelleria, a native species of southern Italy, remain largely unexplored and are usually considered waste material from [...] Read more.
Background: The consumption of seeds as food has become increasingly common due to their numerous health benefits. Among these, the seeds of the Zibibbo grape from Pantelleria, a native species of southern Italy, remain largely unexplored and are usually considered waste material from viticulture. Nevertheless, Zibibbo grape seeds may offer health benefits, particularly for the elderly and people with metabolic disorders, due to their potential content of beneficial compounds such as polyphenols. Methods: The Zibibbo grape seeds extract (ZSE) was characterized using UV-visible spectrophotometry and HPLC chromatography. The antioxidant activity of ZSE was measured by different colorimetric assays and Electronic Paramagnetic Resonance (EPR). Additionally, specific in vitro tests were conducted on human osteoblast cell lines (Saos-2 and MG63) aiming to evaluate the ZSE’s effects on bone turnover and metabolism. Western blotting was used to assess the impact on specific proteins and pathways related to bone health. Results: The ZSE contained almost ~3 mg/mL of carbohydrates and phenolic compounds, including rutin (~6.4 ppm) and hesperidin (~44.6 ppm). The extracts exhibited an antioxidant activity greater than 90% across all tests performed. Moreover, the Zibibbo seed extracts exerted a significant proliferative effect on the Saos-2 cell human osteoblast-like cell line, also modulating the phosphorylation of specific kinases involved in cell health and metabolism. Conclusions: Zibibbo grape seeds are rich in phenolic compounds, especially flavonoids with strong antioxidant and free radical scavenging properties. ZSE demonstrated beneficial effects on bone metabolism and osteoblast proliferation, suggesting potential for counteracting osteodegenerative conditions like osteoporosis. If confirmed through further studies, Zibibbo grape seed phenolic compounds could serve as an adjunctive therapy for osteoporosis, helping to slow aging and bone degeneration. Full article
(This article belongs to the Special Issue Anti-obesity and Anti-aging Natural Products)
Show Figures

Graphical abstract

15 pages, 4340 KiB  
Article
Enhancing the Antibacterial Properties of Chitosan Coatings: Ag@Chitosan and Chitosan from Insects
by Michela Marsico, Rezvan Azari, Mariangela Curcio, Roberto Teghil, Micaela Triunfo, Patrizia Falabella, Aldo Roberto Boccaccini and Angela De Bonis
Coatings 2024, 14(8), 925; https://doi.org/10.3390/coatings14080925 - 24 Jul 2024
Cited by 6 | Viewed by 4284
Abstract
In this study, the electrophoretic deposition (EPD) technique was used to prepare chitosan-based coatings with enhanced antibacterial activity suitable for bone implant applications. We designed, prepared, and compared the physico-chemical and biological properties of coatings obtained with commercial chitosan, chitosan enriched with silver [...] Read more.
In this study, the electrophoretic deposition (EPD) technique was used to prepare chitosan-based coatings with enhanced antibacterial activity suitable for bone implant applications. We designed, prepared, and compared the physico-chemical and biological properties of coatings obtained with commercial chitosan, chitosan enriched with silver nanoparticles, and chitosan obtained from insects. With the aim to consider the issue of sustainability, silver nanoparticles were directly prepared in the chitosan solution by laser ablation via a liquid technique, avoiding the use of chemicals and limiting the production of wastes. Moreover, a sustainable source of chitosan, such as Hermetia Illucens exuviae, was considered. The EPD process was optimized by adjusting parameters like voltage and deposition time to achieve ideal coating thickness and adhesion. The prepared films were characterized by spectroscopic and microscopic techniques such as SEM, XRD, and FTIR. Antimicrobial tests against E. coli and S. aureus revealed that silver nanoparticles enhanced the antibacterial properties of the polymer, whereas the biological evaluation using the WST8 test on MG63 human osteoblast-like cells showed that all coatings were non-toxic. Finally, chitosan obtained from insect showed comparable properties with respect to the commercial polymer, suggesting it could replace seafood-derived chitosan in biomedical applications, whereas the Ag@chitosan composite demonstrated superior antibacterial activity without compromising its biocompatibility. Full article
(This article belongs to the Section Bioactive Coatings and Biointerfaces)
Show Figures

Figure 1

23 pages, 6509 KiB  
Article
Chemical Modification of Nanocrystalline Cellulose for Manufacturing of Osteoconductive Composite Materials
by Olga Solomakha, Mariia Stepanova, Anatoliy Dobrodumov, Iosif Gofman, Yulia Nashchekina, Alexey Nashchekin and Evgenia Korzhikova-Vlakh
Polymers 2024, 16(13), 1936; https://doi.org/10.3390/polym16131936 - 6 Jul 2024
Cited by 4 | Viewed by 1862
Abstract
Cellulose is one of the main renewable polymers whose properties are very attractive in many fields, including biomedical applications. The modification of nanocrystalline cellulose (NCC) opens up the possibility of creating nanomaterials with properties of interest as well as combining them with other [...] Read more.
Cellulose is one of the main renewable polymers whose properties are very attractive in many fields, including biomedical applications. The modification of nanocrystalline cellulose (NCC) opens up the possibility of creating nanomaterials with properties of interest as well as combining them with other biomedical polymers. In this work, we proposed the covalent modification of NCC with amphiphilic polyanions such as modified heparin (Hep) and poly(αL-glutamic acid) (PGlu). The modification of NCC should overcome two drawbacks in the production of composite materials based on poly(ε-caprolactone) (PCL), namely, (1) to improve the distribution of modified NCC in the PCL matrix, and (2) to provide the composite material with osteoconductive properties. The obtained specimens of modified NCC were characterized by Fourier-transform infrared spectroscopy and solid-state 13C nuclear magnetic resonance spectroscopy, dynamic and electrophoretic light scattering, as well as thermogravimetric analysis. The morphology of PCL-based composites containing neat or modified NCC as filler was studied by optical and scanning electron microscopy. The mechanical properties of the obtained composites were examined in tensile tests. The homogeneity of filler distribution as well as the mechanical properties of the composites depended on the method of NCC modification and the amount of attached polyanion. In vitro biological evaluation showed improved adhesion of human fetal mesenchymal stem cells (FetMSCs) and human osteoblast-like cells (MG-63 osteosarcoma cell line) to PCL-based composites filled with NCC bearing Hep or PGlu derivatives compared to pure PCL. Furthermore, these composites demonstrated the osteoconductive properties in the experiment on the osteogenic differentiation of FetMSCs. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

16 pages, 3556 KiB  
Article
Onion (Allium cepa L.) Flavonoid Extract Ameliorates Osteoporosis in Rats Facilitating Osteoblast Proliferation and Differentiation in MG-63 Cells and Inhibiting RANKL-Induced Osteoclastogenesis in RAW 264.7 Cells
by Danyang Zhang, Xiaoyu Wang, Kezhuo Sun, Jianli Guo, Jia Zhao, Yuesheng Dong and Yongming Bao
Int. J. Mol. Sci. 2024, 25(12), 6754; https://doi.org/10.3390/ijms25126754 - 19 Jun 2024
Cited by 3 | Viewed by 2269
Abstract
Osteoporosis, a prevalent chronic health issue among the elderly, is a global bone metabolic disease. Flavonoids, natural active compounds widely present in vegetables, fruits, beans, and cereals, have been reported for their anti-osteoporotic properties. Onion is a commonly consumed vegetable rich in flavonoids [...] Read more.
Osteoporosis, a prevalent chronic health issue among the elderly, is a global bone metabolic disease. Flavonoids, natural active compounds widely present in vegetables, fruits, beans, and cereals, have been reported for their anti-osteoporotic properties. Onion is a commonly consumed vegetable rich in flavonoids with diverse pharmacological activities. In this study, the trabecular structure was enhanced and bone mineral density (BMD) exhibited a twofold increase following oral administration of onion flavonoid extract (OFE). The levels of estradiol (E2), calcium (Ca), and phosphorus (P) in serum were significantly increased in ovariectomized (OVX) rats, with effects equal to alendronate sodium (ALN). Alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) levels in rat serum were reduced by 35.7% and 36.9%, respectively, compared to the OVX group. In addition, the effects of OFE on bone health were assessed using human osteoblast-like cells MG-63 and osteoclast precursor RAW 264.7 cells in vitro as well. Proliferation and mineralization of MG-63 cells were promoted by OFE treatment, along with increased ALP activity and mRNA expression of osteoprotegerin (OPG)/receptor activator of nuclear factor-kappaB ligand (RANKL). Additionally, RANKL-induced osteoclastogenesis and osteoclast activity were inhibited by OFE treatment through decreased TRAP activity and down-regulation of mRNA expression-related enzymes in RAW 264.7 cells. Overall findings suggest that OFE holds promise as a natural functional component for alleviating osteoporosis. Full article
Show Figures

Figure 1

24 pages, 3217 KiB  
Article
Apatite/Chitosan Composites Formed by Cold Sintering for Drug Delivery and Bone Tissue Engineering Applications
by Anna Galotta, Öznur Demir, Olivier Marsan, Vincenzo M. Sglavo, Dagnija Loca, Christèle Combes and Janis Locs
Nanomaterials 2024, 14(5), 441; https://doi.org/10.3390/nano14050441 - 28 Feb 2024
Cited by 8 | Viewed by 2125
Abstract
In the biomedical field, nanocrystalline hydroxyapatite is still one of the most attractive candidates as a bone substitute material due to its analogies with native bone mineral features regarding chemical composition, bioactivity and osteoconductivity. Ion substitution and low crystallinity are also fundamental characteristics [...] Read more.
In the biomedical field, nanocrystalline hydroxyapatite is still one of the most attractive candidates as a bone substitute material due to its analogies with native bone mineral features regarding chemical composition, bioactivity and osteoconductivity. Ion substitution and low crystallinity are also fundamental characteristics of bone apatite, making it metastable, bioresorbable and reactive. In the present work, biomimetic apatite and apatite/chitosan composites were produced by dissolution–precipitation synthesis, using mussel shells as a calcium biogenic source. With an eye on possible bone reconstruction and drug delivery applications, apatite/chitosan composites were loaded with strontium ranelate, an antiosteoporotic drug. Due to the metastability and temperature sensitivity of the produced composites, sintering could be carried out by conventional methods, and therefore, cold sintering was selected for the densification of the materials. The composites were consolidated up to ~90% relative density by applying a uniaxial pressure up to 1.5 GPa at room temperature for 10 min. Both the synthesised powders and cold-sintered samples were characterised from a physical and chemical point of view to demonstrate the effective production of biomimetic apatite/chitosan composites from mussel shells and exclude possible structural changes after sintering. Preliminary in vitro tests were also performed, which revealed a sustained release of strontium ranelate for about 19 days and no cytotoxicity towards human osteoblastic-like cells (MG63) exposed up to 72 h to the drug-containing composite extract. Full article
(This article belongs to the Special Issue Nanomaterials for Regenerative Medicine)
Show Figures

Figure 1

21 pages, 12035 KiB  
Article
Chitosan and Sodium Hyaluronate Hydrogels Supplemented with Bioglass for Bone Tissue Engineering
by Lidia Ciołek, Ewa Zaczyńska, Małgorzata Krok-Borkowicz, Monika Biernat and Elżbieta Pamuła
Gels 2024, 10(2), 128; https://doi.org/10.3390/gels10020128 - 5 Feb 2024
Cited by 2 | Viewed by 2790
Abstract
The aim of the study was to produce biocomposites based on chitosan and sodium hyaluronate hydrogels supplemented with bioglasses obtained under different conditions (temperature, time) and to perform an in vitro evaluation of their cytocompatibility using both indirect and direct methods. Furthermore, the [...] Read more.
The aim of the study was to produce biocomposites based on chitosan and sodium hyaluronate hydrogels supplemented with bioglasses obtained under different conditions (temperature, time) and to perform an in vitro evaluation of their cytocompatibility using both indirect and direct methods. Furthermore, the release of ions from the composites and the microstructure of the biocomposites before and after incubation in simulated body fluid were assessed. Tests on extracts from bioglasses and hydrogel biocomposites were performed on A549 epithelial cells, while MG63 osteoblast-like cells were tested in direct contact with the developed biomaterials. The immune response induced by the biomaterials was also evaluated. The experiments were carried out on both unstimulated and lipopolysaccharide (LPS) endotoxin-stimulated human peripheral blood cells in the presence of extracts of the biocomposites and their components. Extracts of the materials produced do not exhibit toxic effects on A549 cells, and do not increase the production of proinflammatory cytokines tumour necrosis factor alpha (TNF-α) and interleukin (IL-6) by blood cells in vitro. In direct contact with MG63 osteoblast-like cells, biocomposites containing the reference bioglass and those containing SrO are more cytocompatible than biocomposites with ZnO-doped bioglass. Using two testing approaches, the effects both of the potentially toxic agents released and of the surface of the tested materials on the cell condition were assessed. The results pave the way for the development of highly porous hydrogel–bioglass composite scaffolds for bone tissue engineering. Full article
(This article belongs to the Special Issue Advances in Chitin- and Chitosan-Based Hydrogels)
Show Figures

Figure 1

20 pages, 6414 KiB  
Article
The Association of Nanostructured Carbonated Hydroxyapatite with Denatured Albumin and Platelet-Rich Fibrin: Impacts on Growth Factors Release and Osteoblast Behavior
by Renata de Lima Barbosa, Neilane Rodrigues Santiago Rocha, Emanuelle Stellet Lourenço, Victor Hugo de Souza Lima, Elena Mavropoulos, Rafael Coutinho Mello-Machado, Carolina Spiegel, Carlos Fernando Mourão and Gutemberg Gomes Alves
J. Funct. Biomater. 2024, 15(1), 18; https://doi.org/10.3390/jfb15010018 - 5 Jan 2024
Cited by 7 | Viewed by 3060
Abstract
Platelet-rich Fibrin (PRF), a second-generation blood concentrate, offers a versatile structure for bone regeneration due to its composition of fibrin, growth factors, and cytokines, with adaptations like denatured albumin-enriched with liquid PRF (Alb-PRF), showing potential for enhanced stability and growth factor dynamics. Researchers [...] Read more.
Platelet-rich Fibrin (PRF), a second-generation blood concentrate, offers a versatile structure for bone regeneration due to its composition of fibrin, growth factors, and cytokines, with adaptations like denatured albumin-enriched with liquid PRF (Alb-PRF), showing potential for enhanced stability and growth factor dynamics. Researchers have also explored the combination of PRF with other biomaterials, aiming to create a three-dimensional framework for enhanced cell recruitment, proliferation, and differentiation in bone repair studies. This study aimed to evaluate a combination of Alb-PRF with nanostructured carbonated hydroxyapatite microspheres (Alb-ncHA-PRF), and how this association affects the release capacity of growth factors and immunomodulatory molecules, and its impact on the behavior of MG63 human osteoblast-like cells. Alb-PRF membranes were prepared and associated with nanocarboapatite (ncHA) microspheres during polymerization. MG63 cells were exposed to eluates of both membranes to assess cell viability, proliferation, mineralization, and alkaline phosphatase (ALP) activity. The ultrastructural analysis has shown that the spheres were shattered, and fragments were incorporated into both the fibrin mesh and the albumin gel of Alb-PRF. Alb-ncHA-PRF presented a reduced release of growth factors and cytokines when compared to Alb-PRF (p < 0.05). Alb-ncHA-PRF was able to stimulate osteoblast proliferation and ALP activity at lower levels than those observed by Alb-PRF and was unable to positively affect in vitro mineralization by MG63 cells. These findings indicate that the addition of ncHA spheres reduces the biological activity of Alb-PRF, impairing its initial effects on osteoblast behavior. Full article
Show Figures

Figure 1

Back to TopTop