Novel Ti6Al4V Surface Treatment for Subperiosteal Dental Implants: Evaluation of Osteoblast-like Cell Proliferation and Osteogenic Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Scanning Electron Microscopy (SEM) Analysis
2.3. Cell Cultures
2.4. Cell Proliferation Assay
2.5. Fluorescence Microscopy
2.6. RNA Extraction and Reverse Transcription
2.7. Real-Time PCR
2.8. Statistical Analysis
3. Results
3.1. Scanning Electron Microscopy (SEM) Analysis
3.2. Evaluation of MG-63 Proliferation
3.3. Fluorescence Microscopy
3.4. Gene Expression Profiling
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schnitman, P.A.; Wohrle, P.S.; Rubenstein, J.E. Immediate fixed interim prostheses supported by two-stage threaded implants: Methodology and results. J. Oral Implantol. 1990, 16, 96–105. [Google Scholar] [PubMed]
- Bhargava, N.; Perrotti, V.; Caponio, V.C.A.; Matsubara, V.H.; Patalwala, D.; Quaranta, A. Comparison of heat production and bone architecture changes in the implant site preparation with compressive osteotomes, osseodensification technique, piezoelectric devices, and standard drills: An ex vivo study on porcine ribs. Odontology 2023, 111, 142–153. [Google Scholar] [CrossRef]
- Suzuki, A.; Nakano, T.; Inoue, M.; Isigaki, S. Multivariate analysis of the effect of keratinized mucosa on peri-implant tissues with platform switching: A retrospective study. Clin. Implant. Dent. Relat. Res. 2024, 26, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Meme, L.; Sartini, D.; Pozzi, V.; Emanuelli, M.; Strappa, E.M.; Bittarello, P.; Bambini, F.; Gallusi, G. Epithelial Biological Response to Machined Titanium vs. PVD Zirconium-Coated Titanium: An In Vitro Study. Materials 2022, 15, 7250. [Google Scholar] [CrossRef] [PubMed]
- Bambini, F.; De Stefano, C.A.; Giannetti, L.; Meme, L.; Pellecchia, M. Influence of biphosphonates on the integration process of endosseous implants evaluated using single photon emission computerized tomography (SPECT). Minerva Stomatol. 2003, 52, 331–338. [Google Scholar]
- Bressan, E.; Guazzo, R.; Tomasi, C.; Pena, T.G.; Galindo-Moreno, P.; Caponio, V.C.A.; Sbricoli, L.; Canullo, L. Influence of soft tissue thickness on marginal bone level around dental implants: A systematic review with meta-analysis and trial-sequential analysis. Clin. Oral Implants Res. 2023, 34, 405–415. [Google Scholar] [CrossRef]
- Lindh, C.; Petersson, A.; Rohlin, M. Assessment of the trabecular pattern before endosseous implant treatment: Diagnostic outcome of periapical radiography in the mandible. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1996, 82, 335–343. [Google Scholar] [CrossRef]
- Vargas, S.M.; Johnson, T.M.; Pfaff, A.S.; Bumpers, A.P.; Wagner, J.C.; Retrum, J.K.; Colamarino, A.N.; Bunting, M.E.; Wilson, J.P.; McDaniel, C.R.; et al. Clinical protocol selection for alveolar ridge augmentation at sites exhibiting slight, moderate, and severe horizontal ridge deficiencies. Clin. Adv. Periodontics 2023, 13, 174–196. [Google Scholar] [CrossRef]
- Saez-Alcaide, L.M.; Gonzalez Gallego, B.; Fernando Moreno, J.; Moreno Navarro, M.; Cobo-Vazquez, C.; Cortes-Breton Brinkmann, J.; Meniz-Garcia, C. Complications associated with vertical bone augmentation techniques in implant dentistry: A systematic review of clinical studies published in the last ten years. J. Stomatol. Oral Maxillofac. Surg. 2023, 124, 101574. [Google Scholar] [CrossRef]
- Figueiredo, T.M.; Do Amaral, G.; Bezerra, G.N.; Nakao, L.Y.S.; Villar, C.C. Three-dimensional-printed scaffolds for periodontal regeneration: A systematic review. J. Indian. Soc. Periodontol. 2023, 27, 451–460. [Google Scholar] [CrossRef]
- Caponio, V.C.A.; Baca-Gonzalez, L.; Gonzalez-Serrano, J.; Torres, J.; Lopez-Pintor, R.M. Effect of the use of platelet concentrates on new bone formation in alveolar ridge preservation: A systematic review, meta-analysis, and trial sequential analysis. Clin. Oral Investig. 2023, 27, 4131–4146. [Google Scholar] [CrossRef]
- Zhao, D.; Meesane, J.; Nuntanaranont, T.; Thuaksubun, N.; Khangkhamano, M. Mimicking Scaffolds for Osteogenesis Based on Poly(vinyl alcohol) Hydrogel with Hard Calcium Phosphate and Soft Silk Fibroin Particle for Bone Regeneration: Molecular Organization, Morphology, Properties, and In Vitro Evaluation. ACS Appl. Bio Mater. 2024, 7, 8212–8222. [Google Scholar] [CrossRef] [PubMed]
- Bambini, F.; Santarelli, A.; Putignano, A.; Procaccini, M.; Orsini, G.; Di Iorio, D.; Meme, L.; Sartini, D.; Emanuelli, M.; Lo Muzio, L. Use of supercharged cover screw as static magnetic field generator for bone healing, 2nd part: In vivo enhancement of bone regeneration in rabbits. J. Biol. Regul. Homeost. Agents 2017, 31, 481–485. [Google Scholar] [PubMed]
- Bambini, F.; Santarelli, A.; Putignano, A.; Procaccini, M.; Orsini, G.; Meme, L.; Sartini, D.; Emanuelli, M.; Lo Muzio, L. Use of supercharged cover screw as static magnetic field generator for bone healing, 1st part: In vitro enhancement of osteoblast-like cell differentiation. J. Biol. Regul. Homeost. Agents 2017, 31, 215–220. [Google Scholar] [PubMed]
- Caponio, V.C.A.; Sharma, A.; Musella, G.; Perrotti, V.; Quaranta, A. Survival of dental implants placed in a postgraduate educational setting: A retrospective cohort study. J. Dent. 2025, 153, 105531. [Google Scholar] [CrossRef]
- Edibam, N.R.; Lorenzo-Pouso, A.I.; Caponio, V.C.A. Self-reported allergy to penicillin and clindamycin administration may be risk factors for dental implant failure: A systematic review, meta-analysis and delabeling protocol. Clin. Oral Implants Res. 2023, 34, 651–661. [Google Scholar] [CrossRef]
- Cranin, A.N.; Klein, M.; Sirakian, A. Technique for mounting computer-generated models for subperiosteal implants: The Brookdate tube and Stylus Centric System. J. Oral Implantol. 1990, 16, 52–56. [Google Scholar]
- Harris, B.W. A new technique for the subperiosteal implant. J. Am. Dent. Assoc. 1990, 121, 422–424. [Google Scholar] [CrossRef]
- Gellrich, N.C.; Korn, P.; Neuhaus, M.; Lentge, F.; Jehn, P.; Rahlf, B. Long-Term Survival of Subperiosteal Implants: Meta-Analysis and Current Status of Subperiosteal Implants for Dental Rehabilitation. Oral Maxillofac. Surg. Clin. N. Am. 2025, 37, 163–177. [Google Scholar] [CrossRef]
- Misch, C.E. Disadvantages of the maxillary subperiosteal implant. Dent. Today 1990, 9, 34–35. [Google Scholar]
- Anitua, E.; Eguia, A.; Staudigl, C.; Alkhraisat, M.H. Clinical performance of additively manufactured subperiosteal implants: A systematic review. Int. J. Implant. Dent. 2024, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Strappa, E.M.; Meme, L.; Cerea, M.; Roy, M.; Bambini, F. Custom-made additively manufactured subperiosteal implant. Minerva Dent. Oral Sci. 2022, 71, 353–360. [Google Scholar] [CrossRef]
- Campagna, R.; Schiavoni, V.; Marchetti, E.; Salvolini, E.; Frontini, A.; Sampalmieri, F.; Bambini, F.; Meme, L. In Vitro Study of the Proliferation of MG63 Cells Cultured on Five Different Titanium Surfaces. Materials 2024, 17, 2208. [Google Scholar] [CrossRef] [PubMed]
- Amin Yavari, S.; van der Stok, J.; Chai, Y.C.; Wauthle, R.; Tahmasebi Birgani, Z.; Habibovic, P.; Mulier, M.; Schrooten, J.; Weinans, H.; Zadpoor, A.A. Bone regeneration performance of surface-treated porous titanium. Biomaterials 2014, 35, 6172–6181. [Google Scholar] [CrossRef]
- Campagna, R.; Belloni, A.; Pozzi, V.; Salvucci, A.; Notarstefano, V.; Togni, L.; Mascitti, M.; Sartini, D.; Giorgini, E.; Salvolini, E.; et al. Role Played by Paraoxonase-2 Enzyme in Cell Viability, Proliferation and Sensitivity to Chemotherapy of Oral Squamous Cell Carcinoma Cell Lines. Int. J. Mol. Sci. 2022, 24, 338. [Google Scholar] [CrossRef]
- Schiavoni, V.; Emanuelli, M.; Campagna, R.; Cecati, M.; Sartini, D.; Milanese, G.; Galosi, A.B.; Pozzi, V.; Salvolini, E. Paraoxonase-2 shRNA-mediated gene silencing suppresses proliferation and migration, while promotes chemosensitivity in clear cell renal cell carcinoma cell lines. J. Cell Biochem. 2024, 125, e30572. [Google Scholar] [CrossRef]
- Sobecki, M.; Mrouj, K.; Camasses, A.; Parisis, N.; Nicolas, E.; Lleres, D.; Gerbe, F.; Prieto, S.; Krasinska, L.; David, A.; et al. The cell proliferation antigen Ki-67 organises heterochromatin. eLife 2016, 5, e13722. [Google Scholar] [CrossRef] [PubMed]
- Halloran, D.; Durbano, H.W.; Nohe, A. Bone Morphogenetic Protein-2 in Development and Bone Homeostasis. J. Dev. Biol. 2020, 8, 19. [Google Scholar] [CrossRef]
- Ye, Y.; Jiang, Z.; Pan, Y.; Yang, G.; Wang, Y. Role and mechanism of BMP4 in bone, craniofacial, and tooth development. Arch. Oral Biol. 2022, 140, 105465. [Google Scholar] [CrossRef]
- Song, B.; Estrada, K.D.; Lyons, K.M. Smad signaling in skeletal development and regeneration. Cytokine Growth Factor. Rev. 2009, 20, 379–388. [Google Scholar] [CrossRef]
- Baud’huin, M.; Solban, N.; Cornwall-Brady, M.; Sako, D.; Kawamoto, Y.; Liharska, K.; Lath, D.; Bouxsein, M.L.; Underwood, K.W.; Ucran, J.; et al. A soluble bone morphogenetic protein type IA receptor increases bone mass and bone strength. Proc. Natl. Acad. Sci. USA 2012, 109, 12207–12212. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; He, G.; Lee, W.C.; McKenzie, J.A.; Silva, M.J.; Long, F. Gli1 identifies osteogenic progenitors for bone formation and fracture repair. Nat. Commun. 2017, 8, 2043. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, Y.; Menendez, A.; Fong, C.; Babey, M.; Tahimic, C.G.; Cheng, Z.; Li, A.; Chang, W.; Bikle, D.D. Osteoblast-Specific Loss of IGF1R Signaling Results in Impaired Endochondral Bone Formation During Fracture Healing. J. Bone Miner. Res. 2015, 30, 1572–1584. [Google Scholar] [CrossRef]
- Olivares-Navarrete, R.; Hyzy, S.L.; Pan, Q.; Dunn, G.; Williams, J.K.; Schwartz, Z.; Boyan, B.D. Osteoblast maturation on microtextured titanium involves paracrine regulation of bone morphogenetic protein signaling. J. Biomed. Mater. Res. A 2015, 103, 1721–1731. [Google Scholar] [CrossRef]
- Ito, Y.; Miyazono, K. RUNX transcription factors as key targets of TGF-beta superfamily signaling. Curr. Opin. Genet. Dev. 2003, 13, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yan, X.; Yin, S.; Liu, L.; Liu, X.; Zhao, G.; Ma, W.; Qi, W.; Ren, Z.; Liao, H.; et al. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 106, 110289. [Google Scholar] [CrossRef]
- Shu, T.; Zhang, Y.; Sun, G.; Pan, Y.; He, G.; Cheng, Y.; Li, A.; Pei, D. Enhanced Osseointegration by the Hierarchical Micro-Nano Topography on Selective Laser Melting Ti-6Al-4V Dental Implants. Front. Bioeng. Biotechnol. 2020, 8, 621601. [Google Scholar] [CrossRef]
- Volk, S.W.; Shah, S.R.; Cohen, A.J.; Wang, Y.; Brisson, B.K.; Vogel, L.K.; Hankenson, K.D.; Adams, S.L. Type III collagen regulates osteoblastogenesis and the quantity of trabecular bone. Calcif. Tissue Int. 2014, 94, 621–631. [Google Scholar] [CrossRef]
- Minarikova, M.; Oralova, V.; Vesela, B.; Radlanski, R.J.; Matalova, E. Osteogenic Profile of Mesenchymal Cell Populations Contributing to Alveolar Bone Formation. Cells Tissues Organs 2015, 200, 339–348. [Google Scholar] [CrossRef]
- Burger, A.; Roosenboom, J.; Hossain, M.; Weinberg, S.M.; Hecht, J.T.; Posey, K.L. Mutant COMP shapes growth and development of skull and facial structures in mice and humans. Mol. Genet. Genomic Med. 2020, 8, e1251. [Google Scholar] [CrossRef]
- Gao, L.H.; Li, S.S.; Yue, H.; Zhang, Z.L. Associations of Serum Cathepsin K and Polymorphisms in CTSK Gene With Bone Mineral Density and Bone Metabolism Markers in Postmenopausal Chinese Women. Front. Endocrinol. 2020, 11, 48. [Google Scholar] [CrossRef] [PubMed]
- Barbirato, C.; Trancozo, M.; Reboucas, M.R.; Sipolatti, V.; Nunes, V.R.; Paula, F. Analysis of FKBP10, SERPINH1, and SERPINF1 genes in patients with osteogenesis imperfecta. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Deng, C.; Li, Y.P. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 2012, 8, 272–288. [Google Scholar] [CrossRef]
- Saranya, I.; Selvamurugan, N. Regulation of TGF-beta/BMP signaling during osteoblast development by non-coding RNAs: Potential therapeutic applications. Life Sci. 2024, 355, 122969. [Google Scholar] [CrossRef] [PubMed]
- Altmann, B.; Rabel, K.; Kohal, R.J.; Proksch, S.; Tomakidi, P.; Adolfsson, E.; Bernsmann, F.; Palmero, P.; Furderer, T.; Steinberg, T. Cellular transcriptional response to zirconia-based implant materials. Dent. Mater. 2017, 33, 241–255. [Google Scholar] [CrossRef]
- Olivares-Navarrete, R.; Hyzy, S.L.; Park, J.H.; Dunn, G.R.; Haithcock, D.A.; Wasilewski, C.E.; Boyan, B.D.; Schwartz, Z. Mediation of osteogenic differentiation of human mesenchymal stem cells on titanium surfaces by a Wnt-integrin feedback loop. Biomaterials 2011, 32, 6399–6411. [Google Scholar] [CrossRef]
- Ribatti, D.; d’Amati, A. Bone angiocrine factors. Front. Cell Dev. Biol. 2023, 11, 1244372. [Google Scholar] [CrossRef]
Timepoint 72 h | ||||
---|---|---|---|---|
Gene | EE | ES | ATcs | CA |
ACVR1 | 1.64 | 0.10 | 0.22 | 0.18 |
AHSG | 1.00 | Not detectable | Not detectable | Not detectable |
ALPL | 0.41 | 1.17 | 0.62 | 1.03 |
ANXA5 | 0.98 | 1.81 | 1.20 | 1.20 |
BGLAP | Not detectable | 2.02 | Not detectable | Not detectable |
BGN | 1.11 | 1.85 | 1.17 | 0.98 |
BMP1 | 0.69 | 1.76 | 1.19 | 1.20 |
BMP2 | 1.00 | 1.83 | 1.81 | 0.62 |
BMP3 | 0.46 | 3.57 | 1.28 | 0.41 |
BMP4 | 1.62 | 1.19 | 2.44 | 2.85 |
BMP5 | Not detectable | Not detectable | 0.36 | Not detectable |
BMP6 | 0.69 | 0.31 | 0.23 | 0.18 |
BMP7 | 0.89 | 0.64 | 1.16 | 0.78 |
BMPR1A | 0.58 | 0.59 | 1.00 | 0.57 |
BMPR1B | Not detectable | Not detectable | 0.42 | Not detectable |
BMPR2 | 1.02 | 1.68 | 1.39 | 1.29 |
CALCR | Not detectable | 1.76 | 0.25 | Not detectable |
CD36 | 0.86 | 2.65 | 0.89 | 1.47 |
CDH11 | 0.58 | 1.28 | 1.13 | 0.86 |
CHRD | 2.36 | 2.17 | 1.81 | Not detectable |
COL10A1 | Not detectable | Not detectable | 0.74 | Not detectable |
COL14A1 | 0.64 | 0.84 | 1.01 | 1.85 |
COL15A1 | Not detectable | Not detectable | 0.26 | Not detectable |
COL1A1 | 0.17 | 0.04 | 0.30 | 0.37 |
COL1A2 | 0.07 | 0.51 | 0.22 | 0.03 |
COL2A1 | Not detectable | Not detectable | 0.25 | Not detectable |
COL3A1 | 0.90 | 1.71 | 1.14 | 1.49 |
COL5A1 | 0.45 | 1.05 | 0.90 | 0.47 |
COMP | 2.49 | Not detectable | 7.70 | 1.80 |
CSF1 | 0.95 | 1.97 | 1.27 | 2.46 |
CSF2 | 1.45 | Not detectable | 1.95 | 0.29 |
CSF3 | 0.12 | 2.07 | 5.08 | 0.44 |
CTSK | 1.18 | 1.60 | 1.74 | 1.19 |
DLX5 | 0.92 | 1.67 | 0.99 | Not detectable |
EGF | 0.29 | 0.26 | 0.40 | 0.17 |
EGFR | 0.86 | 0.15 | 1.07 | 0.85 |
FGF1 | 1.11 | Not detectable | 2.84 | 0.66 |
FGF2 | 0.50 | 0.49 | 0.85 | 0.68 |
FGFR1 | 0.91 | 1.41 | 0.89 | 0.97 |
FGFR2 | 0.10 | 1.01 | 0.27 | 0.09 |
FLT1 | 0.66 | 2.38 | 1.34 | Not detectable |
FN1 | 1.28 | 2.30 | 1.33 | 2.61 |
GDF10 | Not detectable | Not detectable | 1.44 | Not detectable |
GLI1 | 2.60 | 1.00 | 1.23 | 0.51 |
ICAM1 | 4.44 | Not detectable | 3.77 | 1.09 |
IGF1 | 0.92 | 1.67 | 0.99 | 1.35 |
IGF1R | 1.07 | 0.72 | 1.71 | 1.02 |
IGF2 | 0.82 | Not detectable | 0.76 | 2.67 |
IHH | Not detectable | 1.78 | 0.33 | Not detectable |
ITGA1 | 1.33 | 0.55 | 1.91 | 1.44 |
ITGA2 | 0.93 | 0.72 | 1.15 | 0.37 |
ITGA3 | 1.06 | 1.86 | 1.26 | 1.22 |
ITGAM | 0.14 | 0.67 | 0.26 | Not detectable |
ITGB1 | 1.28 | 2.42 | 1.24 | 1.08 |
MMP10 | 0.28 | 1.27 | Not detectable | Not detectable |
MMP2 | 1.51 | 3.07 | 1.95 | 2.95 |
MMP8 | 0.92 | 1.67 | 0.99 | 1.35 |
MMP9 | Not detectable | Not detectable | 0.86 | Not detectable |
NFKB1 | 0.46 | 1.09 | 0.78 | 0.62 |
NOG | 4.76 | 2.70 | 7.74 | 1.45 |
PDGFA | 0.19 | 0.32 | 0.31 | Not detectable |
PHEX | Not detectable | Not detectable | 0.54 | Not detectable |
RUNX2 | 0.92 | 1.42 | 1.89 | 0.77 |
SERPINH1 | 0.82 | 1.43 | 1.89 | 1.58 |
SMAD1 | 0.50 | 0.88 | 0.78 | 1.06 |
SMAD2 | 0.98 | 1.96 | 1.52 | 1.12 |
SMAD3 | 1.04 | 3.00 | 1.90 | 3.08 |
SMAD4 | 1.05 | 1.62 | 1.55 | 1.22 |
SMAD5 | 0.79 | 0.64 | 0.83 | 0.50 |
SOX9 | 0.69 | 0.07 | 0.89 | 0.57 |
SP7 | Not detectable | 0.48 | 0.75 | 0.45 |
SPP1 | 0.92 | 1.67 | 0.99 | Not detectable |
TGFB1 | 0.02 | 1.05 | 0.34 | 0.01 |
TGFB2 | 0.45 | Not detectable | 0.93 | Not detectable |
TGFB3 | 0.23 | Not detectable | 0.11 | Not detectable |
TGFBR1 | 0.68 | 1.57 | 1.13 | 0.70 |
TGFBR2 | 0.52 | 1.39 | 0.79 | 0.86 |
TNF | Not detectable | 1.02 | 0.38 | Not detectable |
TNFSF11 | Not detectable | 1.78 | Not detectable | Not detectable |
TWIST1 | 0.45 | 2.07 | 1.47 | 1.44 |
VCAM1 | 3.54 | 1.76 | 1.65 | 1.36 |
VDR | 0.28 | Not detectable | 0.48 | 0.50 |
VEGFA | 1.71 | 0.06 | 1.73 | 0.50 |
VEGFB | 0.81 | 1.57 | 1.63 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campagna, R.; Schiavoni, V.; Rao, L.; Bambini, F.; Frontini, A.; Sampalmieri, F.; Salvolini, E.; Memé, L. Novel Ti6Al4V Surface Treatment for Subperiosteal Dental Implants: Evaluation of Osteoblast-like Cell Proliferation and Osteogenic Response. Materials 2025, 18, 1234. https://doi.org/10.3390/ma18061234
Campagna R, Schiavoni V, Rao L, Bambini F, Frontini A, Sampalmieri F, Salvolini E, Memé L. Novel Ti6Al4V Surface Treatment for Subperiosteal Dental Implants: Evaluation of Osteoblast-like Cell Proliferation and Osteogenic Response. Materials. 2025; 18(6):1234. https://doi.org/10.3390/ma18061234
Chicago/Turabian StyleCampagna, Roberto, Valentina Schiavoni, Loredana Rao, Fabrizio Bambini, Andrea Frontini, Francesco Sampalmieri, Eleonora Salvolini, and Lucia Memé. 2025. "Novel Ti6Al4V Surface Treatment for Subperiosteal Dental Implants: Evaluation of Osteoblast-like Cell Proliferation and Osteogenic Response" Materials 18, no. 6: 1234. https://doi.org/10.3390/ma18061234
APA StyleCampagna, R., Schiavoni, V., Rao, L., Bambini, F., Frontini, A., Sampalmieri, F., Salvolini, E., & Memé, L. (2025). Novel Ti6Al4V Surface Treatment for Subperiosteal Dental Implants: Evaluation of Osteoblast-like Cell Proliferation and Osteogenic Response. Materials, 18(6), 1234. https://doi.org/10.3390/ma18061234