Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = human lung fibroblasts (hLF)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3998 KiB  
Article
Calcium-Sensing Receptor as a Novel Target for the Treatment of Idiopathic Pulmonary Fibrosis
by Kasope Wolffs, Renjiao Li, Bethan Mansfield, Daniel A. Pass, Richard T. Bruce, Ping Huang, Rachel Paes de Araújo, Bahareh Sadat Haddadi, Luis A. J. Mur, Jordanna Dally, Ryan Moseley, Rupert Ecker, Harry Karmouty-Quintana, Keir E. Lewis, A. John Simpson, Jeremy P. T. Ward, Christopher J. Corrigan, Renata Z. Jurkowska, Benjamin D. Hope-Gill, Daniela Riccardi and Polina L. Yarovaadd Show full author list remove Hide full author list
Biomolecules 2025, 15(4), 509; https://doi.org/10.3390/biom15040509 - 1 Apr 2025
Cited by 2 | Viewed by 1112
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease with a poor prognosis and no curative therapies. Fibroblast activation by transforming growth factor β1 (TGFβ1) and disrupted metabolic pathways, including the arginine–polyamine pathway, play crucial roles in IPF development. Polyamines are agonists of the calcium/cation-sensing [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a disease with a poor prognosis and no curative therapies. Fibroblast activation by transforming growth factor β1 (TGFβ1) and disrupted metabolic pathways, including the arginine–polyamine pathway, play crucial roles in IPF development. Polyamines are agonists of the calcium/cation-sensing receptor (CaSR), activation of which is detrimental for asthma and pulmonary hypertension, but its role in IPF is unknown. To address this question, we evaluated polyamine abundance using metabolomic analysis of IPF patient saliva. Furthermore, we examined CaSR functional expression in human lung fibroblasts (HLFs), assessed the anti-fibrotic effects of a CaSR antagonist, NPS2143, in TGFβ1-activated normal and IPF HLFs by RNA sequencing and immunofluorescence imaging, respectively; and NPS2143 effects on polyamine synthesis in HLFs by immunoassays. Our results demonstrate that polyamine metabolites are increased in IPF patient saliva. Polyamines activate fibroblast CaSR in vitro, elevating intracellular calcium concentration. CaSR inhibition reduced TGFβ1-induced polyamine and pro-fibrotic factor expression in normal and IPF HLFs. TGFβ1 directly stimulated polyamine release by HLFs, an effect that was blocked by NPS2143. This suggests that TGFβ1 promotes CaSR activation through increased polyamine expression, driving a pro-fibrotic response. By halting some polyamine-induced pro-fibrotic changes, CaSR antagonists exhibit disease-modifying potential in IPF onset and development. Full article
(This article belongs to the Special Issue Dysregulation of Calcium Signaling in Pathological Processes)
Show Figures

Graphical abstract

19 pages, 5127 KiB  
Article
In Vitro Safety Study on the Use of Cold Atmospheric Plasma in the Upper Respiratory Tract
by Sigrid Karrer, Petra Unger, Michael Gruber, Lisa Gebhardt, Robert Schober, Mark Berneburg, Anja Katrin Bosserhoff and Stephanie Arndt
Cells 2024, 13(17), 1411; https://doi.org/10.3390/cells13171411 - 23 Aug 2024
Cited by 4 | Viewed by 1491
Abstract
Cold atmospheric plasma (CAP) devices generate reactive oxygen and nitrogen species, have antimicrobial and antiviral properties, but also affect the molecular and cellular mechanisms of eukaryotic cells. The aim of this study is to investigate CAP treatment in the upper respiratory tract (URT) [...] Read more.
Cold atmospheric plasma (CAP) devices generate reactive oxygen and nitrogen species, have antimicrobial and antiviral properties, but also affect the molecular and cellular mechanisms of eukaryotic cells. The aim of this study is to investigate CAP treatment in the upper respiratory tract (URT) to reduce the incidence of ventilator-associated bacterial pneumonia (especially superinfections with multi-resistant pathogens) or viral infections (e.g., COVID-19). For this purpose, the surface-microdischarge-based plasma intensive care (PIC) device was developed by terraplasma medical GmbH. This study analyzes the safety aspects using in vitro assays and molecular characterization of human oral keratinocytes (hOK), human bronchial–tracheal epithelial cells (hBTE), and human lung fibroblasts (hLF). A 5 min CAP treatment with the PIC device at the “throat” and “subglottis” positions in the URT model did not show any significant differences from the untreated control (ctrl.) and the corresponding pressurized air (PA) treatment in terms of cell morphology, viability, apoptosis, DNA damage, and migration. However, pro-inflammatory cytokines (MCP-1, IL-6, and TNFα) were induced in hBTE and hOK cells and profibrotic molecules (collagen-I, FKBP10, and αSMA) in hLF at the mRNA level. The use of CAP in the oropharynx may make an important contribution to the recovery of intensive care patients. The results indicate that a 5 min CAP treatment in the URT with the PIC device does not cause any cell damage. The extent to which immune cell activation is induced and whether it has long-term effects on the organism need to be carefully examined in follow-up studies in vivo. Full article
Show Figures

Figure 1

21 pages, 8084 KiB  
Article
Stimuli-Specific Senescence of Primary Human Lung Fibroblasts Modulates Alveolar Stem Cell Function
by Maria Camila Melo-Narváez, Nora Bramey, Fenja See, Katharina Heinzelmann, Beatriz Ballester, Carina Steinchen, Eshita Jain, Kathrin Federl, Qianjiang Hu, Deepesh Dhakad, Jürgen Behr, Oliver Eickelberg, Ali Önder Yildirim, Melanie Königshoff and Mareike Lehmann
Cells 2024, 13(13), 1129; https://doi.org/10.3390/cells13131129 - 29 Jun 2024
Cited by 5 | Viewed by 3283
Abstract
Aging is the main risk factor for chronic lung diseases (CLDs) including idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). Accordingly, hallmarks of aging like cellular senescence are increased in these patients in different lung cell types including fibroblasts. However, little [...] Read more.
Aging is the main risk factor for chronic lung diseases (CLDs) including idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). Accordingly, hallmarks of aging like cellular senescence are increased in these patients in different lung cell types including fibroblasts. However, little is known about the different triggers that induce a senescence phenotype in different disease backgrounds and its role in CLD pathogenesis. Therefore, we characterized senescence in primary human lung fibroblasts (phLF) from control, IPF, or COPD patients at baseline and after exposure to disease-relevant insults (H2O2, bleomycin, TGF-β1) and studied their capacity to support progenitor cell potential in a lung organoid model. Bulk-RNA sequencing revealed that phLF from IPF and COPD activate different transcriptional programs but share a similar senescence phenotype at baseline. Moreover, H2O2 and bleomycin but not TGF-β1 induced senescence in phLF from different disease origins. Exposure to different triggers resulted in distinct senescence programs in phLF characterized by different SASP profiles. Finally, co-culture with bleomycin- and H2O2-treated phLF reduced the progenitor cell potential of alveolar epithelial progenitor cells. In conclusion, phLF from COPD and IPF share a conserved senescence response that varies depending on the insult and impairs alveolar epithelial progenitor capacity ex vivo. Full article
(This article belongs to the Special Issue The Role of Cellular Senescence in Health, Disease, and Aging)
Show Figures

Figure 1

13 pages, 2827 KiB  
Article
Prostaglandin E2 (PGE2) and Roflumilast Involvement in IPF Progression
by Noa Moshkovitz, Gali Epstein Shochet and David Shitrit
Int. J. Mol. Sci. 2023, 24(15), 12393; https://doi.org/10.3390/ijms241512393 - 3 Aug 2023
Cited by 3 | Viewed by 3306
Abstract
The ECM propagates processes in idiopathic pulmonary fibrosis (IPF), leading to progressive lung scarring. We established an IPF-conditioned matrix (IPF-CM) system as a platform for testing drug candidates. Here, we tested the involvement of a PGE2 and PDE4 inhibitor, Roflumilast, in the IPF-CM [...] Read more.
The ECM propagates processes in idiopathic pulmonary fibrosis (IPF), leading to progressive lung scarring. We established an IPF-conditioned matrix (IPF-CM) system as a platform for testing drug candidates. Here, we tested the involvement of a PGE2 and PDE4 inhibitor, Roflumilast, in the IPF-CM system. Primary normal/IPF tissue-derived human lung fibroblasts (N/IPF-HLFs) were cultured on Matrigel and then removed to create the IPF-CM. N-HLFs were exposed to the IPF-CM/N-CM with/without PGE2 (1 nM) and Roflumilast (1 µM) for 24 h. The effect of the IPF-CM on cell phenotype and pro-fibrotic gene expression was tested. In addition, electronic records of 107 patients with up to 15-year follow-up were retrospectively reviewed. Patients were defined as slow/rapid progressors using forced vital capacity (FVC) annual decline. Medication exposure was examined. N-HLFs cultured on IPF-CM were arranged in large aggregates as a result of increased proliferation, migration and differentiation. A PGE2 and Roflumilast combination blocked the large aggregate formation induced by the IPF-CM (p < 0.001) as well as cell migration, proliferation, and pro-fibrotic gene expression. A review of patient records showed that significantly more slow-progressing patients were exposed to NSAIDs (p = 0.003). PGE2/PDE4 signaling may be involved in IPF progression. These findings should be further studied. Full article
(This article belongs to the Special Issue Advances in Lung Injury, Regeneration, and Fibrosis)
Show Figures

Figure 1

15 pages, 3162 KiB  
Article
Transforming Capillary Alginate Gel (Capgel) into New 3D-Printing Biomaterial Inks
by Andrew Philip Panarello, Corey Edward Seavey, Mona Doshi, Andrew K. Dickerson, Thomas J. Kean and Bradley Jay Willenberg
Gels 2022, 8(6), 376; https://doi.org/10.3390/gels8060376 - 14 Jun 2022
Cited by 6 | Viewed by 3869
Abstract
Three-dimensional (3D) printing has great potential for creating tissues and organs to meet shortfalls in transplant supply, and biomaterial inks are key components of many such approaches. There is a need for biomaterial inks that facilitate integration, infiltration, and vascularization of targeted 3D-printed [...] Read more.
Three-dimensional (3D) printing has great potential for creating tissues and organs to meet shortfalls in transplant supply, and biomaterial inks are key components of many such approaches. There is a need for biomaterial inks that facilitate integration, infiltration, and vascularization of targeted 3D-printed structures. This study is therefore focused on creating new biomaterial inks from self-assembled capillary alginate gel (Capgel), which possesses a unique microstructure of uniform tubular channels with tunable diameters and densities. First, extrusions of Capgel through needles (0.1–0.8 mm inner diameter) were investigated. It was found that Capgel ink extrudes as slurries of fractured and entangled particles, each retaining capillary microstructures, and that extruded line widths W and particle sizes A were both functions of needle inner diameter D, specifically power-law relationships of W~D0.42 and A~D1.52, respectively. Next, various structures were successfully 3D-printed with Capgel ink, thus demonstrating that this biomaterial ink is stackable and self-supporting. To increase ink self-adherence, Capgel was coated with poly-L-lysine (PLL) to create a cationic “skin” prior to extrusion. It was hypothesized that, during extrusion of Capgel-PLL, the sheared particles fracture and thereby expose cryptic sites of negatively-charged biomaterial capable of forming new polyelectrolyte bonds with areas of the positively-charged PLL skin on neighboring entangled particles. This novel approach resulted in continuous, self-adherent extrusions that remained intact in solution. Human lung fibroblasts (HLFs) were then cultured on this ink to investigate biocompatibility. HLFs readily colonized Capgel-PLL ink and were strongly oriented by the capillary microstructures. This is the first description of successful 3D-printing with Capgel biomaterial ink as well as the first demonstration of the concept and formulation of a self-adherent Capgel-PLL biomaterial ink. Full article
(This article belongs to the Special Issue Functional Transformations in Polymer Gels)
Show Figures

Figure 1

17 pages, 6749 KiB  
Article
Caveolin-1-Derived Peptide Reduces ER Stress and Enhances Gelatinolytic Activity in IPF Fibroblasts
by Satoshi Komatsu, Liang Fan, Steven Idell, Sreerama Shetty and Mitsuo Ikebe
Int. J. Mol. Sci. 2022, 23(6), 3316; https://doi.org/10.3390/ijms23063316 - 18 Mar 2022
Cited by 4 | Viewed by 2879
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by an excess deposition of extracellular matrix in the pulmonary interstitium. Caveolin-1 scaffolding domain peptide (CSP) has been found to mitigate pulmonary fibrosis in several animal models. However, its pathophysiological role in IPF is [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by an excess deposition of extracellular matrix in the pulmonary interstitium. Caveolin-1 scaffolding domain peptide (CSP) has been found to mitigate pulmonary fibrosis in several animal models. However, its pathophysiological role in IPF is obscure, and it remains critical to understand the mechanism by which CSP protects against pulmonary fibrosis. We first studied the delivery of CSP into cells and found that it is internalized and accumulated in the Endoplasmic Reticulum (ER). Furthermore, CSP reduced ER stress via suppression of inositol requiring enzyme1α (IRE1α) in transforming growth factor β (TGFβ)-treated human IPF lung fibroblasts (hIPF-Lfs). Moreover, we found that CSP enhanced the gelatinolytic activity of TGFβ-treated hIPF-Lfs. The IRE1α inhibitor; 4µ8C also augmented the gelatinolytic activity of TGFβ-treated hIPF-Lfs, supporting the concept that CSP induced inhibition of the IRE1α pathway. Furthermore, CSP significantly elevated expression of MMPs in TGFβ-treated hIPF-Lfs, but conversely decreased the secretion of collagen 1. Similar results were observed in two preclinical murine models of PF, bleomycin (BLM)- and adenovirus expressing constitutively active TGFβ (Ad-TGFβ)-induced PF. Our findings provide new insights into the mechanism by which lung fibroblasts contribute to CSP dependent protection against lung fibrosis. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

22 pages, 3596 KiB  
Article
Role of Human Antigen R (HuR) in the Regulation of Pulmonary ACE2 Expression
by Noof Aloufi, Zahraa Haidar, Jun Ding, Parameswaran Nair, Andrea Benedetti, David H. Eidelman, Imed-Eddine Gallouzi, Sergio Di Marco, Sabah N. Hussain and Carolyn J. Baglole
Cells 2022, 11(1), 22; https://doi.org/10.3390/cells11010022 - 22 Dec 2021
Cited by 8 | Viewed by 4802
Abstract
Patients with COPD may be at an increased risk for severe illness from COVID-19 because of ACE2 upregulation, the entry receptor for SARS-CoV-2. Chronic exposure to cigarette smoke, the main risk factor for COPD, increases pulmonary ACE2. How ACE2 expression is controlled is [...] Read more.
Patients with COPD may be at an increased risk for severe illness from COVID-19 because of ACE2 upregulation, the entry receptor for SARS-CoV-2. Chronic exposure to cigarette smoke, the main risk factor for COPD, increases pulmonary ACE2. How ACE2 expression is controlled is not known but may involve HuR, an RNA binding protein that increases protein expression by stabilizing mRNA. We hypothesized that HuR would increase ACE2 protein expression. We analyzed scRNA-seq data to profile ELAVL1 expression in distinct respiratory cell populations in COVID-19 and COPD patients. HuR expression and cellular localization was evaluated in COPD lung tissue by multiplex immunohistochemistry and in human lung cells by imaging flow cytometry. The regulation of ACE2 expression was evaluated using siRNA-mediated knockdown of HuR. There is a significant positive correlation between ELAVL1 and ACE2 in COPD cells. HuR cytoplasmic localization is higher in smoker and COPD lung tissue; there were also higher levels of cleaved HuR (CP-1). HuR binds to ACE2 mRNA but knockdown of HuR does not change ACE2 protein levels in primary human lung fibroblasts (HLFs). Our work is the first to investigate the association between ACE2 and HuR. Further investigation is needed to understand the mechanistic underpinning behind the regulation of ACE2 expression. Full article
(This article belongs to the Special Issue Advances in COPD)
Show Figures

Figure 1

17 pages, 24049 KiB  
Article
The MEK/ERK/miR-21 Signaling Is Critical in Osimertinib Resistance in EGFR-Mutant Non-Small Cell Lung Cancer Cells
by Wen-Chien Huang, Vijesh Kumar Yadav, Wei-Hong Cheng, Chun-Hua Wang, Ming-Shou Hsieh, Ting-Yi Huang, Shiou-Fu Lin, Chi-Tai Yeh and Kuang-Tai Kuo
Cancers 2021, 13(23), 6005; https://doi.org/10.3390/cancers13236005 - 29 Nov 2021
Cited by 40 | Viewed by 4595
Abstract
Background: The third-generation epidermal growth factor receptor (EGFR) inhibitor, Osimertinib, is used to treat non-small cell lung cancer (NSCLC) patients with tyrosine kinase inhibitor (TKI) resistance caused by acquired EGFR T790M mutation. However, patients eventually develop resistance against Osimertinib with mechanisms not yet [...] Read more.
Background: The third-generation epidermal growth factor receptor (EGFR) inhibitor, Osimertinib, is used to treat non-small cell lung cancer (NSCLC) patients with tyrosine kinase inhibitor (TKI) resistance caused by acquired EGFR T790M mutation. However, patients eventually develop resistance against Osimertinib with mechanisms not yet fully clarified. Activated alternative survival pathways within the tumor cells and cancer-associated fibroblasts (CAFs) have been proposed to contribute to Osimertinib resistance. MET and MEK inhibitors may overcome EGFR-independent resistance. Another acquired resistance mechanism of EGFR-TKI is the up-regulation of the RAS/RAF/MEK/ERK signaling pathway, which is the key to cell survival and proliferation; this may occur downstream of various other signaling pathways. In this report, we reveal the possible regulatory mechanism and inhibitory effect of the MEK inhibitor trametinib applied to MEK/ERK/miR-21 axis and PDCD4 in Osimertinib resistance. We found a possible regulatory role of PDCD4 in ERK signaling. PDCD4 is a new type of tumor suppressor that has multiple functions of inhibiting cell growth, tumor invasion, metastasis, and inducing apoptosis. Previous bioinformatics analysis has confirmed that PDCD4 contains the binding site of miR-21 and acts as a tumor suppressor in the regulation of various processes associated with the development of cancer, including cell proliferation, invasion, metastasis, and neoplastic transformation. Based on the above analysis, we hypothesized that the tumor suppressor PDCD4 is one of the effective inhibitory targets of miR-21-5p. Methods: The expression between EGFR and ERK2 in lung adenocarcinoma was evaluated from the TCGA database. Osimertinib-sensitive and resistant NSCLC cells obtained from patients were used to co-culture with human lung fibroblasts (HLFs) to generate CAF cells (termed CAF_R1 and CAF_S1), and the functional roles of these CAF cells plus the regulatory mechanisms were further explored. Then, MEK inhibitor Trametinib with or without Osimertinib was applied in xenograft model derived from patients to validate the effects on growth inhibition of Osimertinib-resistant NSCLC tumors. Result: ERK2 expression correlated with EGFR expression and higher ERK2 level was associated with worse prognosis of patients and Osimertinib resistance. CAFs derived from Osimertinib-resistant cells secreted more IL-6, IL-8, and hepatocyte growth factor (HGF), expressed stronger CAF markers including α-smooth muscle actin (α-SMA), fibroblast activation protein (FAP) plus platelet-derived growth factor receptor (PDGFR), and enhanced stemness and Osimertinib resistance in NSCLC cells. Meanwhile, increased MEK/ERK/miR-21 expressions were found in both CAFs and NSCLC cells. MEK inhibitor Trametinib significantly abrogated the abovementioned effects by modulating β-catenin, STAT3, and ERK. The xenograft model showed combining Osimertinib and Trametinib resulted in the most prominent growth inhibition of Osimertinib-resistant NSCLC tumors. Conclusions: Our results suggested that MEK/ERK/miR-21 signaling is critical in Osimertinib resistance and CAF transformation of NSCLC cells, and MEK inhibitor Trametinib significantly suppressed Osimertinib-resistant NSCLC tumor growth by abolishing both processes. Full article
(This article belongs to the Special Issue Lung Cancer with KRAS/EGFR Mutations)
Show Figures

Figure 1

17 pages, 7917 KiB  
Article
A Senescence Bystander Effect in Human Lung Fibroblasts
by David W. Waters, Michael Schuliga, Prabuddha S. Pathinayake, Lan Wei, Hui-Ying Tan, Kaj E. C. Blokland, Jade Jaffar, Glen P. Westall, Janette K. Burgess, Cecilia M. Prêle, Steven E. Mutsaers, Christopher L. Grainge and Darryl A. Knight
Biomedicines 2021, 9(9), 1162; https://doi.org/10.3390/biomedicines9091162 - 4 Sep 2021
Cited by 21 | Viewed by 4511
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterised by a dense fibrosing of the lung parenchyma. An association between IPF and cellular senescence is well established and several studies now describe a higher abundance of senescent fibroblasts and epithelial cells in the [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterised by a dense fibrosing of the lung parenchyma. An association between IPF and cellular senescence is well established and several studies now describe a higher abundance of senescent fibroblasts and epithelial cells in the lungs of IPF patients compared with age-matched controls. The cause of this abnormal accumulation of senescent cells is unknown but evidence suggests that, once established, senescence can be transferred from senescent to non-senescent cells. In this study, we investigated whether senescent human lung fibroblasts (LFs) and alveolar epithelial cells (AECs) could induce a senescent-like phenotype in “naïve” non-senescent LFs in vitro. Primary cultures of LFs from adult control donors (Ctrl-LFs) with a low baseline of senescence were exposed to conditioned medium (CM) from: (i) Ctrl-LFs induced to become senescent using H2O2 or etoposide; (ii) LFs derived from IPF patients (IPF-LFs) with a high baseline of senescence; or (iii) senescence-induced A549 cells, an AEC line. Additionally, ratios of non-senescent Ctrl-LFs and senescence-induced Ctrl-LFs (100:0, 0:100, 50:50, 90:10, 99:1) were co-cultured and their effect on induction of senescence measured. We demonstrated that exposure of naïve non-senescent Ctrl-LFs to CM from senescence-induced Ctrl-LFs and AECs and IPF-LFs increased the markers of senescence including nuclear localisation of phosphorylated-H2A histone family member X (H2AXγ) and expression of p21, IL-6 and IL-8 in Ctrl-LFs. Additionally, co-cultures of non-senescent and senescence-induced Ctrl-LFs induced a senescent-like phenotype in the non-senescent cells. These data suggest that the phenomenon of “senescence-induced senescence” can occur in vitro in primary cultures of human LFs, and provides a possible explanation for the abnormal abundance of senescent cells in the lungs of IPF patients. Full article
(This article belongs to the Special Issue Epigenetic Regulation of the Immune System)
Show Figures

Figure 1

14 pages, 3866 KiB  
Article
Hypoxia Inducible Factor 1A Supports a Pro-Fibrotic Phenotype Loop in Idiopathic Pulmonary Fibrosis
by Gali Epstein Shochet, Becky Bardenstein-Wald, Mary McElroy, Andrew Kukuy, Mark Surber, Evgeny Edelstein, Barak Pertzov, Mordechai Reuven Kramer and David Shitrit
Int. J. Mol. Sci. 2021, 22(7), 3331; https://doi.org/10.3390/ijms22073331 - 24 Mar 2021
Cited by 36 | Viewed by 4717
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. The IPF-conditioned matrix (IPF-CM) system enables the study of matrix–fibroblast interplay. While effective at slowing fibrosis, nintedanib has limitations and the mechanism is not fully elucidated. In the current work, we [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. The IPF-conditioned matrix (IPF-CM) system enables the study of matrix–fibroblast interplay. While effective at slowing fibrosis, nintedanib has limitations and the mechanism is not fully elucidated. In the current work, we explored the underlying signaling pathways and characterized nintedanib involvement in the IPF-CM fibrotic process. Results were validated using IPF patient samples and bleomycin-treated animals with/without oral and inhaled nintedanib. IPF-derived primary human lung fibroblasts (HLFs) were cultured on Matrigel and then cleared using NH4OH, creating the IPF-CM. Normal HLF-CM served as control. RNA-sequencing, PCR and western-blots were performed. HIF1α targets were evaluated by immunohistochemistry in bleomycin-treated rats with/without nintedanib and in patient samples with IPF. HLFs cultured on IPF-CM showed over-expression of ‘HIF1α signaling pathway’ (KEGG, p < 0.0001), with emphasis on SERPINE1 (PAI-1), VEGFA and TIMP1. IPF patient samples showed high HIF1α staining, especially in established fibrous tissue. PAI-1 was overexpressed, mainly in alveolar macrophages. Nintedanib completely reduced HIF1α upregulation in the IPF-CM and rat-bleomycin models. IPF-HLFs alter the extracellular matrix, thus creating a matrix that further propagates an IPF-like phenotype in normal HLFs. This pro-fibrotic loop includes the HIF1α pathway, which can be blocked by nintedanib. Full article
(This article belongs to the Special Issue Extracellular Matrix in Development and Disease 3.0)
Show Figures

Figure 1

23 pages, 6608 KiB  
Article
Sphingosine Kinase 1/S1P Signaling Contributes to Pulmonary Fibrosis by Activating Hippo/YAP Pathway and Mitochondrial Reactive Oxygen Species in Lung Fibroblasts
by Long Shuang Huang, Tara Sudhadevi, Panfeng Fu, Prasanth-Kumar Punathil-Kannan, David Lenin Ebenezer, Ramaswamy Ramchandran, Vijay Putherickal, Paul Cheresh, Guofei Zhou, Alison W. Ha, Anantha Harijith, David W. Kamp and Viswanathan Natarajan
Int. J. Mol. Sci. 2020, 21(6), 2064; https://doi.org/10.3390/ijms21062064 - 17 Mar 2020
Cited by 88 | Viewed by 8146
Abstract
The sphingosine kinase 1 (SPHK1)/sphingosine–1–phosphate (S1P) signaling axis is emerging as a key player in the development of idiopathic pulmonary fibrosis (IPF) and bleomycin (BLM)-induced lung fibrosis in mice. Recent evidence implicates the involvement of the Hippo/Yes-associated protein (YAP) 1 pathway in lung [...] Read more.
The sphingosine kinase 1 (SPHK1)/sphingosine–1–phosphate (S1P) signaling axis is emerging as a key player in the development of idiopathic pulmonary fibrosis (IPF) and bleomycin (BLM)-induced lung fibrosis in mice. Recent evidence implicates the involvement of the Hippo/Yes-associated protein (YAP) 1 pathway in lung diseases, including IPF, but its plausible link to the SPHK1/S1P signaling pathway is unclear. Herein, we demonstrate the increased co-localization of YAP1 with the fibroblast marker FSP1 in the lung fibroblasts of BLM-challenged mice, and the genetic deletion of Sphk1 in mouse lung fibroblasts (MLFs) reduced YAP1 localization in fibrotic foci. The PF543 inhibition of SPHK1 activity in mice attenuated YAP1 co-localization with FSP1 in lung fibroblasts. In vitro, TGF-β stimulated YAP1 translocation to the nucleus in primary MLFs, and the deletion of Sphk1 or inhibition with PF543 attenuated TGF-β-mediated YAP1 nuclear localization. Moreover, the PF543 inhibition of SPHK1, or the verteporfin inhibition of YAP1, decreased the TGF-β- or BLM-induced mitochondrial reactive oxygen species (mtROS) in human lung fibroblasts (HLFs) and the expression of fibronectin (FN) and alpha-smooth muscle actin (α-SMA). Furthermore, scavenging mtROS with MitoTEMPO attenuated the TGF-β-induced expression of FN and α-SMA. The addition of the S1P antibody to HLFs reduced TGF-β- or S1P-mediated YAP1 activation, mtROS, and the expression of FN and α-SMA. These results suggest a role for SPHK1/S1P signaling in TGF-β-induced YAP1 activation and mtROS generation, resulting in fibroblast activation, a critical driver of pulmonary fibrosis. Full article
(This article belongs to the Special Issue Sphingolipids: Metabolic Functions and Disorders)
Show Figures

Graphical abstract

18 pages, 3683 KiB  
Article
Reactive Oxygen Species (ROS)-Sensitive Prodrugs of the Tyrosine Kinase Inhibitor Crizotinib
by Bjoern Bielec, Isabella Poetsch, Esra Ahmed, Petra Heffeter, Bernhard K. Keppler and Christian R. Kowol
Molecules 2020, 25(5), 1149; https://doi.org/10.3390/molecules25051149 - 4 Mar 2020
Cited by 9 | Viewed by 6626
Abstract
Tyrosine kinase inhibitors revolutionized cancer therapy but still evoke strong adverse effects that can dramatically reduce patients’ quality of life. One possibility to enhance drug safety is the exploitation of prodrug strategies to selectively activate a drug inside the tumor tissue. In this [...] Read more.
Tyrosine kinase inhibitors revolutionized cancer therapy but still evoke strong adverse effects that can dramatically reduce patients’ quality of life. One possibility to enhance drug safety is the exploitation of prodrug strategies to selectively activate a drug inside the tumor tissue. In this study, we designed a prodrug strategy for the approved c-MET, ALK, and ROS1 tyrosine kinase inhibitor crizotinib. Therefore, a boronic-acid trigger moiety was attached to the 2-aminopyridine group of crizotinib, which is a crucial position for target kinase binding. The influence of the modifications on the c-MET- and ALK-binding ability was investigated by docking studies, and the strongly reduced interactions could be confirmed by cell-free kinase inhibition assay. Furthermore, the newly synthesized compounds were tested for their activation behavior with H2O2 and their stability in cell culture medium and serum. Finally, the biological activity of the prodrugs was investigated in three cancer cell lines and revealed a good correlation between activity and intrinsic H2O2 levels of the cells for prodrug A. Furthermore, the activity of this prodrug was distinctly reduced in a non-malignant, c-MET expressing human lung fibroblast (HLF) cell line. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Graphical abstract

11 pages, 8380 KiB  
Article
In Situ Analysis of Interactions between Fibroblast and Tumor Cells for Drug Assays with Microfluidic Non-Contact Co-Culture
by Hongmei Chen, Wenting Liu, Bin Wang and Zhifeng Zhang
Micromachines 2018, 9(12), 665; https://doi.org/10.3390/mi9120665 - 17 Dec 2018
Cited by 4 | Viewed by 3957
Abstract
Fibroblasts have significant involvement in cancer progression and are an important therapeutic target for cancer. Here, we present a microfluidic non-contact co-culture device to analyze interactions between tumor cells and fibroblasts. Further, we investigate myofibroblast behaviors induced by lung tumor cells as responses [...] Read more.
Fibroblasts have significant involvement in cancer progression and are an important therapeutic target for cancer. Here, we present a microfluidic non-contact co-culture device to analyze interactions between tumor cells and fibroblasts. Further, we investigate myofibroblast behaviors induced by lung tumor cells as responses to gallic acid and baicalein. Human lung fibroblast (HLF) and lung cancer cell line (A549) cells were introduced into neighboring, separated regions by well-controlled laminar flows. The phenotypic behavior and secretion activity of the tumor cells indicate that fibroblasts could become activated through paracrine signaling to create a supportive microenvironment for cancer cells when HLF is co-cultured with A549. Furthermore, both gallic acid (GA) and baicalein (BAE) could inhibit the activation of fibroblasts. In situ analysis of various cell communications via the paracrine pathway could be realizable in this contactless co-culture single device. This device facilitates a better understanding of interactions between heterotypic cells, thus exploring the mechanism of cancer, and performs anti-invasion drug assays in a relatively complex microenvironment. Full article
(This article belongs to the Special Issue Microfluidics for Cells and Other Organisms)
Show Figures

Figure 1

17 pages, 1894 KiB  
Article
Hypoxia-Induced Collagen Synthesis of Human Lung Fibroblasts by Activating the Angiotensin System
by Shan-Shan Liu, Hao-Yan Wang, Jun-Ming Tang and Xiu-Mei Zhou
Int. J. Mol. Sci. 2013, 14(12), 24029-24045; https://doi.org/10.3390/ijms141224029 - 10 Dec 2013
Cited by 26 | Viewed by 7328
Abstract
The exact molecular mechanism that mediates hypoxia-induced pulmonary fibrosis needs to be further clarified. The aim of this study was to explore the effect and underlying mechanism of angiotensin II (Ang II) on collagen synthesis in hypoxic human lung fibroblast (HLF) cells. The [...] Read more.
The exact molecular mechanism that mediates hypoxia-induced pulmonary fibrosis needs to be further clarified. The aim of this study was to explore the effect and underlying mechanism of angiotensin II (Ang II) on collagen synthesis in hypoxic human lung fibroblast (HLF) cells. The HLF-1 cell line was used for in vitro studies. Angiotensinogen (AGT), angiotensin converting enzyme (ACE), angiotensin II type 1 receptor (AT1R) and angiotensin II type 2 receptor (AT2R) expression levels in human lung fibroblasts were analysed using real-time polymerase chain reaction (RT-PCR) after hypoxic treatment. Additionally, the collagen type I (Col-I), AT1R and nuclear factor κappaB (NF-κB) protein expression levels were detected using Western blot analysis, and NF-κB nuclear translocation was measured using immunofluorescence localization analysis. Ang II levels in HLF-1 cells were measured with an enzyme-linked immunosorbent assay (ELISA). We found that hypoxia increased Col-I mRNA and protein expression in HLF-1 cells, and this effect could be inhibited by an AT1R or AT2R inhibitor. The levels of NF-κB, RAS components and Ang II production in HLF-1 cells were significantly increased after the hypoxia exposure. Hypoxia or Ang II increased NF-κB-p50 protein expression in HLF-1 cells, and the special effect could be inhibited by telmisartan (TST), an AT1R inhibitor, and partially inhibited by PD123319, an AT2R inhibitor. Importantly, hypoxia-induced NF-κB nuclear translocation could be nearly completely inhibited by an AT1R or AT2R inhibitor. Furthermore pyrrolidine dithiocarbamate (PDTC), a NF-κB blocker, abolished the expression of hypoxia-induced AT1R and Col-I in HLF-1 cells. Our results indicate that Ang II-mediated NF-κB signalling via ATR is involved in hypoxia-induced collagen synthesis in human lung fibroblasts. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Back to TopTop