Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (538)

Search Parameters:
Keywords = human lung carcinoma cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7456 KiB  
Article
Eurycomanone Blocks TGF-β1-Induced Epithelial-to-Mesenchymal Transition, Migration, and Invasion Pathways in Human Non-Small Cell Lung Cancer Cells by Targeting Smad and Non-Smad Signaling
by Pratchayanon Soddaen, Kongthawat Chairatvit, Pornsiri Pitchakarn, Tanongsak Laowanitwattana, Arisa Imsumran and Ariyaphong Wongnoppavich
Int. J. Mol. Sci. 2025, 26(15), 7120; https://doi.org/10.3390/ijms26157120 - 23 Jul 2025
Viewed by 275
Abstract
Non-small cell lung cancer (NSCLC) is a predominant form of lung cancer that is often diagnosed at an advanced metastatic stage. The processes of cancer cell migration and invasion involve epithelial-to-mesenchymal transition (EMT), which is crucial for metastasis. Targeting cancer aggressiveness with effective [...] Read more.
Non-small cell lung cancer (NSCLC) is a predominant form of lung cancer that is often diagnosed at an advanced metastatic stage. The processes of cancer cell migration and invasion involve epithelial-to-mesenchymal transition (EMT), which is crucial for metastasis. Targeting cancer aggressiveness with effective plant compounds has gained attention as a potential adjuvant therapy. Eurycomanone (ECN), a bioactive quassinoid found in the root of Eurycoma longifolia Jack, has demonstrated anti-cancer activity against various carcinoma cell lines, including human NSCLC cells. This study aimed to investigate the in vitro effects of ECN on the migration and invasion of human NSCLC cells and to elucidate the mechanisms by which ECN modulates the EMT in these cells. Non-toxic doses (≤IC20) of ECN were determined using the MTT assay on two human NSCLC cell lines: A549 and Calu-1. The results from wound healing and transwell migration assays indicated that ECN significantly suppressed the migration of both TGF-β1-induced A549 and Calu-1 cells. ECN exhibited a strong anti-invasive effect, as its non-toxic doses significantly suppressed the TGF-β1-induced invasion of NSCLC cells through Matrigel and decreased the secretion of MMP-2 from these cancer cells. Furthermore, ECN could affect the TGF-β1-induced EMT process in various ways in NSCLC cells. In TGF-β1-induced A549 cells, ECN significantly restored the expression of E-cadherin by inhibiting the Akt signaling pathway. Conversely, in Calu-1, ECN reduced the aggressive phenotype by decreasing the expression of the mesenchymal protein N-cadherin and inhibiting the TGF-β1/Smad pathway. In conclusion, this study demonstrated the anti-invasive activity of eurycomanone from E. longifolia Jack in human NSCLC cells and provided insights into its mechanism of action by suppressing the effects of TGF-β1 signaling on the EMT program. These findings offer scientific evidence to support the potential of ECN as an alternative therapy for metastatic NSCLC. Full article
(This article belongs to the Special Issue Natural Products with Anti-Inflammatory and Anticancer Activity)
Show Figures

Figure 1

13 pages, 3320 KiB  
Article
Regulation of Human Lung Adenocarcinoma Cell Proliferation by LncRNA AFAP-AS1 Through the miR-508/ZWINT Axis
by Sultan F. Kadasah and Abdulaziz M. S. Alqahtani
Int. J. Mol. Sci. 2025, 26(13), 6532; https://doi.org/10.3390/ijms26136532 - 7 Jul 2025
Viewed by 368
Abstract
Lung adenocarcinoma is a prevalent, aggressive cancer with a poor prognosis due to early metastasis and resistance to treatment. LncRNA AFAP1-AS1 has been shown to be associated with the development of multiple carcinomas. This study investigates the functional role of AFAP1-AS1 in lung [...] Read more.
Lung adenocarcinoma is a prevalent, aggressive cancer with a poor prognosis due to early metastasis and resistance to treatment. LncRNA AFAP1-AS1 has been shown to be associated with the development of multiple carcinomas. This study investigates the functional role of AFAP1-AS1 in lung adenocarcinoma cell proliferation via miR-508-3p and ZWINT. Human lung adenocarcinoma A549 cells were transfected with siRNA constructs against AFAP1-AS1 (si-AFAP1-AS1) to silence its expression. Cell proliferation was evaluated via CCK-8 and colony-forming assays. Apoptosis was assessed using AO/EB staining, and invasion was determined via Transwell assay. The interaction between AFAP1-AS1, miR-508-3p, and ZWINT was confirmed via dual luciferase reporter assay and qRT-PCR analysis. Data were analysed using appropriate statistical tests. AFAP1-AS1 was significantly upregulated in lung adenocarcinoma cells compared to normal BEAS-2B cells. Silencing of AFAP1-AS1 resulted in a marked reduction in A549 cell proliferation and colony development, as observed in CCK-8 and colony formation assays. The AO/EB assay showed a significant increase in apoptosis (30 ± 4.4%) in si-AFAP1-AS1 transfected cells compared to control si-NC (3 ± 1.2%). In addition, knockdown of AFAP1-AS1 led to an upsurge of pro-apoptotic Bax and decline of anti-apoptotic Bcl-2 expression. The dual luciferase assay established the interaction between AFAP1-AS1 and miR-508-3p. Furthermore, ZWINT, identified as a target of miR-508-3p, was significantly upregulated in lung adenocarcinoma tissues. Overexpression of ZWINT rescued the inhibitory effects of AFAP1-AS1 silencing on cell proliferation, colony formation, and apoptosis, while also reversing the reduction in cell invasion. AFAP1-AS1 accelerates the development of lung adenocarcinoma by cell proliferation, apoptosis, and invasion via the miR-508-3p/ZWINT axis. Thus, targeting AFAP1-AS1 or its downstream regulatory axis could offer novel therapeutic approaches in lung adenocarcinoma treatment. Full article
(This article belongs to the Special Issue Novel Molecular Pathways in Oncology, 3rd Edition)
Show Figures

Figure 1

18 pages, 2318 KiB  
Article
Extracellular Vesicles Released by Bovine Alphaherpesvirus 1-Infected A549 Cells May Limit Subsequent Infections of the Progeny Virus
by Yuanshan Luo, Hao Yang, Yike Huang, Renee V. Goreham, Xiuyan Ding and Liqian Zhu
Int. J. Mol. Sci. 2025, 26(13), 6181; https://doi.org/10.3390/ijms26136181 - 26 Jun 2025
Viewed by 444
Abstract
Bovine alphaherpesvirus 1 (BoAHV-1) is a promising oncolytic virus that can infect the human lung carcinoma cell line A549. In an effort to adapt the virus to grow more rapidly in these cells through the serial passaging of viral progeny, we were unsuccessful. [...] Read more.
Bovine alphaherpesvirus 1 (BoAHV-1) is a promising oncolytic virus that can infect the human lung carcinoma cell line A549. In an effort to adapt the virus to grow more rapidly in these cells through the serial passaging of viral progeny, we were unsuccessful. Here, we found that extracellular vesicles (EVs) secreted by BoAHV-1-infected A549 cells (referred to as EDVs) contain 59 viral proteins, including both viral structure proteins (such as gC and gD) and viral regulatory proteins (such as bICP4 and bICP22), as identified via a proteomic analysis. These EDVs can bind to and enter target cells, inhibit viral particles binding to cells, and stimulate the production of IFN-α and IFN-β in A549 cells. When EDVs are inoculated into rabbits via either the conjunctival sacs or intravenously, they can be readily detected in neurons within the trigeminal ganglia (TG), where they reduce viral replication and promote the transcription of IFN-γ. Furthermore, incorporation of the known anti-herpesvirus drug Acyclovir (ACY) into the EDVs leads to synergistically enhanced antiviral efficacy. Collectively, the EDVs exhibit antiviral effects by blocking viral binding to target cells and stimulating the innate immune response, thereby leading to the failure of the serial passaging of viral progeny in these cells, and these EDVs may serve as a promising vector for delivering drugs targeting TG tissues for antiviral purposes. Full article
(This article belongs to the Special Issue Microbial Infections and Novel Biological Molecules for Treatment)
Show Figures

Figure 1

10 pages, 1037 KiB  
Article
Antitumor Effect of mTOR1/2 Dual Inhibitor AZD8055 in Canine Pulmonary Carcinoma
by Tomokazu Nagashima, Kazuhiko Ochiai, Yuka Takizawa, Youta Koike, Takahiro Saito, Asumi Muramatsu, Daigo Azakami, Yukino Machida, Makoto Bonkobara, Toshiyuki Ishiwata and Masaki Michishita
Cancers 2025, 17(12), 1991; https://doi.org/10.3390/cancers17121991 - 14 Jun 2025
Viewed by 893
Abstract
Background/Objectives: Primary pulmonary carcinoma (PC) is a malignant neoplasm that occurs in humans, dogs, and other species. In canine PC, palliative care remains the most practical approach for dogs with inoperable PC. Methods: We investigated the effectiveness of mammalian target of rapamycin (mTOR) [...] Read more.
Background/Objectives: Primary pulmonary carcinoma (PC) is a malignant neoplasm that occurs in humans, dogs, and other species. In canine PC, palliative care remains the most practical approach for dogs with inoperable PC. Methods: We investigated the effectiveness of mammalian target of rapamycin (mTOR) inhibitors in canine lung cancer upon PI3K/AKT/mTOR activation. Three canine PC cell lines (AZACL1, AZACL2, and cPAC-1) were treated with three mTOR inhibitors (AZD8055, temsirolimus, and everolimus). In vitro, sensitivity assays were conducted to evaluate proliferation and Western blotting was used to examine pathway activation and phosphorylation of mTOR-related protein. Results: AZD8055 had a stronger inhibitory effect on cell proliferation than temsirolimus and everolimus in all three PC cell lines. The IC50 for AZD8055 in the AZACL1, AZACL2, and cPAC-1 cell lines were 23.8 μM, 95.8 nM, and 237 nM, for temsirolimus they were 34.6 μM, 11.5 μM, and 11.2 μM, and for everolims they were 36.6 μM, 33.4 μM, and 33.0 μM, respectively. Western blotting revealed PI3K/AKT/mTOR pathway activation and differential phosphorylation of mTOR signal-related proteins across the three PC cell lines. In xenograft mice injected with the AZACL1 and AZACL2 cell lines we showed that the AZD8055-treated group exhibited a significant reduction in tumor volume via the inhibition of tumor growth compared to the control group. Conclusions: These findings reveal that the PI3K/AKT/mTOR pathway plays a key role in canine PC and that AZD8055 may be a novel therapeutic agent for PC-bearing dogs. Full article
(This article belongs to the Special Issue Pulmonary Nodule and Lung Cancer: Diagnosis and Clinical Treatment)
Show Figures

Figure 1

22 pages, 58309 KiB  
Article
An Organoid Model for Translational Cancer Research Recapitulates Histoarchitecture and Molecular Hallmarks of Non-Small-Cell Lung Cancer
by Camilla T. Ekanger, Maria P. Ramnefjell, Maren S. F. Guttormsen, Joakim Hekland, Kristin Dahl-Michelsen, Maria L. Lotsberg, Ning Lu, Linda E. B. Stuhr, Laurence Hoareau, Pirjo-Riitta Salminen, Fabian Gärtner, Marianne Aanerud, Lars A. Akslen, James B. Lorens and Agnete S. T. Engelsen
Cancers 2025, 17(11), 1873; https://doi.org/10.3390/cancers17111873 - 3 Jun 2025
Viewed by 902
Abstract
Background: Organoid cultures have received much attention in recent years due to the promise of patient-derived organoid cultures for exploration of personalized cancer treatment strategies. Organoid cultures have been established from a variety of malignancies; however, lack of a thorough histopathological analysis [...] Read more.
Background: Organoid cultures have received much attention in recent years due to the promise of patient-derived organoid cultures for exploration of personalized cancer treatment strategies. Organoid cultures have been established from a variety of malignancies; however, lack of a thorough histopathological analysis has limited the acceptance of organoid models as translational tools. Methods: Here, we aimed to establish patient-derived tumor-organoid (PDTO) models from human non-small-cell lung cancer (NSCLC) resection specimens and provide a thorough histopathological evaluation of the cultures. Results: We show that we were able to establish organoid cultures of lung adenocarcinomas (LUADs) and lung squamous cell carcinomas (LUSCs) successfully, and that the organoid cultures of different subtypes of NSCLC preserved the histoarchitecture and growth pattern of the tumors they derive from. Immunohistochemistry and AB-PAS staining confirmed the subtype-specific protein expression pattern and preserved mucin production in LUAD organoids. The genetic abnormalities of the tumors assessed by immunohistochemistry (IHC-P) were preserved in the organoid cultures. Conclusions: Our thorough study reveals conserved PDTO histopathology, supports further exploration, and encourages using PDTO models in translational research projects. PDTO models hold remarkable promise as patient-specific models and may be applied to predict therapy response in cases where molecular–pathological analyses pose significant management dilemmas, and they also may provide a platform for exploring the molecular mechanisms of therapy resistance in a biologically relevant model system. Full article
(This article belongs to the Special Issue Multicellular 3D Models of Cancer)
Show Figures

Graphical abstract

14 pages, 3432 KiB  
Article
Chromosome X Open Reading Frame 38 (CXorf38) Is a Tumor Suppressor and Potential Prognostic Biomarker in Lung Adenocarcinoma: The First Characterization
by Rui Yan, Heng-Wee Tan, Na-Li Cai, Le Yu, Yan Gao, Yan-Ming Xu and Andy T. Y. Lau
Proteomes 2025, 13(2), 22; https://doi.org/10.3390/proteomes13020022 - 3 Jun 2025
Viewed by 549
Abstract
Background: Previously, we found that an uncharacterized protein CXorf38 is significantly downregulated in human ZIP8-knockout (KO) cells. Given that ZIP8 regulates essential micronutrients linked to diseases including cancer, this study aims to characterize CXorf38 and evaluate its role in lung adenocarcinoma. Methods: iTRAQ-based [...] Read more.
Background: Previously, we found that an uncharacterized protein CXorf38 is significantly downregulated in human ZIP8-knockout (KO) cells. Given that ZIP8 regulates essential micronutrients linked to diseases including cancer, this study aims to characterize CXorf38 and evaluate its role in lung adenocarcinoma. Methods: iTRAQ-based proteomics was previously used to identify the abundance of proteins in ZIP8-KO cells. Cell proliferation and colony formation assays were used to examine the function of CXorf38 by overexpressing the gene in lung adenocarcinoma cell lines. Kaplan–Meier survival analysis was used to assess the prognostic value of CXorf38, while TCGA clinical database analysis was used to evaluate its expression in lung cancer tissues, particularly in smokers. Bioinformatics analyses (GO, KEGG, PPI, and ICI) were performed on CXorf38-coexpressed genes derived from patients with lung cancer. Results: CXorf38 overexpression suppressed lung cancer cell proliferation and colony formation, suggesting a tumor-suppressive role. Higher CXorf38 expression correlated with improved survival in patients with lung adenocarcinoma, but not in lung squamous cell carcinoma. Clinical data showed CXorf38 downregulation with lung cancer tissues of smokers, indicating a potential role in smoking-induced cancer progression and treatment. Functional analysis using bioinformatics linked CXorf38 to immune response regulation, suggesting involvement in the tumor immune microenvironment. Conclusions: Our study reveals for the first time that CXorf38 is a potential tumor suppressor, prognostic biomarker, and/or tumor immune regulator in lung adenocarcinoma—further research is warranted to explore its role in tumor immunity and its therapeutic potential. Full article
Show Figures

Figure 1

14 pages, 3291 KiB  
Article
ADAM32 Oncogene in Hepatoblastoma Is Regulated by IGF2BP2
by Takahiro Fukazawa, Keiji Tanimoto, Masato Kojima, Masami Kanawa, Nobuyuki Hirohashi and Eiso Hiyama
Cancers 2025, 17(11), 1772; https://doi.org/10.3390/cancers17111772 - 26 May 2025
Viewed by 726
Abstract
Background/Objectives: The membrane protein a disintegrin and metalloproteases (ADAMs) are highly expressed in various human carcinomas and play an important role in cancer characteristics. And among these, ADAM32 is highly expressed in hepatoblastoma (HBL) and plays an important role in oncogenic properties. [...] Read more.
Background/Objectives: The membrane protein a disintegrin and metalloproteases (ADAMs) are highly expressed in various human carcinomas and play an important role in cancer characteristics. And among these, ADAM32 is highly expressed in hepatoblastoma (HBL) and plays an important role in oncogenic properties. However, the regulatory mechanism has not been determined. Recently, it has been reported that some ADAMs are regulated by HIF, which is an important transcription factor in response to hypoxia. Therefore, we decided to study the regulatory mechanisms of ADAM32 under hypoxic conditions by using HBL, breast, and lung cancer cell lines. Methods/Results: When these cells were exposed to 1% O2 (hypoxia), it was found that the levels of ADAM32 increased at 48 h in HepG2, MCF7, and MDA-MB-231 but not in HUH-6 or lung cancer lines. However, the promoter activity of the ADAM32 gene in HepG2 remained unchanged under hypoxic conditions, suggesting that the level of ADAM32 in HBL is regulated by factors other than the promoter activity. From the microarray data, we found that the level of IGF2BP2, which is an m6A-related molecule, correlated with that of ADAM32, and these levels were decreased by HIF1A knockdown. And IGF2BP2 knockdown decreased the expression of ADAM32 and attenuated the increased expression of ADAM32 under hypoxic conditions. Conclusions: This study demonstrated that the oncogenic gene ADAM32 is regulated by IGF2BP2 and that IGF2BP2 could be a molecular target for HBL anticancer therapy. Full article
(This article belongs to the Special Issue Targeted Therapies for Pediatric Solid Tumors (2nd Edition))
Show Figures

Figure 1

20 pages, 1967 KiB  
Article
Analysis of p53-Independent Functions of the Mdm2-MdmX Complex Using Data-Independent Acquisition-Based Profiling
by Anu Jain, Rafaela Muniz de Queiroz, Jayanta K. Chakrabarty, Karl A. T. Makepeace, Carol Prives and Lewis M. Brown
Proteomes 2025, 13(2), 18; https://doi.org/10.3390/proteomes13020018 - 22 May 2025
Viewed by 792
Abstract
Background: We utilized data-independent acquisition (DIA) to study the poorly understood biology of Mdm2 and MdmX in a p53-null context. Mdm2 and MdmX form an E3-ligase complex that has as its most well-studied function the negative regulation of the tumor suppressor p53; however, [...] Read more.
Background: We utilized data-independent acquisition (DIA) to study the poorly understood biology of Mdm2 and MdmX in a p53-null context. Mdm2 and MdmX form an E3-ligase complex that has as its most well-studied function the negative regulation of the tumor suppressor p53; however, it is also known to interact with many other proteins in a p53-independent manner. Methods: In this work, small-molecule and siRNA-based technology were used to modify Mdm2/MdmX activity in a human non-small-cell lung carcinoma cell line lacking p53 expression. Study of the proteome of these cells helped identify biological processes where Mdm2 and MdmX may play roles in a p53-independent manner. Proteins from H1299 cells, treated with the drug MEL23 or siRNA against Mdm2 or MdmX, were analyzed. Results: Protein ontology and function were analyzed, revealing which pathways are affected by modulation of the proteins that form the complex. Insights into how those functions are dependent on the activity of the complex also gained via comparisons among the three groups of samples. Conclusions: We selected a potential target from the DIA analysis and validated it by immunoblotting and qPCR, and this allows us to demonstrate a new interaction partner of the Mdm2-MdmX complex in human cells. Full article
Show Figures

Figure 1

23 pages, 2927 KiB  
Article
Segmentation of Non-Small Cell Lung Carcinomas: Introducing DRU-Net and Multi-Lens Distortion
by Soroush Oskouei, Marit Valla, André Pedersen, Erik Smistad, Vibeke Grotnes Dale, Maren Høibø, Sissel Gyrid Freim Wahl, Mats Dehli Haugum, Thomas Langø, Maria Paula Ramnefjell, Lars Andreas Akslen, Gabriel Kiss and Hanne Sorger
J. Imaging 2025, 11(5), 166; https://doi.org/10.3390/jimaging11050166 - 20 May 2025
Cited by 1 | Viewed by 693
Abstract
The increased workload in pathology laboratories today means automated tools such as artificial intelligence models can be useful, helping pathologists with their tasks. In this paper, we propose a segmentation model (DRU-Net) that can provide a delineation of human non-small cell lung carcinomas [...] Read more.
The increased workload in pathology laboratories today means automated tools such as artificial intelligence models can be useful, helping pathologists with their tasks. In this paper, we propose a segmentation model (DRU-Net) that can provide a delineation of human non-small cell lung carcinomas and an augmentation method that can improve classification results. The proposed model is a fused combination of truncated pre-trained DenseNet201 and ResNet101V2 as a patch-wise classifier, followed by a lightweight U-Net as a refinement model. Two datasets (Norwegian Lung Cancer Biobank and Haukeland University Lung Cancer cohort) were used to develop the model. The DRU-Net model achieved an average of 0.91 Dice similarity coefficient. The proposed spatial augmentation method (multi-lens distortion) improved the Dice similarity coefficient from 0.88 to 0.91. Our findings show that selecting image patches that specifically include regions of interest leads to better results for the patch-wise classifier compared to other sampling methods. A qualitative analysis by pathology experts showed that the DRU-Net model was generally successful in tumor detection. Results in the test set showed some areas of false-positive and false-negative segmentation in the periphery, particularly in tumors with inflammatory and reactive changes. In summary, the presented DRU-Net model demonstrated the best performance on the segmentation task, and the proposed augmentation technique proved to improve the results. Full article
Show Figures

Figure 1

28 pages, 3873 KiB  
Article
Identification of 3-[(4-Acetylphenyl)(4-Phenylthiazol-2-Yl)Amino]Propanoic Acid Derivatives as Promising Scaffolds for the Development of Novel Anticancer Candidates Targeting SIRT2 and EGFR
by Božena Golcienė, Povilas Kavaliauskas, Waldo Acevedo, Birutė Sapijanskaitė-Banevič, Birutė Grybaitė, Ramunė Grigalevičiūtė, Rūta Petraitienė, Vidmantas Petraitis and Vytautas Mickevičius
Pharmaceuticals 2025, 18(5), 733; https://doi.org/10.3390/ph18050733 - 16 May 2025
Viewed by 1756
Abstract
Background: A series of novel polysubstituted thiazole derivatives were synthesized, and their antiproliferative properties were evaluated using both 2D and 3D lung cancer models. Methods: The compounds were obtained via esterification, oximation, hydrazinolysis, and condensation reactions. Results: Structure–activity relationship analysis revealed that the [...] Read more.
Background: A series of novel polysubstituted thiazole derivatives were synthesized, and their antiproliferative properties were evaluated using both 2D and 3D lung cancer models. Methods: The compounds were obtained via esterification, oximation, hydrazinolysis, and condensation reactions. Results: Structure–activity relationship analysis revealed that the antiproliferative activity was structure-dependent. Notably, oxime derivatives 21 and 22, along with carbohydrazides 25 and 26, exhibited low micromolar activity that was significantly greater than that of cisplatin (p < 0.005), a standard chemotherapeutic agent. These compounds demonstrated potent, antiproliferative activity against H69 small-cell lung carcinoma cells, as well as anthracycline-resistant H69AR cells. Moreover, compounds 21, 22, 25, and 26 effectively induced cell death in A549 agarose-based 3D spheroids, further supporting their potential therapeutic application. The in silico studies proposed that compound 22 is able to interact with human SIRT2 and EGFR via conserved amino acid residues. Conclusions: The ability of these thiazole derivatives to target both drug-sensitive and drug-resistant lung cancer models highlights their promise as scaffolds for further optimization and preclinical development. Future studies will focus on structural modifications to enhance potency, selectivity, and pharmacokinetic properties, paving the way for the development of novel thiazole-based antiproliferative agents. Full article
Show Figures

Graphical abstract

13 pages, 2189 KiB  
Article
Ionizing Radiation Increases Death Receptor 5 (DR5)-Mediated Cell Death, but Not Death Receptor 4 (DR4)-Mediated Cell Death in 3D Tumor Spheroids
by Fengzhi Suo, Xinyu Zhou, Abel Soto-Gamez, Fleur B. Nijdam, Rita Setroikromo and Wim J. Quax
Int. J. Mol. Sci. 2025, 26(10), 4635; https://doi.org/10.3390/ijms26104635 - 13 May 2025
Viewed by 543
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a potential therapeutic for cancer patients due to its tumor specificity. However, TRAIL resistance in cancer cells limits its development in clinical trials. Given that ionizing radiation (IR) is an established method of inducing DNA [...] Read more.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a potential therapeutic for cancer patients due to its tumor specificity. However, TRAIL resistance in cancer cells limits its development in clinical trials. Given that ionizing radiation (IR) is an established method of inducing DNA damage for cancer during radiotherapy, we applied a combined treatment of IR and TRAIL. Our study shows that the combination treatment of IR and TRAIL promoted cell death due to IR upregulating both DR4/DR5 receptors on the surface of human lung carcinoma cell line H460 and human colon cancer cell line DLD-1 2D cells. However, when cultured as 3D spheroids, we observed that IR enhanced DR5-specific TRAIL-induced cell death but attenuated DR4-specific TRAIL-induced cell death. The immunohistochemical analysis of 3D cell spheroid sections indicates that it is due to a lack of DR4 overexpression by IR. Our findings elucidate a potential explanation for the failure of the combination treatment of radiotherapy with TRAIL in clinical trials. Additionally, our findings advocate the potential efficacy of employing DR5-specific TRAIL in combination with radiation as a promising therapeutic strategy. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Graphical abstract

12 pages, 781 KiB  
Article
Synthesis, Structure, and Anticancer Activity of a Dinuclear Organoplatinum(IV) Complex Stabilized by Adenine
by Alisha M. O’Brien, Kraig A. Wheeler and William A. Howard
Compounds 2025, 5(2), 16; https://doi.org/10.3390/compounds5020016 - 1 May 2025
Viewed by 566
Abstract
The dinuclear platinum(IV) compound {Pt(CH3)3}2(μ-I)2(μ-adenine) (abbreviated Pt2ad), obtained by treating cubic [PtIV(CH3)33-I)]4 with two equivalents of adenine, was isolated and structurally characterized by single [...] Read more.
The dinuclear platinum(IV) compound {Pt(CH3)3}2(μ-I)2(μ-adenine) (abbreviated Pt2ad), obtained by treating cubic [PtIV(CH3)33-I)]4 with two equivalents of adenine, was isolated and structurally characterized by single crystal X-ray diffraction. The National Cancer Institute Developmental Therapeutics Program’s in vitro sulforhodamine B assays showed Pt2ad to be particularly cytotoxic against the central nervous system cancer cell line SF-539, and the human renal carcinoma cell line RXF-393. Furthermore, Pt2ad displayed some degree of cytotoxicity against non-small cell lung cancer (NCI-H522), colon cancer (HCC-2998, HCT-116, HT29, and SW-620), melanoma (LOX-IMVI, Malme-3M, M14, MDA-MB-435, SK-MEL-28, and UACC-62), ovarian cancer (OVCAR-5), renal carcinoma (A498), and triple negative breast cancer (BT-549, MDA-MB-231, and MDA-MB-468) cells. Although anticancer studies involving some adenine platinum(II) compounds have been reported, this study marks the first assessment of the anticancer activity of an adenine platinum(IV) complex. Full article
(This article belongs to the Special Issue Organic Compounds with Biological Activity)
Show Figures

Figure 1

15 pages, 4463 KiB  
Article
Norfloxacin Derivative with Carbazole at C-7 FQB-1 Induces Cytotoxic, Antiproliferative, and Antitumor Effects in an Experimental Lung Carcinoma Model
by Alondra Bocanegra-Zapata, Hiram Hernández-López, Socorro Leyva-Ramos, Rodolfo Daniel Cervantes-Villagrana, Marisol Galván-Valencia, L. Angel Veyna-Hurtado, Norma Guadalupe Ramírez Tovar, Damaris Albores-García, Juan Armando Flores de la Torre and Alberto Rafael Cervantes-Villagrana
Pharmaceuticals 2025, 18(5), 664; https://doi.org/10.3390/ph18050664 - 30 Apr 2025
Viewed by 4257
Abstract
Background: Cancer remains a leading cause of morbidity and mortality worldwide. According to the World Health Organization (WHO), lung cancer is the most prevalent type of cancer among both men and women. Despite the various pharmacological and biological treatments available for lung cancer, [...] Read more.
Background: Cancer remains a leading cause of morbidity and mortality worldwide. According to the World Health Organization (WHO), lung cancer is the most prevalent type of cancer among both men and women. Despite the various pharmacological and biological treatments available for lung cancer, their effectiveness has often fallen short, and the side effects can be severe. Therefore, there is an ongoing need to identify and develop novel compounds with enhanced anti-tumor efficacy and improved safety profiles. Research has shown that fluoroquinolone derivatives exhibit a broad cytotoxic spectrum comparable to other drugs used in clinical chemotherapy. Objective: The aim of this work was to synthesize and evaluate the cytotoxic, anti-proliferative, and anti-tumor effects of FQB-1, a novel fluoroquinolone derivative. Results: In silico molecular docking analysis demonstrated a strong interaction between FQB-1 and human topoisomerase, with a binding affinity score of –9.8 kcal/mol. In vitro cytotoxicity and anti-proliferative assays were conducted using the Lewis Lung Carcinoma (LLC) cell line. FQB-1 was tested at concentrations of 2.5, 5.0, 25.0, 50.0, 100.0, and 150.0 µg/mL. Significant cytotoxic and anti-proliferative effects were observed at concentrations of 50–150 µg/mL after 24 h of treatment. To evaluate FQB-1′s efficacy in vivo, a syngeneic tumor model was established in C57BL/6 mice. Treatment with FQB-1 (100 mg/kg) resulted in a marked reduction in tumor volume compared to the untreated control group. Histopathological analysis of tumor tissues from treated animals revealed a decrease in mitotic index and an increase in necrotic regions, indicating compromised tumor viability. Conclusions: FQB-1 exhibits cytotoxic and anti-proliferative effects and can reduce tumor growth while compromising tumor viability. Full article
(This article belongs to the Special Issue Fluoroquinolones)
Show Figures

Graphical abstract

14 pages, 2831 KiB  
Article
Isorhapontigenin Inhibits Cell Growth, Angiogenesis, Migration, and Invasion of Non-Small-Cell Lung Cancer Cells Through NEDD9 Signaling
by Zhuo Zhang, Jingxia Li, Daneah Willis, Sophia Shi, Huailu Tu and Max Costa
Int. J. Mol. Sci. 2025, 26(9), 4207; https://doi.org/10.3390/ijms26094207 - 29 Apr 2025
Viewed by 579
Abstract
Lung cancer is the leading cause of cancer deaths among American men, even though various treatments are available. The discovery and use of new alternative drugs to treat lung cancers are needed to reduce lung cancer mortality. Phytochemicals are potentially desirable therapeutic agents [...] Read more.
Lung cancer is the leading cause of cancer deaths among American men, even though various treatments are available. The discovery and use of new alternative drugs to treat lung cancers are needed to reduce lung cancer mortality. Phytochemicals are potentially desirable therapeutic agents due to their better safety profiles. Isorhapontigenin (ISO) is an orally bioavailable dietary stilbene. Our studies show that treatment with ISO inhibits human lung cancer cell growth, angiogenesis, invasion, and migration. Neural precursor cell expressed developmentally downregulated 9 (NEDD9), a multi-domain scaffolding protein, regulates various processes crucial for tumorigenesis and metastasis. Our results show that NEDD9 is upregulated in the lung tissues from human lung adenocarcinomas (LUADs) and squamous-cell carcinomas (LUSCs) compared to normal lungs. Overexpression of NEDD9 elevates the invasion and migration of human lung cancer cells. Treatment of human lung cancer cells with ISO decreases NEDD9 protein levels. Our studies have also demonstrated that NEDD9 positively regulates angiogenesis, an essential factor in cancer progression. ISO treatment reduces angiogenesis. Moreover, ISO reduces the protein levels of hypoxia-inducible factor-1α (HIF-1α), a transcription factor critical for angiogenesis. Aberrant high expression of β-Catenin leads to various diseases including cancer. Our results show that ISO treatment reduces the activation of β-Catenin through the downregulation of NEDD9. Studies indicate that ISO decreases NEDD9, causing the suppression of cell growth, angiogenesis, invasion, and migration of human lung cancer cells. ISO is a potent therapeutic agent for lung cancer treatment. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 1234 KiB  
Article
Antiviral Effect of Erdosteine in Cells Infected with Human Respiratory Viruses
by Pierachille Santus, Sergio Strizzi, Fiammetta Danzo, Mara Biasin, Irma Saulle, Claudia Vanetti, Marina Saad, Dejan Radovanovic and Daria Trabattoni
Pathogens 2025, 14(4), 388; https://doi.org/10.3390/pathogens14040388 - 15 Apr 2025
Viewed by 1030
Abstract
Respiratory viral infections trigger immune and inflammatory responses that can be associated with excessive oxidative stress, glutathione (GSH) depletion, and a cytokine storm that drives virus-induced cell/tissue damage and severe disease. Erdosteine is a thiol-based drug with proven mucolytic, anti-inflammatory, antioxidant, and antibacterial [...] Read more.
Respiratory viral infections trigger immune and inflammatory responses that can be associated with excessive oxidative stress, glutathione (GSH) depletion, and a cytokine storm that drives virus-induced cell/tissue damage and severe disease. Erdosteine is a thiol-based drug with proven mucolytic, anti-inflammatory, antioxidant, and antibacterial properties, but less is known about its antiviral effects. We performed in vitro studies to investigate the antiviral and anti-inflammatory activity of erdosteine in A549-hACE2 human lung epithelial cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or respiratory syncytial virus (RSV) and in Caco-2 human colon carcinoma cells infected with influenza A virus (H1N1). The cells were treated with different concentrations of erdosteine or its active metabolite 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MET-1) before and after viral infection. The viral replication/load in the cell culture supernatants was measured by real-time quantitative polymerase chain reaction (RT-qPCR) assay and digital droplet PCR. The gene expression of innate immune response signaling pathways and oxidative stress was analyzed by reverse transcription PCR custom-array. The results showed that erdosteine and its active metabolite, at concentrations consistent with an approved therapeutic human dosage, were not directly cytotoxic and had significant antiviral effects in cells pre-infected with SARS-CoV-2, RSV, and H1N1. The transcriptome analysis showed that erdosteine activated innate immune responses by stimulating overexpression of type I interferon and inflammasome pathways and modulated oxidative stress by inducing the modulation of oxidative stress and GSH pathways. These findings suggest that erdosteine may be a useful treatment for respiratory viral infections. Full article
(This article belongs to the Special Issue Virus–Host Cell Interactions and Research of New Antivirals)
Show Figures

Figure 1

Back to TopTop