Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,048)

Search Parameters:
Keywords = human hepatocellular carcinoma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 891 KiB  
Review
The Role of Aldosterone and the Mineralocorticoid Receptor in Metabolic Dysfunction-Associated Steatotic Liver Disease
by Mohammed Barigou, Imran Ramzan and Dionysios V. Chartoumpekis
Biomedicines 2025, 13(8), 1792; https://doi.org/10.3390/biomedicines13081792 - 22 Jul 2025
Viewed by 340
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is one of the fastest-growing hepatic disorders worldwide. During its natural course, MASLD tends to progress from isolated steatosis of the liver to Metabolic Dysfunction-Associated Alcoholic Steatohepatitis (MASH), advanced fibrosis, and finally cirrhosis, with the risk of [...] Read more.
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is one of the fastest-growing hepatic disorders worldwide. During its natural course, MASLD tends to progress from isolated steatosis of the liver to Metabolic Dysfunction-Associated Alcoholic Steatohepatitis (MASH), advanced fibrosis, and finally cirrhosis, with the risk of developing hepatocellular carcinoma (HCC). Although frequently related to overweight or obesity and other components of the metabolic syndrome (MS), MASLD can also be present in individuals without such risk factors. The mechanisms leading to MASLD are incompletely elucidated and may involve many proinflammatory and pro-fibrotic pathways, disrupted biliary acid homeostasis, and gut microbiota dysbiosis. Aldosterone and its interaction with the mineralocorticoid receptor (MR) are thought to participate in the pathogenesis of MASLD through the modulation of inflammation and fibrosis. Remarkably, blockade of the MR in experimental models was shown to improve MASH and fibrosis through mechanisms that need further characterization. So far, however, few clinical studies have explored the effect of MR blockade in the management of MASH and associated fibrosis. This review is intended to summarize the recent animal and human data concerning the interaction between MR pathways and MASLD. Full article
(This article belongs to the Special Issue Novel Insights into Liver Metabolism)
Show Figures

Figure 1

33 pages, 1553 KiB  
Review
Multifaceted Human Antigen R (HuR): A Key Player in Liver Metabolism and MASLD
by Natalie Eppler, Elizabeth Jones, Forkan Ahamed and Yuxia Zhang
Livers 2025, 5(3), 33; https://doi.org/10.3390/livers5030033 - 21 Jul 2025
Viewed by 488
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the leading cause of chronic liver disease worldwide, affecting approximately 25–30% of the global adult population and highlighting the urgent need for effective therapeutics and prevention strategies. MASLD is characterized by excessive hepatic lipid accumulation [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the leading cause of chronic liver disease worldwide, affecting approximately 25–30% of the global adult population and highlighting the urgent need for effective therapeutics and prevention strategies. MASLD is characterized by excessive hepatic lipid accumulation and can progress, in a subset of patients, to metabolic dysfunction-associated steatohepatitis (MASH), a pro-inflammatory and pro-fibrotic condition associated with increased risk of liver cirrhosis and hepatocellular carcinoma. Although the molecular drivers of MASLD progression remain incompletely understood, several key metabolic pathways—such as triglyceride handling, cholesterol catabolism, bile acid metabolism, mitochondrial function, and autophagy—are consistently dysregulated in MASLD livers. This narrative review summarizes primary literature and highlights insights from recent reviews on the multifaceted role of the mRNA-binding protein Human antigen R (HuR) in the post-transcriptional regulation of critical cellular processes, including nutrient metabolism, cell survival, and stress responses. Emerging evidence underscores HuR’s essential role in maintaining liver homeostasis, particularly under metabolic stress conditions characteristic of MASLD, with hepatocyte-specific HuR depletion associated with exacerbated disease severity. Moreover, comorbid conditions such as obesity, type 2 diabetes mellitus, and cardiovascular disease not only exacerbate MASLD progression but also involve HuR dysregulation in extrahepatic tissues, further contributing to liver dysfunction. A deeper understanding of HuR-regulated post-transcriptional networks across metabolic organs may enable the development of targeted therapies aimed at halting or reversing MASLD progression. Full article
Show Figures

Figure 1

12 pages, 1258 KiB  
Article
Epidemiologic Characteristics of Chronic Hepatitis B and Coinfections with Hepatitis C Virus or Human Immunodeficiency Virus in South Korea: A Nationwide Claims-Based Study Using the Korean Health Insurance Review and Assessment Service Database
by Hyunwoo Oh, Won Sohn, Na Ryung Choi, Hyo Young Lee, Yeonjae Kim, Seung Woo Nam and Jae Yoon Jeong
Pathogens 2025, 14(7), 715; https://doi.org/10.3390/pathogens14070715 - 19 Jul 2025
Viewed by 337
Abstract
Coinfections with hepatitis C virus (HCV) or human immunodeficiency virus (HIV) among individuals with chronic hepatitis B (CHB) are associated with worse clinical outcomes but remain understudied due to their low prevalence and the sensitivity of associated data. This nationwide, cross-sectional study utilized [...] Read more.
Coinfections with hepatitis C virus (HCV) or human immunodeficiency virus (HIV) among individuals with chronic hepatitis B (CHB) are associated with worse clinical outcomes but remain understudied due to their low prevalence and the sensitivity of associated data. This nationwide, cross-sectional study utilized claims data from the Korean Health Insurance Review and Assessment Service (2014–2021) to investigate the prevalence, comorbidities, treatment patterns, and liver-related complications among patients with HBV monoinfection, HBV/HIV, HBV/HCV, or triple coinfection. Among over 4.5 million patients with chronic hepatitis B, the prevalence of HIV and HCV coinfection ranged from 0.05 to 0.07% and 0.77 to 1.00%, respectively. Patients with HBV/HCV coinfection were older and had significantly higher rates of hypertension, diabetes, dyslipidemia, and major adverse liver outcomes, including hepatocellular carcinoma and liver transplantation, compared to other groups. HBV/HIV coinfection was more common in younger males and was associated with higher dyslipidemia. The use of HBV antivirals increased over time across all groups. These findings highlight the distinct clinical characteristics and unmet needs of coinfected populations, underscoring the importance of tailored screening and management strategies in HBV-endemic settings. Full article
Show Figures

Figure 1

13 pages, 2107 KiB  
Article
Unlocking the Bioactivity of Sweet Wormwood (Artemisia annua L., Asteraceae) Ethanolic Extract: Phenolics, Antioxidants, and Cytotoxic Effects
by Neda Gavarić, Milica Aćimović, Nebojša Kladar, Maja Hitl, Jovana Drljača Lero, Nataša Milić and Katarina Radovanović
Pharmaceutics 2025, 17(7), 890; https://doi.org/10.3390/pharmaceutics17070890 - 9 Jul 2025
Viewed by 457
Abstract
Objectives: The aim of this work was to determine the phenolic composition of sweet wormwood (Artemisia annua L., Asteraceae) from controlled cultivation in Serbia and to assess the potential antioxidant effects and cytotoxicity. Methods: High-performance liquid chromatography was used to [...] Read more.
Objectives: The aim of this work was to determine the phenolic composition of sweet wormwood (Artemisia annua L., Asteraceae) from controlled cultivation in Serbia and to assess the potential antioxidant effects and cytotoxicity. Methods: High-performance liquid chromatography was used to determine the phenolic composition of Artemisia annua ethanolic extract. The antioxidant activity was studied using in vitro tests of inhibition of the neutralization of 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl (OH), and nitroso (NO) radicals, as well as the process of inhibiting lipid peroxidation and the ferric reducing antioxidant power (FRAP). The cytotoxicity was evaluated by the effect on three cell lines (the rat pancreatic insulinoma cell line (Rin-5F), the rat hepatoma cell line (H4IIE), and human hepatocellular carcinoma (Hep G2)) using the MTT test of viability. Results: Ethanol extract showed the highest potency in inhibiting the DPPH radical, and the half maximal inhibitory concentration (IC50) was 5.17 μg/mL. Chlorogenic acid was the dominant phenolic compound with an amount of 651 μg/g of dry extract. The results of the MTT viability test showed that the extract has the potential to inhibit the growth of the Rin-5F and Hep G2 cell lines, while no growth inhibition was observed on the H4IIE cell line. Conclusions: Undoubtedly, Artemisia annua is a powerful plant and a rich source of phenolic compounds. Inhibitory activity on causes of oxidative stress shows that the plant has a good antioxidant effect. Also, the anticancer activity shown through the inhibition of cell growth is not negligible. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

16 pages, 6224 KiB  
Article
Proteoform Patterns in Hepatocellular Carcinoma Tissues: Aspects of Oncomarkers
by Elena Zorina, Natalia Ronzhina, Olga Legina, Nikolai Klopov, Victor Zgoda and Stanislav Naryzhny
Proteomes 2025, 13(3), 27; https://doi.org/10.3390/proteomes13030027 - 1 Jul 2025
Viewed by 438
Abstract
Background: Human proteins exist in numerous modifications—proteoforms—which are promising targets for biomarker studies. In this study, we aimed to generate comparative proteomics data, including proteoform patterns, from hepatocellular carcinoma (HCC) and nonmalignant liver tissues. Methods: To investigate protein profiles and proteoform patterns, we [...] Read more.
Background: Human proteins exist in numerous modifications—proteoforms—which are promising targets for biomarker studies. In this study, we aimed to generate comparative proteomics data, including proteoform patterns, from hepatocellular carcinoma (HCC) and nonmalignant liver tissues. Methods: To investigate protein profiles and proteoform patterns, we employed a panoramic, integrative top-down proteomics approach: two-dimensional gel electrophoresis (2DE) coupled with liquid chromatography–electrospray ionization–tandem mass spectrometry (LC-ESI-MS/MS). Results: We visualized over 2500 proteoform patterns per sample type, enabling the identification of distinct protein signatures and common patterns differentiating nonmalignant and malignant liver cells. Among these, 1270 protein patterns were uniformly observed across all samples. Additionally, 38 proteins—including pyruvate kinase PKM (KPYM), annexin A2 (ANXA2), and others—exhibited pronounced differences in proteoform patterns between nonmalignant and malignant tissues. Conclusions: Most proteoform patterns of the same protein were highly similar, with the dominant peak corresponding to theoretical (unmodified) protein parameters. However, certain proteins displayed altered proteoform patterns and additional proteoforms in cancer compared to controls. These proteins were prioritized for further characterization. Full article
Show Figures

Figure 1

14 pages, 3481 KiB  
Article
Effect of 3-HBI on Liver Fibrosis via the TGF-β/SMAD2/3 Pathway on the Human Hepatic Stellate Cell Model
by Chavisa Khongpiroon, Watunyoo Buakaew, Paul J. Brindley, Saranyapin Potikanond, Krai Daowtak, Yordhathai Thongsri, Pachuenp Potup and Kanchana Usuwanthim
Int. J. Mol. Sci. 2025, 26(13), 6022; https://doi.org/10.3390/ijms26136022 - 23 Jun 2025
Viewed by 773
Abstract
Liver fibrosis can progress to irreversible cirrhosis if the underlying causes remain, and this can in turn develop into hepatocellular carcinoma (HCC). Despite these adverse outcomes, liver fibrosis can be reversed. Consequently, research has focused on substances that target liver fibrosis to prevent [...] Read more.
Liver fibrosis can progress to irreversible cirrhosis if the underlying causes remain, and this can in turn develop into hepatocellular carcinoma (HCC). Despite these adverse outcomes, liver fibrosis can be reversed. Consequently, research has focused on substances that target liver fibrosis to prevent or reduce its progression. This study deals with the potential anti-fibrotic action of 3-hydroxy-β-ionone (3-HBI), a bioactive compound found in many plants. To assess the putative effects of 3-HBI, pro-inflammatory cytokine production and the expression of genes and proteins associated with the TGF-β/SMAD2/3 pathway were monitored following exposure to 3-HBI. Initially, cells of the human hepatic stellate cell line LX-2 were treated with TGF-β1 to simulate fibrogenesis. Following the exposure of activated LX-2 cells to 3-HBI, the production of pro-fibrotic substances was significantly reduced. Molecular docking studies revealed that 3-HBI exhibited a high binding affinity for key proteins in the TGF-β/SMAD2/3 pathway. Analyses using qRT-PCR and Western blotting revealed that 3-HBI suppressed the expression of TIMP1, MMP2, MMP9, COL1A1, COL4A1, SMAD2, SMAD3, SMAD4, MMP2, and ACTA2. Together, these findings demonstrate that 3-HBI inhibited the activation of LX-2 cells and significantly reduced the proinflammatory responses triggered by TGF-β1. Accordingly, we confirmed the noteworthy potential of 3-HBI as a therapeutic agent to prevent and treat liver fibrosis, effected by its modulation of the TGF-β/SMAD2/3 signaling pathway. Full article
(This article belongs to the Special Issue Molecular Advances in Liver Fibrosis)
Show Figures

Figure 1

17 pages, 1433 KiB  
Article
Insights into Chemopreventive Effects of Rosmarinic Acid Against Aflatoxin B1-Induced Genotoxic Effects
by Veronika Furlan, Matjaž Novak, Martina Štampar, Alja Štern, Bojana Žegura and Urban Bren
Foods 2025, 14(12), 2111; https://doi.org/10.3390/foods14122111 - 16 Jun 2025
Viewed by 404
Abstract
In this study, the chemopreventive effects of rosmarinic acid (RA), a major phenolic acid of the plant Rosmarinus officinalis L., against the carcinogenic naturally occurring mycotoxin aflatoxin B1 (AFB1) were investigated using both in silico and in vitro approaches. The in silico investigation [...] Read more.
In this study, the chemopreventive effects of rosmarinic acid (RA), a major phenolic acid of the plant Rosmarinus officinalis L., against the carcinogenic naturally occurring mycotoxin aflatoxin B1 (AFB1) were investigated using both in silico and in vitro approaches. The in silico investigation of the chemical reactions between rosmarinic acid and the carcinogenic metabolite of AFB1, aflatoxin B1 exo-8,9-epoxide (AFBO), was conducted by activation free energies calculations with DFT functionals M11-L and MN12-L, in conjunction with the 6-311++G(d,p) flexible basis set and implicit solvation model density (SMD), according to a newly developed quantum mechanics-based protocol for the evaluation of carcinogen scavenging activity (QM-CSA). Following the computational analyses, the chemoprotective effects of RA were further studied in vitro in human hepatocellular carcinoma HepG2 cells by analyzing its influence on AFB1-induced genotoxicity using a comet assay, γH2AX, and p-H3, while its impact on cell proliferation and cell cycle modulation was assessed using flow cytometry. Our computational results revealed that the activation free energy required for the reaction of RA with AFBO (14.86 kcal/mol) is significantly lower than the activation free energy for the competing reaction of AFBO with guanine (16.88 kcal/mol), which indicates that RA acts as an efficient natural scavenger of AFBO, potentially preventing AFB1-specific DNA adduct formation. The chemoprotective activity of RA was confirmed through in vitro experiments, which demonstrated a statistically significant (p < 0.05) reduction in AFB1-induced single- and double-strand breaks in HepG2 cells exposed to a mixture of AFB1 and RA at non-cytotoxic concentrations. In addition, RA reversed the AFB1-induced reduction in cell proliferation. Full article
(This article belongs to the Special Issue Potential Health Benefits of Plant Food-Derived Bioactive Compounds)
Show Figures

Graphical abstract

25 pages, 4790 KiB  
Article
Roasting Improves the Bioaccessibility and Bioactivity of Polyphenols from Highland Barley with a Protective Effect in Oxidatively Damaged HepG2 Cells
by Nuo Chen, Shuyu Pang, Xingru Zao, Qin Luo, Lingyuan Luo, Wenming Dong and Yongqiang Li
Foods 2025, 14(12), 2095; https://doi.org/10.3390/foods14122095 - 14 Jun 2025
Viewed by 447
Abstract
This research is designed to explore the effect of roasting on the release, bioaccessibility, and bioactivity of polyphenols in highland barley (HB). The findings of in vitro digestion indicated that roasting significantly improved the bioaccessibility of polyphenols in HB flour (gastrointestinal digestion stage: [...] Read more.
This research is designed to explore the effect of roasting on the release, bioaccessibility, and bioactivity of polyphenols in highland barley (HB). The findings of in vitro digestion indicated that roasting significantly improved the bioaccessibility of polyphenols in HB flour (gastrointestinal digestion stage: raw HB: 187.28%, roasted HB: 285.65%; colonic fermentation stage: raw HB: 188.13%, roasted HB: 255.36%) and enhanced its antioxidant activity. Moreover, the inhibitory impacts of polyphenols on the activities of α -amylase, α-glucosidase, and lipase mainly occur in the small intestine. Roasting increased inhibitory activities of polyphenols on α-amylase, α-glucosidase, and lipase in the small intestine (p < 0.05), with IC50 values of 71.31 ± 1.35 μg FAE/mL, 60.44 ± 1.35 μg FAE/mL, and 52.94 ± 2.51 μg FAE/mL, respectively. HepG2 cells, a human hepatocellular carcinoma cell line, are commonly employed in oxidative stress and antioxidant studies due to their ability to mirror the protective effects of bioactive compounds against oxidative damage in liver cells. This study aimed to establish a model of H2O2-induced oxidative stress injury in HepG2 cells and to evaluate the protective effect of digested HB polyphenol extract against oxidative injury. It was found that the polyphenols extracted from roasted HB help reduce reactive oxygen species (ROS) and malondialdehyde (MDA) through increased activities of superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), glutathione peroxidase (GPx), and total antioxidant capacity (T-AOC), thereby providing enhanced defense against oxidative damage in HepG2 cells. The findings of this research pave the way for the development of new functional foods utilizing roasted HB. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

16 pages, 1665 KiB  
Article
Enhancing Doxorubicin Efficacy in Hepatocellular Carcinoma: The Multi-Target Role of Muscari comosum Extract
by Alessandro Pistone, Ilenia Matera, Vittorio Abruzzese, Maria Antonietta Castiglione Morelli, Martina Rosa and Angela Ostuni
Appl. Sci. 2025, 15(12), 6509; https://doi.org/10.3390/app15126509 - 10 Jun 2025
Viewed by 498
Abstract
Hepatocellular carcinoma (HCC) is still a leading cause of cancer-related mortality worldwide, characterized by poor prognosis and limited therapeutic efficacy of conventional chemotherapeutics such as doxorubicin. Phytochemicals are promising adjuvants in cancer therapy due to their multi-targeted effects. In this in vitro study, [...] Read more.
Hepatocellular carcinoma (HCC) is still a leading cause of cancer-related mortality worldwide, characterized by poor prognosis and limited therapeutic efficacy of conventional chemotherapeutics such as doxorubicin. Phytochemicals are promising adjuvants in cancer therapy due to their multi-targeted effects. In this in vitro study, we investigated the impact of a methanol–water extract (70:30 v/v, MET70) from Muscari comosum bulbs, rich in polyphenols and flavonoids, on doxorubicin-treated HepG2 human hepatoma cells. Co-treatment with MET70 increased intracellular reactive oxygen species (ROS) associated with downregulation of Nrf2 signaling, suppression of antioxidant enzymes (SOD2, GPX-1) and decreased mitochondrial UCP2 expression. MET70 modulated the inflammatory response induced by doxorubicin by decreasing TNF-α and increasing IL-6 expression. MET70 also promoted protein homeostasis through PDIA2 upregulation without exacerbating endoplasmic reticulum stress and inhibited autophagy by reducing Beclin-1 levels, contributing to increased chemosensitivity. Moreover, MET70 downregulated ABCC1 expression, suggesting a role in overcoming multidrug resistance. All these findings demonstrate that Muscari comosum extract enhances doxorubicin efficacy by targeting redox balance, inflammatory signaling, autophagy, and drug resistance, offering a promising redox-based strategy for improving HCC therapy. However, further studies should be performed in vivo. Full article
Show Figures

Figure 1

34 pages, 7582 KiB  
Review
Recent Progress in Small Molecule Fluorescent Probes for Imaging and Diagnosis of Liver Injury
by Shuo Liu, Fei Huang, Xinyi Huang, Fuxin Zhang, Dong Pei, Jinlong Zhang and Jun Hai
Targets 2025, 3(2), 18; https://doi.org/10.3390/targets3020018 - 28 May 2025
Viewed by 495
Abstract
The liver is an essential metabolic organ that is involved in energy metabolism, protein synthesis, and detoxification. Many endogenous and exogenous factors can cause liver injury, a complex pathological condition. It poses a serious risk to human health due to its extremely varied [...] Read more.
The liver is an essential metabolic organ that is involved in energy metabolism, protein synthesis, and detoxification. Many endogenous and exogenous factors can cause liver injury, a complex pathological condition. It poses a serious risk to human health due to its extremely varied clinical manifestations, which range from mild fatty liver to liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Because of their low specificity, lack of real-time monitoring, and invasiveness, traditional diagnostic techniques for liver injury, such as histopathological examination and serological analysis, have inherent limitations. Fluorescent probe technology, which offers high sensitivity, non-invasiveness, and real-time imaging capabilities, has become a potent tool in liver injury research and early diagnosis in recent years. The pathophysiology of liver injuries caused by alcohol, chemicals, drugs, and the immune system is methodically covered in this review, along with new developments in fluorescent probe development for their detection. The focused imaging properties of various fluorescent probes are highlighted, along with their possible uses in drug screening and early liver injury detection. This review attempts to offer theoretical insights to support the optimization of precision diagnostic and therapeutic approaches by summarizing these findings. Full article
(This article belongs to the Special Issue Recent Progress in Bioimaging and Targeted Therapy)
Show Figures

Figure 1

25 pages, 10080 KiB  
Article
CBX1 as a Prognostic Biomarker and Therapeutic Target in Liver Hepatocellular Carcinoma: Insight into DNA Methylation and Non-Coding RNA Networks from Comprehensive Bioinformatics Analysis
by Hye-Ran Kim and Jongwan Kim
Medicina 2025, 61(6), 983; https://doi.org/10.3390/medicina61060983 - 26 May 2025
Viewed by 542
Abstract
Background and Objectives: Chromobox 1 (CBX1), a key epigenetic regulator involved in chromatin remodeling, has been implicated in various cancers; however, its role in liver hepatocellular carcinoma (LIHC) remains underexplored. This study aimed to investigate the expression patterns, epigenetic regulation, and non-coding [...] Read more.
Background and Objectives: Chromobox 1 (CBX1), a key epigenetic regulator involved in chromatin remodeling, has been implicated in various cancers; however, its role in liver hepatocellular carcinoma (LIHC) remains underexplored. This study aimed to investigate the expression patterns, epigenetic regulation, and non-coding RNA (ncRNA) networks involving CBX1 in LIHC, assess their potential as diagnostic and prognostic biomarkers, and explore their relevance as a putative therapeutic target. Materials and Methods: A multi-omics bioinformatics approach was employed using datasets from GEPIA2, OncoDB, UALCAN, Human Protein Atlas, KM Plotter, MethSurv, miRNet, and ENCORI. These databases were used to analyze mRNA and protein expression, DNA methylation, prognosis, and interaction networks involving CBX1 and ncRNAs. Results: CBX1 was significantly upregulated in both the mRNA and protein expression in LIHC. Upregulated CBX1 expression was associated with poor prognosis. DNA methylation analysis revealed that both hypermethylated and hypomethylated probes were significantly associated with CBX1 expression and poor prognosis. hsa-miR-212-3p and hsa-miR-132-3p were significantly upregulated in LIHC and were positively correlated with CBX1 expression and poor prognosis. The ncRNA network was identified, including long ncRNAs, circular RNAs, and pseudogenes, many of which were linked to tumor progression and poor prognosis, and competing endogenous RNAs were associated with tumor progression and poor prognosis in LIHC. Conclusions: CBX1 was significantly overexpressed in LIHC and was regulated by both DNA methylation and ncRNA interactions. Its expression is closely associated with a poor prognosis. The CBX1–micro-RNA–long ncRNA/circular RNA axis is a promising avenue for the development of novel diagnostic and therapeutic strategies. This study provides system-level insights into the regulatory landscape of CBX1 in LIHC and supports its potential role in precision medicine. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

20 pages, 2995 KiB  
Article
Genotoxic Effects of Chromium(III) and Cobalt(II) and Their Mixtures on the Selected Cell Lines
by Katarzyna Czarnek, Małgorzata Tatarczak-Michalewska, Eliza Blicharska, Andrzej K. Siwicki and Ryszard Maciejewski
Int. J. Mol. Sci. 2025, 26(11), 5056; https://doi.org/10.3390/ijms26115056 - 24 May 2025
Viewed by 2446
Abstract
Cr(III) and Co(II) can be potentially toxic to cells and induce a number of morphological and biochemical changes. These metals are widely used in many industries and can cause environmental pollution. They are the components of dietary supplements, vitamin and mineral products, and [...] Read more.
Cr(III) and Co(II) can be potentially toxic to cells and induce a number of morphological and biochemical changes. These metals are widely used in many industries and can cause environmental pollution. They are the components of dietary supplements, vitamin and mineral products, and energy drinks. Moreover, these metals are used in dentistry and orthopedics as components of implants. Data about the mechanism of genotoxic effects of Cr(III) and Co(II) are still incomplete. The aim of this study was to analyze the genotoxic effects of chromium(III) and cobalt(II) and their mixtures on two cell lines: mouse embryo fibroblast cell line BALB/3T3 and human hepatocellular carcinoma cell line G2 (HepG2). The BALB/3T3 and HepG2 cell lines were exposed to chromium chloride and cobalt chloride at concentrations ranging from 100 to 1400 µM. The genotoxicity assays used were the comet and micronucleus assays. On the basis of the results obtained from the first stage of the research, the concentrations of elements were selected in order to determine the interactions between them. The tested cell lines were treated with mixtures of the following compounds: chromium chloride at the concentration of 200 μM and cobalt chloride at the concentration of 1000 μM or chromium chloride at the concentration of 1000 μM and cobalt chloride at the concentration of 200 μM in the genotoxicity assays. This study shows that both cobalt(II) and chromium(III) cause genotoxic effects in the BALB/3T3 and HepG2 cell lines. A statistically significant increase in the percentage of comets was observed with increasing concentrations of Co(II) and Cr(III) compared to the control. A statistically significant induction of chromosomal aberrations was also observed in the micronucleus test. Moreover, chromium(III) at a concentration of 200 µM had a protective effect against the toxic concentration of cobalt(II) at a concentration of 1000 µM. The toxic effect of cobalt chloride and chromium chloride was confirmed in this study. Further research is needed on the genotoxic effects of cobalt(II) and chromium(III), especially due to the growing popularity of dietary supplements containing compounds of these metals and doubts as to the safety of their use. Full article
(This article belongs to the Special Issue Molecular Mechanism in DNA Replication and Repair)
Show Figures

Figure 1

16 pages, 4733 KiB  
Article
Inhibition of MCP1 (CCL2) Enhances Antitumor Activity of NK Cells Against HCC Cells Under Hypoxia
by Hwan Hee Lee, Juhui Kim, Eunbi Park, Hyojeung Kang and Hyosun Cho
Int. J. Mol. Sci. 2025, 26(10), 4900; https://doi.org/10.3390/ijms26104900 - 20 May 2025
Viewed by 592
Abstract
Hypoxia, a low-oxygen state, is a common feature of solid tumors. MCP1 (CCL2) is a small cytokine that is closely related to hypoxia and has a positive effect on tumor development. Hypoxia causes resistance to various treatments for solid tumors and the evasion [...] Read more.
Hypoxia, a low-oxygen state, is a common feature of solid tumors. MCP1 (CCL2) is a small cytokine that is closely related to hypoxia and has a positive effect on tumor development. Hypoxia causes resistance to various treatments for solid tumors and the evasion of cancer immune surveillance by lymphocytes. Natural killer (NK) cells are innate lymphocytes that play an important role in cancer development, particularly in the liver. First, it was found that the incubation of HCC in hypoxia (2–5% O2) significantly increased the production of several inflammatory cytokines, including MCP1, compared to that of normal oxygen (20% O2). Subsequently, blocking MCP1 with an anti-MCP1 antibody in HCC cultures inhibited the growth and migration of HCC cells in vitro and in vivo. This was associated with a decrease in the expression of HIF-1α/STAT3 in HCC under hypoxia. Furthermore, blocking MCP1 in HCC cell cultures under hypoxia significantly increased the chemotaxis and activation of NK-92 cells against HCC cells. MCP1 blockade in HCC cell cultures under hypoxia induced a shift in NK cells to the CD56+dim population and an increase in the expression of the activation receptors NKG2D and NKp44. In conclusion, modulation of MCP1 could enhance NK activity against hypoxic HCC cells. Full article
(This article belongs to the Special Issue Molecular Biology of Hypoxia)
Show Figures

Figure 1

16 pages, 18939 KiB  
Article
QuEChERS and UPLC-MS/MS-Based Quantification of Human Plasma of Eight Nucleoside Reverse Transcriptase Inhibitors and Platinum Anticancer Drugs for Hepatocellular Carcinoma
by Yanan Liu, Jiangning Peng, Yan Liang, Yilin Li, Xiaolan Zhen and Hui Li
Molecules 2025, 30(10), 2204; https://doi.org/10.3390/molecules30102204 - 18 May 2025
Viewed by 480
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) and platinum-based chemotherapeutics are widely utilized in cancer treatment. Evidence suggests that drug plasma concentrations are closely linked to both therapeutic efficacy and the risk of adverse effects. Consequently, developing therapeutic drug monitoring (TDM) methods is essential. Here, [...] Read more.
Nucleoside reverse transcriptase inhibitors (NRTIs) and platinum-based chemotherapeutics are widely utilized in cancer treatment. Evidence suggests that drug plasma concentrations are closely linked to both therapeutic efficacy and the risk of adverse effects. Consequently, developing therapeutic drug monitoring (TDM) methods is essential. Here, an effective procedure utilizing QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) techniques for preparing samples and UPLC-MS/MS for simultaneously measuring eight NRTIs and platinum-based drugs in human plasma is described. Chromatographic separation was conducted with an Agilent Eclipse Plus C18 column (4.6 × 100 mm, 3.5 μm) with acetonitrile with 0.1% formic acid as Phase A and 0.1% formic acid in water as Phase B, achieving complete separation within 10 min. The target analytes—lamivudine, telbivudine, emtricitabine, entecavir, tenofovir, nedaplatin, oxaliplatin, and adefovir dipivoxil—exhibited strong linearity within the 10–1000 ng/mL and 1–100 ng/mL ranges, showing correlations (r2) ≥ 0.9962. The method demonstrated excellent accuracy (−6.72% to 7.82%) and selectivity (84.53%–110.49%), as well as satisfactory recovery and stability. Overall, this analytical approach can be used to detect the combination of eight NRTIs and platinum-based drugs in human plasma. This method enables plasma drug-level monitoring in real time, with applications for individualized treatment approaches. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

23 pages, 2463 KiB  
Review
Targeting Cancer with Paris’ Arrow: An Updated Perspective on Targeting Wnt Receptor Frizzled 7
by Kieran Hodson, Hector M. Arredondo, William E. Humphrey, Dustin J. Flanagan, Elizabeth Vincan, Karl Willert, Helen B. Pearson and Toby J. Phesse
Sci 2025, 7(2), 61; https://doi.org/10.3390/sci7020061 - 8 May 2025
Viewed by 1338
Abstract
The Wnt signalling pathway plays a crucial role in tissue homeostasis and cancer biology due to its regulation of cellular processes, including proliferation, migration, and stem cell activity. Frizzled receptor 7 (FZD7) (a member of the F-class G protein-coupled receptors) has emerged as [...] Read more.
The Wnt signalling pathway plays a crucial role in tissue homeostasis and cancer biology due to its regulation of cellular processes, including proliferation, migration, and stem cell activity. Frizzled receptor 7 (FZD7) (a member of the F-class G protein-coupled receptors) has emerged as a key Wnt receptor within this pathway, which is elevated in several human malignancies. FZD7 is notably upregulated in gastrointestinal, breast, pancreatic, and hepatocellular carcinomas and transmits oncogenic Wnt signalling through canonical and non-canonical pathways. FZD7 promotes tumour initiation, and emerging evidence implicates FZD7 in cancer stem cell maintenance and epithelial–mesenchymal transition (EMT), reinforcing its role in metastasis. Therapeutic strategies targeting FZD7 have shown promise, including FZD7-specific monoclonal antibody-drug conjugates (ADCs), human single-chain fragment variable (scFVs) antibodies, and nanoparticles. Notably, our recent development of FZD7-ADC has demonstrated tumour-selective cytotoxicity with reduced off-target effects, positioning FZD7 as an attractive therapeutic target. Additionally, nanoparticle-based drug delivery systems have enhanced the precision of existing chemotherapies by targeting FZD7-expressing tumour cells. Despite significant advances, clinical translation remains a challenge due to potential on-target toxicity and the complexity of tumour microenvironments. Future research should focus on optimising delivery systems, refining antibody specificity, and conducting comprehensive preclinical and clinical trials. This review will focus on novel discoveries regarding FZD7 in cancer and provide an update on our original review on this subject in 2016. Additionally, we present new figures generated by our group using the publicly available Pan-Cancer Atlas RNAseq datasets, highlighting FZD7 expression patterns in patient samples. This integrated approach aims to provide updated insights into the function of FZD7 during cancer and its growing status as an attractive target for therapy. In summary, FZD7 stands out as a promising molecular target in cancer therapy due to its selective overexpression in tumours, functional role in Wnt-driven oncogenesis, and potential for innovative therapeutic applications. This review underscores the critical need for the continued exploration of FZD7-targeted therapies to improve patient outcomes in cancer treatment. Full article
(This article belongs to the Special Issue Feature Papers—Multidisciplinary Sciences 2024)
Show Figures

Figure 1

Back to TopTop