Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,612)

Search Parameters:
Keywords = human health risk

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 250 KB  
Article
Exploring an AI-First Healthcare System
by Ali Gates, Asif Ali, Scott Conard and Patrick Dunn
Bioengineering 2026, 13(1), 112; https://doi.org/10.3390/bioengineering13010112 (registering DOI) - 17 Jan 2026
Abstract
Artificial intelligence (AI) is now embedded across many aspects of healthcare, yet most implementations remain fragmented, task-specific, and layered onto legacy workflows. This paper does not review AI applications in healthcare per se; instead, it examines what an AI-first healthcare system would look [...] Read more.
Artificial intelligence (AI) is now embedded across many aspects of healthcare, yet most implementations remain fragmented, task-specific, and layered onto legacy workflows. This paper does not review AI applications in healthcare per se; instead, it examines what an AI-first healthcare system would look like, one in which AI functions as a foundational organizing principle of care delivery rather than an adjunct technology. We synthesize evidence across ambulatory, inpatient, diagnostic, post-acute, and population health settings to assess where AI capabilities are sufficiently mature to support system-level integration and where critical gaps remain. Across domains, the literature demonstrates strong performance for narrowly defined tasks such as imaging interpretation, documentation support, predictive surveillance, and remote monitoring. However, evidence for longitudinal orchestration, cross-setting integration, and sustained impact on outcomes, costs, and equity remains limited. Key barriers include data fragmentation, workflow misalignment, algorithmic bias, insufficient governance, and lack of prospective, multi-site evaluations. We argue that advancing toward AI-first healthcare requires shifting evaluation from accuracy-centric metrics to system-level outcomes, emphasizing human-enabled AI, interoperability, continuous learning, and equity-aware design. Using hypertension management and patient journey exemplars, we illustrate how AI-first systems can enable proactive risk stratification, coordinated intervention, and continuous support across the care continuum. We further outline architectural and governance requirements, including cloud-enabled infrastructure, interoperability, operational machine learning practices, and accountability frameworks—necessary to operationalize AI-first care safely and at scale, subject to prospective validation, regulatory oversight, and post-deployment surveillance. This review contributes a system-level framework for understanding AI-first healthcare, identifies priority research and implementation gaps, and offers practical considerations for clinicians, health systems, researchers, and policymakers. By reframing AI as infrastructure rather than isolated tools, the AI-first approach provides a pathway toward more proactive, coordinated, and equitable healthcare delivery while preserving the central role of human judgment and trust. Full article
(This article belongs to the Special Issue AI and Data Science in Bioengineering: Innovations and Applications)
16 pages, 2923 KB  
Article
Functional and Molecular Characterization of Melamine-Induced Disruption of Human Spermatozoa via Oxidative Stress and Apoptotic Pathways: An In Vitro Study
by Francesca Paola Luongo, Eugenia Annunzi, Rosetta Ponchia, Francesca Girolamo, Giuseppe Morgante, Paola Piomboni and Alice Luddi
Antioxidants 2026, 15(1), 122; https://doi.org/10.3390/antiox15010122 (registering DOI) - 17 Jan 2026
Abstract
Melamine, a nitrogen-rich industrial chemical, has raised increasing concern as an emerging environmental contaminant with potential reproductive toxicity. While its nephrotoxic effects are well established, the direct impact of melamine on human sperm remains poorly defined. In this study, we investigated the in [...] Read more.
Melamine, a nitrogen-rich industrial chemical, has raised increasing concern as an emerging environmental contaminant with potential reproductive toxicity. While its nephrotoxic effects are well established, the direct impact of melamine on human sperm remains poorly defined. In this study, we investigated the in vitro effects of melamine on human sperm, under both capacitating and non-capacitating conditions. Functional analyses revealed that the exposure to 0.8 mM melamine, the highest non-cytotoxic concentration in vitro, significantly compromised sperm motility and disrupted key capacitation processes, including tyrosine phosphorylation patterns, cholesterol efflux, and the acrosome reaction. Molecular assessments demonstrated melamine-induced mitochondrial dysfunction, characterized by COX4I1 downregulation, reduced mitochondrial membrane potential, and altered reactive oxygen species production. In parallel, gene expression analyses revealed the activation of apoptotic pathways, with the upregulation of BAX and downregulation of BCL2, changes that were more pronounced during capacitation. Furthermore, melamine exposure significantly increased sperm DNA fragmentation and denaturation, indicating genotoxic stress. Collectively, these findings demonstrate that even low, non-cytotoxic concentrations of melamine compromise sperm function by disrupting capacitation, mitochondrial activity, and genomic integrity. This study identifies capacitation as a critical window of vulnerability and underscores the need to consider melamine as a potential environmental risk factor for male reproductive health. Full article
Show Figures

Figure 1

26 pages, 2278 KB  
Review
Molecular Mechanisms of Lignans in Lowering Blood Pressure and Anti-Obesity Effects: A Review
by Gitishree Das, Sandra Gonçalves, José Basilio Heredia, Nayely Leyva-López, Anabela Romano, Spiros Paramithiotis, Han-Seung Shin and Jayanta Kumar Patra
Foods 2026, 15(2), 336; https://doi.org/10.3390/foods15020336 - 16 Jan 2026
Abstract
Lignans are naturally occurring compounds found in a wide variety of plant species, including flaxseed, soybean, pumpkin seed, broccoli, sesame seed, and some berries. Lignans have been used for centuries in both food and traditional herbal medicine. Recently, numerous new lignans and lignan [...] Read more.
Lignans are naturally occurring compounds found in a wide variety of plant species, including flaxseed, soybean, pumpkin seed, broccoli, sesame seed, and some berries. Lignans have been used for centuries in both food and traditional herbal medicine. Recently, numerous new lignans and lignan derivatives with diverse biological properties have been identified. Lignans are considered promising for human health due to their hydrogen-donating antioxidant activity together with their ability to complex divalent transition metal cations. They have demonstrated beneficial effects for cardiovascular disease, as well as in maintaining blood glucose levels, supporting cardiac health, promoting anti-obesity effects, decreasing the risk of renal diseases, enhancing brain function, improving skin and gut health, among others. This review explores the biosynthesis and biological effects of lignans, with a particular focus on their antihypertensive and anti-obesity properties, as well as the molecular mechanisms involved. It also highlights recent advances in sustainable lignan extraction techniques that are suitable for human use. The mechanisms underlying these bioactivities are thought to involve hormonal metabolism and availability, antioxidant action, modulation of angiogenesis, and more. However, further research is needed to fully elucidate the molecular pathways through which lignans exert their therapeutic effects. Overall, lignans from various plant sources hold significant potential for application in functional foods, dietary supplements, and pharmaceutical products aimed at preventing and managing a range of health conditions, including hypertension and obesity. Full article
Show Figures

Figure 1

28 pages, 1713 KB  
Review
Liver Fibrosis and the Risks of Impaired Cognition and Dementia: Mechanisms, Evidence, and Clinical Implications
by Mohamad Jamalinia, Ralf Weiskirchen and Amedeo Lonardo
Med. Sci. 2026, 14(1), 44; https://doi.org/10.3390/medsci14010044 - 16 Jan 2026
Abstract
Liver fibrosis, the progressive accumulation of scar tissue resulting from chronic liver disease, is increasingly recognized as a multi-system condition, the effects of which extend beyond the liver, affecting brain health. Dementia, characterized by progressively impaired cognition sufficient to impede daily functioning, is [...] Read more.
Liver fibrosis, the progressive accumulation of scar tissue resulting from chronic liver disease, is increasingly recognized as a multi-system condition, the effects of which extend beyond the liver, affecting brain health. Dementia, characterized by progressively impaired cognition sufficient to impede daily functioning, is a major global health issue with incompletely defined risk factors and pathogenic precursors. To examine the relationship between liver fibrosis and cognitive outcomes, we conducted a comprehensive PubMed literature search, and human studies published in English were included. Evidence is synthesized on the pathophysiology and clinical significance of liver fibrosis, types of dementia, and studies supporting the association between liver fibrosis and cognitive impairment. Meta-analytic data indicate that liver fibrosis is associated with an approximately 30% increased risk of incident dementia (pooled hazard ratio ~1.3), with progressively higher risks across more advanced fibrosis stages. Putative pathomechanisms, potentially modulated by age and sex, include chronic systemic and neuro-inflammation, insulin resistance, vascular dysfunction, and a perturbed intestinal microbiota–liver–brain axis. Non-invasive liver fibrosis diagnostics, advanced neuroimaging, and biomarkers represent key tools for assessing risk. In conclusion, liver fibrosis is a systemic condition that can affect brain health. Early detection, thorough risk assessment and interventions, such as lifestyle changes, metabolic therapies, and antifibrotic treatments, may help protect neural function. Key research gaps are identified, with suggestions for improving understanding of liver fibrosis’s connection to dementia or cognitive impairment. Full article
(This article belongs to the Section Hepatic and Gastroenterology Diseases)
Show Figures

Figure 1

22 pages, 5824 KB  
Article
In Silico Hazard Assessment of Ototoxicants Through Machine Learning and Computational Systems Biology
by Shu Luan, Chao Ji, Gregory M. Zarus, Christopher M. Reh and Patricia Ruiz
Toxics 2026, 14(1), 82; https://doi.org/10.3390/toxics14010082 - 16 Jan 2026
Abstract
Individuals across their lifespan may experience hearing loss from medications or chemicals, prompting concern about ototoxic environmental exposures. This study applies computational modeling as a screening-level hazard identification and chemical prioritization approach and is not intended to constitute a human health risk assessment [...] Read more.
Individuals across their lifespan may experience hearing loss from medications or chemicals, prompting concern about ototoxic environmental exposures. This study applies computational modeling as a screening-level hazard identification and chemical prioritization approach and is not intended to constitute a human health risk assessment or to estimate exposure- or dose-dependent ototoxic risk. We evaluated in silico drug-induced ototoxicity models on 80 environmental chemicals, excluding 4 with known ototoxicity, and analyzed 76 chemicals using fingerprinting, similarity assessment, and machine learning classification. We compared predicted environmental ototoxicants with ototoxic drugs, paired select polychlorinated biphenyls with the antineoplastic drug mitotane, and used PCB 177 as a case study to construct an ototoxicity pathway. A systems biology framework predicted and compared molecular targets of mitotane and PCB 177 to generate a network-level mechanism. The consensus model (accuracy 0.95 test; 0.90 validation) identified 18 of 76 chemicals as potential ototoxicants within acceptable confidence ranges. Mitotane and PCB 177 were both predicted to disrupt thyroid-stimulating hormone receptor signaling, suggesting thyroid-mediated pathways may contribute to auditory harm; additional targets included AhR, transthyretin, and PXR. Findings indicate overlapping mechanisms involving metabolic, cellular, and inflammatory processes. This work shows that integrated computational modeling can support virtual screening and prioritization for chemical and drug ototoxicity risk assessment. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Figure 1

22 pages, 4811 KB  
Article
Adsorption Characterization and Mechanism of a Red Mud–Lactobacillus plantarum Composite Biochar for Cd2+ and Pb2+ Removal
by Guangxu Zhu, Yunhe Zhao, Yunyan Wang, Baohang Huang, Rongkun Chen, Xingyun Zhao, Panpan Wu and Qiang Tu
Biology 2026, 15(2), 153; https://doi.org/10.3390/biology15020153 - 15 Jan 2026
Viewed by 48
Abstract
Pb2+ and Cd2+ represent common heavy metal contaminants in aquatic environments, posing significant risks to ecosystem stability and human health. To develop efficient adsorbents for removing Cd2+ and Pb2+ while achieving resource utilization of industrial by-products (red mud and [...] Read more.
Pb2+ and Cd2+ represent common heavy metal contaminants in aquatic environments, posing significant risks to ecosystem stability and human health. To develop efficient adsorbents for removing Cd2+ and Pb2+ while achieving resource utilization of industrial by-products (red mud and distiller’s grains), this study synthesized a novel composite biochar—red mud–Lactobacillus plantarum composite biochar (RM)—by immobilizing red mud and Lactobacillus plantarum onto biochar derived from distiller’s grains. The structural and chemical properties of RM were characterized using SEM-EDS, XRD, and FTIR. Batch adsorption experiments were conducted to evaluate the effects of various experimental factors on Cd2+ and Pb2+ adsorption. The adsorption process was further elucidated through kinetic and isothermal models, revealing that it follows the pseudo-second-order kinetic model. Equilibrium data were best described by the Langmuir model for Cd2+ and the Freundlich model for Pb2+. The maximum adsorption capacities reached 12.13 mg/g for Cd2+ and 130.10 mg/g for Pb2+. The primary mechanisms involved in Cd2+ and Pb2+ adsorption by RM include surface complexation, cation–π interactions, ion exchange, and coprecipitation. These findings demonstrate that RM represents a promising and effective adsorbent for the remediation of heavy metal-contaminated water. Full article
(This article belongs to the Special Issue Heavy Metal Pollution and Bioremediation: Application and Mechanism)
Show Figures

Figure 1

12 pages, 628 KB  
Article
Health Risk Assessment of Chemical Elements in Drinking Water Consumed in a Brazilian City Impacted by Mining Activities
by Adilio M. Santos, Joselanio J. Coutinho, Sarah A. R. Soares, Olivia M. C. de Oliveira, Antonio F. S. Queiroz, Valfredo A. Lemos and Sergio L. C. Ferreira
Water 2026, 18(2), 230; https://doi.org/10.3390/w18020230 - 15 Jan 2026
Viewed by 96
Abstract
This study evaluates the non-carcinogenic risk associated with chemical elements in drinking water in Jequié, Brazil, where mining activities occur. However, intensive mineral exploration, especially of metals such as vanadium (V), manganese (Mn), nickel (Ni), and chromium (Cr), has raised concerns about potential [...] Read more.
This study evaluates the non-carcinogenic risk associated with chemical elements in drinking water in Jequié, Brazil, where mining activities occur. However, intensive mineral exploration, especially of metals such as vanadium (V), manganese (Mn), nickel (Ni), and chromium (Cr), has raised concerns about potential contamination. Water samples were collected for this research, and chemical analyses were conducted to quantify inorganic contaminants. Arsenic, cadmium, chromium, copper, mercury, manganese, nickel, lead, uranium, vanadium, and zinc were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The following maximum concentrations (μg L−1) were obtained: As (0.36), Cd (0.76), Cr (5.5), Cu (10.6), Hg (1.7), Mn (1.3), Ni (6.7), Pb (10.1), U (0.22), V (1.9), and Zn (175). Non-carcinogenic and carcinogenic risks, such as Estimated Weekly Intake (EWI), Target Hazard Quotient (THQ), and Cancer Risk (CR), were evaluated. In one of the 30 samples analyzed, the Pb concentration exceeded the regulatory limits established by Brazilian legislation. The results highlight the importance of continuous monitoring and effective management of water quality in areas impacted by mining to protect local community health and ensure the sustainable use of water resources. The study concludes that, in general, no non-carcinogenic risks were identified for adults or children. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

19 pages, 1992 KB  
Article
Antimicrobial Use and Epidemiological Resistance Profiles of Commensal Escherichia coli from Swine Farms in Córdoba, Argentina
by Nicolás Javier Litterio, María del Pilar Zarazaga, Augusto Matías Lorenzutti, Juan Pablo Vico, Martín Alejandro Himelfarb, Mariano Guillermo Tinti, Ana Paola Zogbi, Sonia Rubio-Langre and Manuel Ignacio San Andrés Larrea
Antibiotics 2026, 15(1), 86; https://doi.org/10.3390/antibiotics15010086 - 15 Jan 2026
Viewed by 65
Abstract
Background/Objectives: The expansion of intensive swine production in Córdoba, Argentina, underscores the need to assess the risks associated with antimicrobial (AM) use, whose extensive application has driven antimicrobial resistance, a major global threat within the One Health framework. This study aimed to characterize [...] Read more.
Background/Objectives: The expansion of intensive swine production in Córdoba, Argentina, underscores the need to assess the risks associated with antimicrobial (AM) use, whose extensive application has driven antimicrobial resistance, a major global threat within the One Health framework. This study aimed to characterize AM use practices and evaluate the epidemiological resistance profiles (non-wild-type phenotypes, NWT) of commensal Escherichia coli of fecal origin from swine farms, using epidemiological cut-off values (ECOFFs) as a surveillance criterion. Methods: An observational cross-sectional study was conducted in 19 farrow-to-finish farms in Córdoba during 2023. Information on AM use (prophylaxis, metaphylaxis, treatment) across production categories was collected. A total of 437 E. coli isolates were obtained from fecal samples, and minimum inhibitory concentrations (MICs) were determined for 10 AMs of critical importance for human and animal health. NWT phenotypes were classified according to EUCAST ECOFFs, and multidrug resistance (MDR) was assessed. Results: AM use was frequent and predominantly prophylactic (89.5% of farms), mainly through mass medication (66.3%), with macrolides and amoxicillin being the most commonly administered AMs. NWT proportions were extremely high (90–92%) for ampicillin, tetracyclines, and chloramphenicol and substantial for ciprofloxacin (50.6%), sulfamethoxazole (68.2%), and trimethoprim (44.9%). Extended-spectrum β-lactamase (ESBL)-producing phenotypes were detected. Alarmingly, 92% of isolates were classified as MDR E. coli, with homogeneous distribution across production categories. Conclusions: Findings reveal intensive and largely empirical AM use that has consolidated a stable intestinal resistome in the swine population. High MDR levels, even in categories with limited direct AM exposure or involving banned compounds, suggest that co-selection and horizontal gene transfer are key drivers of resistance. This scenario highlights the urgent need to strengthen integrated surveillance and promote prudent AM use strategies under the One Health approach to preserve therapeutic efficacy. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in Veterinary Science, 2nd Edition)
Show Figures

Figure 1

11 pages, 3899 KB  
Proceeding Paper
Computation of Conduction and Displacement Current Densities in Modelled Human Organs near an Overhead Transmission Line
by Cvetanka Bilbiloska, Elena Todorova, Bojan Glushica and Andrijana Kuhar
Eng. Proc. 2026, 122(1), 9; https://doi.org/10.3390/engproc2026122009 - 15 Jan 2026
Viewed by 57
Abstract
This study employs numerical simulations to analyse current densities in modelled human organs originating from extremely low frequency (ELF) electromagnetic fields emanating from a 110 kV single-circuit high-voltage transmission line. Exposure to these ELF fields gives rise to both conduction and displacement currents [...] Read more.
This study employs numerical simulations to analyse current densities in modelled human organs originating from extremely low frequency (ELF) electromagnetic fields emanating from a 110 kV single-circuit high-voltage transmission line. Exposure to these ELF fields gives rise to both conduction and displacement currents within the human body, potentially perturbing endogenous bioelectric currents and raising concerns of health risks. Using CST Studio Suite 2018 software, a three-dimensional multipart ellipsoidal anatomical model is developed to analyse these phenomena. Although displacement currents have lower magnitudes than conduction currents, they contribute significantly to the total current density and must therefore be included in rigorous safety assessments. Simulation results indicate that the current density values remain below the basic restrictions of the International Commission on Non-Ionizing Radiation Protection. Full article
Show Figures

Figure 1

23 pages, 1915 KB  
Article
Institutional and Policy Barriers to GIS-Based Waste Management: Evidence from Rural Municipalities in Vhembe District, South Africa
by Aifani Confidence Tahulela and Shervin Hashemi
Environments 2026, 13(1), 51; https://doi.org/10.3390/environments13010051 - 14 Jan 2026
Viewed by 103
Abstract
Municipal solid waste management (MSWM) remains a critical environmental governance challenge in rural and peri-urban regions of the Global South, where service delivery gaps exacerbate illegal dumping and public health risks. Geographic Information Systems (GIS) are increasingly promoted as decision-support tools to improve [...] Read more.
Municipal solid waste management (MSWM) remains a critical environmental governance challenge in rural and peri-urban regions of the Global South, where service delivery gaps exacerbate illegal dumping and public health risks. Geographic Information Systems (GIS) are increasingly promoted as decision-support tools to improve waste collection efficiency and environmental monitoring; however, their adoption in resource-constrained municipalities remains limited. This study investigates the institutional and policy barriers shaping GIS readiness in four rural municipalities within South Africa’s Vhembe District. Using a qualitative case-study design, semi-structured interviews were conducted with 29 municipal officials across managerial and operational levels, complemented by 399 community responses to an open-ended survey question. Thematic analysis, guided by Institutional Theory and the Technology Acceptance Model (TAM), identified five interrelated themes: waste production and disposal behaviours, collection and infrastructure constraints, institutional and operational challenges, policy and standardisation gaps, and technology readiness. The findings reveal that weak service reliability, fragmented governance structures, limited human and financial capacity, and inconsistent policy enforcement collectively undermine GIS adoption, despite its high perceived usefulness among officials. The study demonstrates that the effectiveness of GIS as an environmental management tool is contingent on institutional readiness rather than technological availability alone and highlights the need for integrated reforms in service delivery, institutional capacity, and policy implementation to enable GIS-supported sustainable waste management. Full article
Show Figures

Figure 1

28 pages, 1779 KB  
Review
Two-Dimensional Carbon-Based Electrochemical Sensors for Pesticide Detection: Recent Advances and Environmental Monitoring Applications
by K. Imran, Al Amin, Gajapaneni Venkata Prasad, Y. Veera Manohara Reddy, Lestari Intan Gita, Jeyaraj Wilson and Tae Hyun Kim
Biosensors 2026, 16(1), 62; https://doi.org/10.3390/bios16010062 - 14 Jan 2026
Viewed by 133
Abstract
Pesticides have been widely applied in agricultural practices over the past decades to protect crops from pests and other harmful organisms. However, their extensive use results in the contamination of soil, water, and agricultural products, posing significant risks to human and environmental health. [...] Read more.
Pesticides have been widely applied in agricultural practices over the past decades to protect crops from pests and other harmful organisms. However, their extensive use results in the contamination of soil, water, and agricultural products, posing significant risks to human and environmental health. Exposure to pesticides can lead to skin irritation, respiratory disorders, and various chronic health problems. Moreover, pesticides frequently enter surface water bodies such as rivers and lakes through agricultural runoff and leaching processes. Therefore, developing effective analytical methods for the rapid and sensitive detection of pesticides in food and water is of great importance. Electrochemical sensing techniques have shown remarkable progress in pesticide analysis due to their high sensitivity, simplicity, and potential for on-site monitoring. Two-dimensional (2D) carbon nanomaterials have emerged as efficient electrocatalysts for the precise and selective detection of pesticides, owing to their large surface area, excellent electrical conductivity, and unique structural features. In this review, we summarize recent advancements in the electrochemical detection of pesticides using 2D carbon-based materials. Comprehensive information on electrode fabrication, sensing mechanisms, analytical performance—including sensing range and limit of detection—and the versatility of 2D carbon composites for pesticide detection is provided. Challenges and future perspectives in developing highly sensitive and selective electrochemical sensing platforms are also discussed, highlighting their potential for simultaneous pesticide monitoring in food and environmental samples. Carbon-based electrochemical sensors have been the subject of many investigations, but their practical application in actual environmental and food samples is still restricted because of matrix effects, operational instability, and repeatability issues. In order to close the gap between laboratory research and real-world applications, this review critically examines sensor performance in real-sample conditions and offers innovative approaches for in situ pesticide monitoring. Full article
Show Figures

Figure 1

20 pages, 1167 KB  
Review
One Health Perspective on Antimicrobial Resistance in Bovine Mastitis Pathogens—A Narrative Review
by Bigya Dhital, Rameshwor Pudasaini, Jui-Chun Hsieh, Ramchandra Pudasaini, Ying-Tsong Chen, Day-Yu Chao and Hsin-I Chiang
Antibiotics 2026, 15(1), 84; https://doi.org/10.3390/antibiotics15010084 - 14 Jan 2026
Viewed by 436
Abstract
Background/Objectives: Bovine mastitis, a significant global concern in dairy farming, results in substantial economic losses and poses considerable risks to both animal and human health. With the increasing prevalence of antimicrobial resistance (AMR) in mastitis pathogens, the potential for resistant infections to [...] Read more.
Background/Objectives: Bovine mastitis, a significant global concern in dairy farming, results in substantial economic losses and poses considerable risks to both animal and human health. With the increasing prevalence of antimicrobial resistance (AMR) in mastitis pathogens, the potential for resistant infections to spread from livestock to humans and the environment is becoming a critical public health issue. This narrative review summarizes the current evidence on antimicrobial resistance in pathogens causing bovine mastitis and examines it from a One Health perspective, encompassing animal, human, and environmental interfaces. Results: By examining the complex interplay among animal, human, and environmental health, we highlight key factors that drive resistance, including the overuse of antimicrobials, poor farm management, and environmental contamination. We also discuss innovative strategies, such as enhanced surveillance, pathogen-specific diagnostics, alternatives to antimicrobials, and sustainable farm practices, that can mitigate the emergence of resistance. Key knowledge gaps include a limited understanding of antimicrobial residues, resistant pathogens, and gene transmission pathways and inconsistent implementation of antimicrobial stewardship practices. Conclusions: This review emphasizes the need for a coordinated, multidisciplinary effort to reduce the burden of AMR in bovine mastitis pathogens, ensuring the continued efficacy of antimicrobials and safeguarding public health through responsible management and policy interventions. Full article
(This article belongs to the Section The Global Need for Effective Antibiotics)
Show Figures

Figure 1

27 pages, 1630 KB  
Article
Sectoral Patterns of Arsenic, Boron, and Salinity Indicators in Groundwater from the La Yarada Los Palos Coastal Aquifer, Peru
by Luis Johnson Paúl Mori Sosa, Dante Ulises Morales Cabrera, Walter Dimas Florez Ponce De León, Hernán Rolando Salinas Palza and Edith Eva Cruz Pérez
Sustainability 2026, 18(2), 830; https://doi.org/10.3390/su18020830 - 14 Jan 2026
Viewed by 66
Abstract
Groundwater is the main water source for irrigated agriculture, accounting for an increasing share of the domestic supply in the hyper-arid district of La Yarada Los Palos (Tacna, Peru); however, at the sector scale, concerns about arsenic, boron and salinity remain poorly quantified. [...] Read more.
Groundwater is the main water source for irrigated agriculture, accounting for an increasing share of the domestic supply in the hyper-arid district of La Yarada Los Palos (Tacna, Peru); however, at the sector scale, concerns about arsenic, boron and salinity remain poorly quantified. Arsenic and boron were selected as target contaminants because of their naturally elevated concentrations associated with coastal and volcanic hydrogeological settings, and their well-documented implications for human health and irrigation suitability. This study reports a 12-month monitoring program (September 2024–August 2025) in three irrigated sectors, in which wells were sampled monthly and analyzed by inductively coupled plasma–mass spectrometry (ICP-MS) for total arsenic, boron, lithium and sodium, along with electrical conductivity, pH, temperature and total dissolved solids. The sector–month total arsenic means ranged from 0.0089 to 0.0143 mg L−1, with 33 of 36 exceeding the 0.010 mg L−1 drinking water benchmark recommended by the World Health Organization (WHO). Total boron ranged from 1.11 to 2.76 mg L−1, meaning that all observations were above the 0.5 mg L−1 irrigation guideline for agricultural use proposed by the United Nations Food and Agriculture Organization (FAO). A marked salinity gradient was observed from the inland Sector 1-BH (median Na ≈ 77 mg L−1; EC ≈ 1.2 mS cm−1) to the coastal Sector 3-LC (median Na ≈ 251 mg L−1; EC ≈ 3.3 mS cm−1), with Sector 2-FS showing intermediate salinity but the highest median boron and lithium levels. Spearman rank correlations indicate that sodium, electrical conductivity and total dissolved solids define the main salinity axis, whereas arsenic is only moderately associated with boron and lithium and is not a simple function of bulk salinity. Taken together, these results show that groundwater from the monitored wells is not safe for drinking without treatment and is subject to at least moderate boron-related irrigation restrictions. The sector-resolved dataset provides a quantitative baseline for La Yarada Los Palos and a foundation for future work integrating expanded monitoring, health-risk metrics and management scenarios for arsenic, boron and salinity in hyper-arid coastal aquifers. Full article
Show Figures

Figure 1

16 pages, 11917 KB  
Article
Study on the Synergistic Mechanisms of Daytime and Nighttime Heatwaves in China Based on Complex Networks
by Xiangrong Qin, Aixia Feng, Changgui Gu and Qiguang Wang
Appl. Sci. 2026, 16(2), 829; https://doi.org/10.3390/app16020829 - 13 Jan 2026
Viewed by 112
Abstract
Heatwaves pose increasing risks to human health and socio-economic systems, yet their spatiotemporal organization and underlying synergistic mechanisms remain insufficiently understood, particularly with respect to daytime and nighttime processes. Using a dual identification framework combining absolute and relative temperature thresholds, this study systematically [...] Read more.
Heatwaves pose increasing risks to human health and socio-economic systems, yet their spatiotemporal organization and underlying synergistic mechanisms remain insufficiently understood, particularly with respect to daytime and nighttime processes. Using a dual identification framework combining absolute and relative temperature thresholds, this study systematically investigates the spatiotemporal evolution of daytime and nighttime heatwaves across China during 1961–2022. A complex network approach is further introduced to characterize the interannual co-variability and interdecadal structural evolution of heatwave activity from a system-level perspective. Results reveal a pronounced interdecadal transition in the early 1990s, accompanied by a fundamental reorganization of heatwave co-occurrence networks. Heatwave frequency exhibits a clear post-transition desynchronization, characterized by a sharp decline in network connectivity and fragmented local clustering, indicating a shift from large-scale, circulation-dominated coherence toward increasingly localized and heterogeneous heatwave occurrences. In contrast, heatwave duration shows an opposite evolution, with significantly enhanced spatial synchronization after the transition. Degree centrality and clustering coefficients increase markedly, and high-connectivity cores expand from coastal regions into inland areas, including North, Central, and Northwest China. This coexistence of desynchronized heatwave occurrence and strongly synchronized persistence suggests an emerging high-risk regime in which heatwaves occur more randomly but, once initiated, tend to persist coherently across large regions. Furthermore, a dual-layer network analysis reveals previously undocumented cross-temporal coupling between daytime and nighttime heatwaves, with pronounced regional differences. The middle and lower reaches of the Yangtze River are more strongly influenced by local processes, whereas northern China is increasingly governed by large-scale circulation control and enhanced regional clustering after the transition. These findings demonstrate that complex network analysis provides a powerful framework for uncovering hidden structural changes in extreme heat events and offer new insights into the evolving risks of compound and persistent heatwaves under climate change. Full article
Show Figures

Figure 1

23 pages, 415 KB  
Review
HPV-Driven Cervical Carcinogenesis: Genetic and Epigenetic Mechanisms and Diagnostic Approaches
by Evangelia Legaki, Theofania Lappa, Konstantina-Lida Prasoula, Zoi Kardasi, Emmanouil Kalampokas, Theodoros Kalampokas, Maria G. Roubelakis, Ekaterina Charvalos and Maria Gazouli
Int. J. Mol. Sci. 2026, 27(2), 803; https://doi.org/10.3390/ijms27020803 - 13 Jan 2026
Viewed by 298
Abstract
Cervical cancer remains a major global public health concern, with persistent infection by high-risk human papillomavirus (hrHPV) types recognized as the primary etiological factor. This review explores the multifactorial nature of the disease, focusing on the complex interplay between host genetic susceptibility and [...] Read more.
Cervical cancer remains a major global public health concern, with persistent infection by high-risk human papillomavirus (hrHPV) types recognized as the primary etiological factor. This review explores the multifactorial nature of the disease, focusing on the complex interplay between host genetic susceptibility and epigenetic alterations that drive cervical carcinogenesis. Evidence from genome-wide association studies (GWAS) is discussed, highlighting the contribution of specific genetic loci, predominantly within the HLA region, to susceptibility to HPV infection and disease progression. In parallel, the review examines the molecular mechanisms by which the viral oncoproteins E6 and E7 promote genetic instability and epigenetic reprogramming, including histone modifications and dysregulation of non-coding RNAs. Particular emphasis is placed on DNA methylation, affecting both the viral genome and host genes such as FAM19A4, CADM1, PAX1, and MAL, as a promising biomarker for triage and detection of high-grade intraepithelial lesions (CIN2+). Finally, the review evaluates currently available methylation-based assays and self-sampling devices, highlighting their potential to enhance diagnostic accuracy and increase participation in cervical cancer screening programs. Full article
(This article belongs to the Special Issue Molecular Advances in Gynecologic Cancer, 2nd Edition)
Back to TopTop