Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (125)

Search Parameters:
Keywords = human epidermal growth factor receptor 3 (HER3)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 2877 KiB  
Article
Dual-Oriented Targeted Nanostructured SERS Label-Free Immunosensor for Detection, Quantification, and Analysis of Breast Cancer Biomarker Concentrations in Blood Serum
by Mohammad E. Khosroshahi, Christine Gaoiran, Vithurshan Umashanker, Hayagreev Veeru and Pranav Panday
Biosensors 2025, 15(7), 447; https://doi.org/10.3390/bios15070447 - 11 Jul 2025
Viewed by 398
Abstract
In clinical applications of surface-enhanced Raman spectroscopy (SERS) immunosensors, accurately determining analyte biomarker concentrations is essential. This study presents a non-invasive approach for quantifying various breast cancer biomarkers—including human epidermal growth factor receptor II (HER-II) (2+, 3+ (I), 3+ (II), 3+ (III), and [...] Read more.
In clinical applications of surface-enhanced Raman spectroscopy (SERS) immunosensors, accurately determining analyte biomarker concentrations is essential. This study presents a non-invasive approach for quantifying various breast cancer biomarkers—including human epidermal growth factor receptor II (HER-II) (2+, 3+ (I), 3+ (II), 3+ (III), and positive IV) and CA 15-3—using a directional, plasmonically active, label-free SERS sensor. Each stage of sensor functionalization, conjugation, and biomarker interaction was verified by UV–Vis spectroscopy. Atomic force microscopy (AFM) characterized the morphology of gold nanourchin (GNU)-immobilized printed circuit board (PCB) substrates. An enhancement factor of ≈ 0.5 × 105 was achieved using Rhodamine 6G as the probe molecule. Calibration curves were initially established using standard HER-II solutions at concentrations ranging from 1 to 100 ng/mL and CA 15-3 at concentrations from 10 to 100 U/mL. The SERS signal intensities in the 620–720 nm region were plotted against concentration, yielding linear sensitivity with R2 values of 0.942 and 0.800 for HER-II and CA15-3, respectively. The same procedure was applied to breast cancer serum (BCS) samples, allowing unknown biomarker concentrations to be determined based on the corresponding calibration curves. SERS data were processed using the filtfilt filter from scipy.signal for smoothing and then baseline-corrected with the Improved Asymmetric Least Squares (IASLS) algorithm from the pybaselines.Whittaker library. Principal Component Analysis (PCA) effectively distinguished the sample groups and revealed spectral differences before and after biomarker interactions. Key Raman peaks were attributed to functional groups including N–H (primary and secondary amines), C–H antisymmetric stretching, C–N (amines), C=O antisymmetric stretching, NH3+ (amines), carbohydrates, glycine, alanine, amides III, C=N stretches, and NH2 in primary amides. Full article
Show Figures

Figure 1

24 pages, 855 KiB  
Review
Antibody–Drug Conjugates Powered by Deruxtecan: Innovations and Challenges in Oncology
by Jung Yoon Jang, Donghwan Kim, Na Kyeong Lee, Eunok Im and Nam Deuk Kim
Int. J. Mol. Sci. 2025, 26(13), 6523; https://doi.org/10.3390/ijms26136523 - 7 Jul 2025
Viewed by 1286
Abstract
Antibody–drug conjugates (ADCs) have revolutionized precision oncology by enabling targeted drug delivery with improved therapeutic indices. Among these, deruxtecan (DXd)-based ADCs have demonstrated remarkable efficacy across a range of cancers, particularly in tumors expressing human epidermal growth factor receptor 2 (HER2), human epidermal [...] Read more.
Antibody–drug conjugates (ADCs) have revolutionized precision oncology by enabling targeted drug delivery with improved therapeutic indices. Among these, deruxtecan (DXd)-based ADCs have demonstrated remarkable efficacy across a range of cancers, particularly in tumors expressing human epidermal growth factor receptor 2 (HER2), human epidermal growth factor receptor 3 (HER3), and trophoblast cell surface antigen 2 (TROP2), including breast, lung, gastric, and other solid tumors. DXd, a potent topoisomerase I inhibitor, enhances the cytotoxic potential of ADCs through a cleavable and stable linker and a high drug-to-antibody ratio that ensures optimal drug release. The clinical success of trastuzumab DXd (Enhertu®) and datopotamab DXd (Datroway®), along with the ongoing development of patritumab DXd, has expanded the therapeutic potential of ADCs. However, challenges remain, including toxicity, resistance, and manufacturing scalability. This review discusses the mechanisms of action, clinical progress, and challenges of DXd-based ADCs, highlighting their transformative role in modern oncology and exploring future directions to optimize their efficacy and accessibility. Full article
(This article belongs to the Special Issue New Wave of Cancer Therapeutics: Challenges and Opportunities)
Show Figures

Figure 1

23 pages, 3535 KiB  
Article
Cardio–Renal and Systemic Effects of SGLT2i Dapagliflozin on Short-Term Anthracycline and HER-2-Blocking Agent Therapy-Induced Cardiotoxicity
by Vincenzo Quagliariello, Annabella Di Mauro, Gerardo Ferrara, Francesca Bruzzese, Giuseppe Palma, Antonio Luciano, Maria Laura Canale, Irma Bisceglia, Martina Iovine, Christian Cadeddu Dessalvi, Carlo Maurea, Matteo Barbato, Alessandro Inno, Massimiliano Berretta, Andrea Paccone, Alfredo Mauriello, Celeste Fonderico, Anna Chiara Maratea and Nicola Maurea
Antioxidants 2025, 14(5), 612; https://doi.org/10.3390/antiox14050612 - 20 May 2025
Cited by 1 | Viewed by 817
Abstract
Anthracyclines and human epidermal growth factor receptor 2 (HER-2) inhibitors are cornerstone therapies for breast cancer but are associated with significant cardiotoxicity. While sodium–glucose cotransporter 2 (SGLT2) inhibitors such as dapagliflozin have demonstrated cardio–renal protective effects during anthracycline treatment, their efficacy in preventing [...] Read more.
Anthracyclines and human epidermal growth factor receptor 2 (HER-2) inhibitors are cornerstone therapies for breast cancer but are associated with significant cardiotoxicity. While sodium–glucose cotransporter 2 (SGLT2) inhibitors such as dapagliflozin have demonstrated cardio–renal protective effects during anthracycline treatment, their efficacy in preventing cardiotoxicity from sequential anthracycline and HER-2 blockade remains poorly understood. This study investigates the cardioprotective role of dapagliflozin in a preclinical model of chemotherapy-induced cardiotoxicity. Female C57Bl/6 mice were divided into four groups and treated for 10 days as follows: (1) a normal control group receiving saline (sham); (2) a model control group receiving doxorubicin (2.17 mg/kg/day for 5 days) followed by HER-2-blocking monoclonal antibody (2.25 mg/kg/day for 5 days); (3) a dapagliflozin-only group (10 mg/kg/day via oral gavage); and (4) a treatment group receiving the combination of doxorubicin, HER-2 inhibitor, and dapagliflozin. Cardiac function was assessed using echocardiography (VEVO 2100). Biomarkers of myocardial injury and inflammation (NLRP3, MyD88, CXCR4, H-FABP, troponin-T, and cytokines) were quantified via ELISA and immunohistochemistry. Circulating markers such as mitofusin-2, cardiac myosin light chain, malondialdehyde (MDA), and 4-hydroxy-2-nonenal (4-HNE) were also measured. Dapagliflozin significantly preserved the ejection fraction and reduced both radial and longitudinal strain impairment in mice treated with the doxorubicin–HER-2 inhibitor combination (p < 0.001). Levels of myocardial NLRP3, MyD88, CXCR4, H-FABP, interleukin-1β, and troponin-T were significantly lower in the dapagliflozin-treated group compared to the chemotherapy-only group. Serum markers of oxidative stress and cardiac injury, including mitofusin-2, MDA, 4-HNE, BNP, and high-sensitivity C-reactive protein (hs-CRP), were also reduced by dapagliflozin treatment. Our findings demonstrate that dapagliflozin effectively mitigates early cardiac dysfunction and injury in a preclinical model of sequential doxorubicin and HER-2 inhibitor therapy. Full article
Show Figures

Figure 1

13 pages, 3816 KiB  
Review
Petosemtamab, a Bispecific Antibody Targeting Epidermal Growth Factor Receptor (EGFR) and Leucine-Rich G Repeat-Containing Protein-Coupled Receptor (LGR5) Designed for Broad Clinical Applications
by Ante S. Lundberg, Cecile A. W. Geuijen, Sally Hill, Jeroen J. Lammerts van Bueren, Arianna Fumagalli, John de Kruif, Peter B. Silverman and Josep Tabernero
Cancers 2025, 17(10), 1665; https://doi.org/10.3390/cancers17101665 - 14 May 2025
Cited by 1 | Viewed by 3259
Abstract
Disease progression and treatment resistance in colorectal and other cancers are driven by a subset of cells within the tumor that have stem-cell-like properties and long-term tumorigenic potential. These stem-cell-like cells express the leucine-rich G repeat-containing protein-coupled receptor 5 (LGR5) and have characteristics [...] Read more.
Disease progression and treatment resistance in colorectal and other cancers are driven by a subset of cells within the tumor that have stem-cell-like properties and long-term tumorigenic potential. These stem-cell-like cells express the leucine-rich G repeat-containing protein-coupled receptor 5 (LGR5) and have characteristics similar to tissue-resident stem cells in normal adult tissues such as the colon. Organoid models of murine and human colorectal and other cancers contain LGR5-expressing (LGR5+) stem-cell-like cells and can be used to investigate the underlying mechanisms of cancer development, progression, therapy vulnerability, and resistance. A large biobank of organoids derived from colorectal cancer or adjacent normal tissue was developed. We performed a large-scale unbiased functional screen to identify bispecific antibodies (BsAbs) that preferentially inhibit the growth of colon tumor-derived, as compared to normal tissue-derived, organoids. We identified the most potent BsAb in the screen as petosemtamab, a Biclonics® BsAb targeting both LGR5 and the epidermal growth factor receptor (EGFR). Petosemtamab employs three distinct mechanisms of action: EGFR ligand blocking, EGFR receptor internalization and degradation in LGR5+ cells, and Fc-mediated activation of the innate immune system by antibody-dependent cellular phagocytosis (ADCP) and enhanced antibody-dependent cellular cytotoxicity (ADCC) (see graphical abstract). Petosemtamab has demonstrated substantial clinical activity in recurrent/metastatic head and neck squamous cell carcinoma (r/m HNSCC). The safety profile is generally favorable, with low rates of skin and gastrointestinal toxicity. Phase 3 trials are ongoing in both first-line programmed death-ligand 1-positive (PD-L1+) and second/third-line r/m HNSCC. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Graphical abstract

25 pages, 3601 KiB  
Article
Efficient Design of Affilin® Protein Binders for HER3
by Anna M. Diaz-Rovira, Jonathan Lotze, Gregor Hoffmann, Chiara Pallara, Alexis Molina, Ina Coburger, Manja Gloser-Bräunig, Maren Meysing, Madlen Zwarg, Lucía Díaz, Victor Guallar, Eva Bosse-Doenecke and Sergi Roda
Int. J. Mol. Sci. 2025, 26(10), 4683; https://doi.org/10.3390/ijms26104683 - 14 May 2025
Viewed by 819
Abstract
Engineered scaffold-based proteins that bind to concrete targets with high affinity offer significant advantages over traditional antibodies in theranostic applications. Their development often relies on display methods, where large libraries of variants are physically contacted with the desired target protein and pools of [...] Read more.
Engineered scaffold-based proteins that bind to concrete targets with high affinity offer significant advantages over traditional antibodies in theranostic applications. Their development often relies on display methods, where large libraries of variants are physically contacted with the desired target protein and pools of binding variants can be selected. Herein, we use a novel combined artificial intelligence/physics-based computational framework and phage display approach to obtain ubiquitin based Affilin® proteins targeting the human epidermal growth factor receptor 3 (HER3) extracellular domain, a relevant tumor target. As traditional antibodies against the receptor have failed so far, we sought to provide molecules in a smaller more versatile format to cover the medical need in HER3 related diseases. We demonstrate that the developed in silico pipeline can generate de novo Affilin® proteins binding the biochemical HER3 target using a small training set of <1000 sequences. The classical phage display yielded primary candidates with low nanomolar affinities to the biochemical target and HER3-expressing cells. The latter could be further optimized by phage display and computational maturation alike. These combined efforts resulted in four HER3 ligands with high affinity, cell binding, and serum stability with theranostic potential. Full article
(This article belongs to the Special Issue Molecular Design of Artificial Receptors Using Virtual Approaches)
Show Figures

Figure 1

10 pages, 953 KiB  
Article
Clinical Significance of Tumor Grade in Triple-Negative Breast Cancer: A Retrospective Cohort Analysis
by Neya Ramanan, Mah-noor Malik, Sarang Upneja, Haniya Farooq, Swati Kulkarni, Rasna Gupta, John Mathews, Abdullah Nasser, Alina Bocicariu, Laurice Arayan, Lisa Porter, Bre-Anne Fifield, Rong Luo, Muriel Brackstone and Caroline Hamm
Biomedicines 2025, 13(5), 1100; https://doi.org/10.3390/biomedicines13051100 - 1 May 2025
Viewed by 728
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous cancer that lacks estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptor 2 (HER2) proteins. Here, we investigated the prognostic value of grade in patients with TNBC. Methods: This retrospective study analyzed 780 [...] Read more.
Triple-negative breast cancer (TNBC) is a heterogeneous cancer that lacks estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptor 2 (HER2) proteins. Here, we investigated the prognostic value of grade in patients with TNBC. Methods: This retrospective study analyzed 780 TNBC patients from two large regional cancer programs in Canada. Patients seen between 1 January 2004 and 31 December 2022 were included. Patients with grade 1 tumors and stage IV disease were excluded from analysis. Demographic information regarding the patient, tumor, and treatment were collected. The primary outcomes, relapse-free survival (RFS) and overall survival (OS), were analyzed using the Cox proportional hazards model and max-combo test. Results: For patients with grade 2 TNBC, median RFS was 14.1 years (95% CI, 9.48 to not reached (NR)) while it was not reached for patients with grade 3 tumors. No difference for relapse was identified in the first five years. Beyond 5 years, 4.9% of the patients with grade 2 tumors and 1.6% of those with grade 3 tumors relapsed (p = 0.006). In that same study period, 10.4% of patients with grade 2 tumors and 5.7% of those with grade 3 tumors died (p = 0.03). Conclusion: Grade 2 TNBC was associated with a higher risk of relapse and death after the 5-year mark compared to grade 3 TNBC. This distinct pattern of relapse and survival in grade 2 TNBC, characterized by an increased risk of relapse and mortality after 5 years, warrants confirmatory investigations. Full article
Show Figures

Figure 1

12 pages, 1028 KiB  
Case Report
EGFR-Mutant Urothelial Carcinoma Harboring an Ala750_Ile759delinsGlyGly Alteration with a Primary Resistance to Polychemotherapy and a Sensitivity to Osimertinib: A Literature Review on EGFR Alterations and Response to EGFR Tyrosine Kinase Inhibitors in Cancers
by Jean-Baptiste Barbe-Richaud, Antonin Fattori, Véronique Lindner, Caroline Schuster, Gabriel Malouf, Erwan Pencreach and Laura Somme
J. Clin. Med. 2025, 14(9), 3129; https://doi.org/10.3390/jcm14093129 - 30 Apr 2025
Viewed by 554
Abstract
Urothelial carcinoma is three to four times more common in men than in women, with a 73-year old mean age at diagnosis which is older than the average age at diagnosis of all cancers. Urothelial carcinoma is rare in people under 40 years [...] Read more.
Urothelial carcinoma is three to four times more common in men than in women, with a 73-year old mean age at diagnosis which is older than the average age at diagnosis of all cancers. Urothelial carcinoma is rare in people under 40 years of age. Smoking, exposure to industrial chemicals, and family history influence the development of bladder cancer, but age remains one of the most important risk factors. It is well established that women are more likely to be diagnosed with an advanced disease, impacting the prognosis and a higher stage-for-stage mortality compared to men. A gender difference is also observed when considering molecular features; for example, there a higher male/female ratio in Fibroblast Growth Factor Receptor 3 (FGFR3)-mutated bladder cancer. Epidermal Growth Factor Receptor (EGFR) amplifications, which are roughly depicted in 25–50% of urothelial carcinoma, have been correlated with a worse prognosis. Genomic alterations of clinical interest are mainly Human Epidermal Growth Factor Receptor 2 mutations and amplifications, as well as FGFR 3 alterations; however, no EGFR mutation has been routinely reported despite the frequency of its amplifications. Recurrently, no targeted inhibitors have demonstrated a benefit compared to platinum-based chemotherapy. We report a rare case of a 35-year-old woman presenting bone, hepatic, and lymph node metastatic urothelial carcinoma, harboring a deletion of 24 nucleotides in exon 19 of the EGFR gene with a 5-month response to osimertinib, a third-generation EGFR tyrosine kinase inhibitor. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

26 pages, 12261 KiB  
Article
Unravelling Convergent Signaling Mechanisms Underlying the Aging-Disease Nexus Using Computational Language Analysis
by Marina Junyent, Haki Noori, Robin De Schepper, Shanna Frajdenberg, Razan Khalid Abdullah Hussen Elsaigh, Patricia H. McDonald, Derek Duckett and Stuart Maudsley
Curr. Issues Mol. Biol. 2025, 47(3), 189; https://doi.org/10.3390/cimb47030189 - 14 Mar 2025
Viewed by 914
Abstract
Multiple lines of evidence suggest that multiple pathological conditions and diseases that account for the majority of human mortality are driven by the molecular aging process. At the cellular level, aging can largely be conceptualized to comprise the progressive accumulation of molecular damage, [...] Read more.
Multiple lines of evidence suggest that multiple pathological conditions and diseases that account for the majority of human mortality are driven by the molecular aging process. At the cellular level, aging can largely be conceptualized to comprise the progressive accumulation of molecular damage, leading to resultant cellular dysfunction. As many diseases, e.g., cancer, coronary heart disease, Chronic obstructive pulmonary disease, Type II diabetes mellitus, or chronic kidney disease, potentially share a common molecular etiology, then the identification of such mechanisms may represent an ideal locus to develop targeted prophylactic agents that can mitigate this disease-driving mechanism. Here, using the input of artificial intelligence systems to generate unbiased disease and aging mechanism profiles, we have aimed to identify key signaling mechanisms that may represent new disease-preventing signaling pathways that are ideal for the creation of disease-preventing chemical interventions. Using a combinatorial informatics approach, we have identified a potential critical mechanism involving the recently identified kinase, Dual specificity tyrosine-phosphorylation-regulated kinase 3 (DYRK3) and the epidermal growth factor receptor (EGFR) that may function as a regulator of the pathological transition of health into disease via the control of cellular fate in response to stressful insults. Full article
(This article belongs to the Collection Bioinformatics Approaches to Biomedicine)
Show Figures

Figure 1

20 pages, 20795 KiB  
Article
Effects of Pharmacological Dose of Vitamin C on MDA-MB-231 Cells
by Lunawati Lo Bennett
Biomedicines 2025, 13(3), 640; https://doi.org/10.3390/biomedicines13030640 - 5 Mar 2025
Cited by 1 | Viewed by 933
Abstract
Background/Objectives: In 2022, approximately 2.3 million women were diagnosed with breast cancer worldwide, resulting in 670,000 deaths, which accounted for 6.9% of all cancer-related deaths. In the United States, 1 in 8 women will be diagnosed with breast cancer during their lifetime. It [...] Read more.
Background/Objectives: In 2022, approximately 2.3 million women were diagnosed with breast cancer worldwide, resulting in 670,000 deaths, which accounted for 6.9% of all cancer-related deaths. In the United States, 1 in 8 women will be diagnosed with breast cancer during their lifetime. It was estimated that 2024 would identify about 310,720 women and 2800 men diagnosed with invasive breast cancer. The future global burden of breast cancer is projected to rise to over 3 million new cases and 1 million deaths by 2040. Approximately 20% of breast cancer diagnoses are triple-negative breast cancer (TNBC), a type of cancer that lacks receptors for estrogen (ER-negative), progesterone (PR-negative), and human epidermal growth factor receptor 2 (HER2/neu-negative). Consequently, TNBC does not respond to hormonal or targeted therapies, making it challenging to treat due to its rapid growth, metastasis, and high recurrence rate within the first three years of therapy. Alternative chemotherapies are needed to address this problem. A pharmacological dose of vitamin C (high-dose VC) has been identified as a potential treatment for some cancer cells. The present study aimed to evaluate whether VC has a therapeutic effect on TNBC, using MDA-MB-231 cells as the model. Additionally, VC’s effects were trialed on other cancer cells such as MCF7 and on non-cancerous kidney HEK 293 and lung CCL205 cells. Methods: The MTT assay, Hoechst 33342 staining, nuclear-ID red/green staining, Rhodamine 123 staining, and Western blot analysis were employed to test the hypothesis that a pharmacological dose of VC can kill TNBC cells. Results: The upregulation of Apaf-1 and caspases -7, -8, and -9, the inhibition of matrix metalloproteinases (MMP-2 and MMP-9), a reduction in cell cycle protein expression, and the enhancement of tumor suppressor proteins such as p53 and p21 indicate that a pharmacological dose of VC has promising anti-cancer properties in the treatment of breast cancers. Conclusions: Pharmacological dose of VC exerts significant anti-cancer effects in MDA-MB-231 cells by promoting apoptosis, inhibiting metastasis, disrupting cell cycle progression, and enhancing tumor suppressor activity. Full article
Show Figures

Figure 1

7 pages, 851 KiB  
Case Report
An Unusual Case of Metastatic Gastric Cancer Presenting with Right Heart Failure and Cardiac Metastasis
by Ebru Engin Delipoyraz, Maral Martin Mildanoglu, Barış Sürül, Oktay Olmuşçelik, Korhan Erkanlı and Ahmet Bilici
Medicina 2025, 61(2), 170; https://doi.org/10.3390/medicina61020170 - 21 Jan 2025
Viewed by 1223
Abstract
Cardiac metastasis is rarely detected in oncology practice. Herein we present a rare case of metastatic gastric cancer that metastasized to the right atrium and presented with right heart failure. A 51-year-old male patient with no known chronic disease presented with fatigue, abdominal [...] Read more.
Cardiac metastasis is rarely detected in oncology practice. Herein we present a rare case of metastatic gastric cancer that metastasized to the right atrium and presented with right heart failure. A 51-year-old male patient with no known chronic disease presented with fatigue, abdominal distension and leg edema for 3 weeks. Physical examination revealed abdominal ascites, tachycardia and pretibial edema. Transthoracic echocardiography (TTE) revealed a hypoechoic, less-mobile mass that almost completely filled the right atrium. Moreover, 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) showed metastatic lesions and a primary tumor-suspicious area in the esophagogastric component. Upper GI endoscopic evaluation performed on the patient revealed an ulcerovegetating mass consistent with gastric adenocarcinoma. A human epidermal growth factor receptor 2 (HER-2) was positiveand programmed death-ligand 1 (PD-L1) combined positive score (CPS) was detected as 15 in immunohistochemistry (IHC). Thereafter, an anticoagulant treatment was started including pembrolizumab and trastuzumab every three weeks, and an oxaliplatin and 5-FU-based chemotherapy regimen was started every two weeks. There was no regression in the cardiac lesion during follow-up; thereafter, there was a significant risk of cardioembolic complications, and a 10 × 7 cm mass filling the right atrium and adhering to the inferior vena cava was resected. The pathology results of the excision material reported gastric carcinoma metastasis. Systemic evaluation performed 3 months later showed regression in primary and metastatic lesions. Cardiac metastases are rare and may not be discovered until autopsy due to the prominence of primary disease findings. Cardiac metastasis, although rare, should be kept in mind in gastric cancer patients presenting with heart failure. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

19 pages, 1204 KiB  
Review
Antibody–Drug Conjugates in Non-Small Cell Lung Cancer: State of the Art and Future Perspectives
by Carol Zanchetta, Lorenzo De Marchi, Marianna Macerelli, Giacomo Pelizzari, Jacopo Costa, Giuseppe Aprile and Francesco Cortiula
Int. J. Mol. Sci. 2025, 26(1), 221; https://doi.org/10.3390/ijms26010221 - 30 Dec 2024
Cited by 3 | Viewed by 2950
Abstract
Antibody–drug conjugates (ADCs) represent one of the most promising and rapidly emerging anti-cancer therapies because they combine the cytotoxic effect of the conjugate payload and the high selectivity of the monoclonal antibody, which binds a specific membrane antigen expressed by the tumor cells. [...] Read more.
Antibody–drug conjugates (ADCs) represent one of the most promising and rapidly emerging anti-cancer therapies because they combine the cytotoxic effect of the conjugate payload and the high selectivity of the monoclonal antibody, which binds a specific membrane antigen expressed by the tumor cells. In non-small cell lung cancer (NSCLC), ADCs are being investigated targeting human epidermal growth factor receptor 2 (HER2), human epidermal growth factor receptor 3 (HER3), trophoblast cell surface antigen 2 (TROP2), Mesenchymal–epithelial transition factor (c-MET), and carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5). To date, Trastuzumab deruxtecan is the only ADC that has been approved by the FDA for the treatment of patients with NSCLC, but several ongoing studies, both using ADCs as monotherapy and combined with other therapies, are investigating the efficacy of new ADCs. In this review, we describe the structures and mechanism of action of different ADCs; we present the evidence derived from the main clinical trials investigating ADCs’ efficacy, focusing also on related toxicity; and, finally, we discuss future perspectives in terms of toxicity management, possible biomarkers, and the identification of resistance mechanisms. Full article
(This article belongs to the Special Issue New Molecular Advances in Lung Cancer)
Show Figures

Figure 1

19 pages, 18518 KiB  
Article
Directed Mutagenesis for Arginine Substitution of a Phaseolus acutifolius Recombinant Lectin Disrupts Its Cytotoxic Activity
by Dania Martínez-Alarcón, José Luis Castro-Guillén, Elaine Fitches, John A. Gatehouse, Stefan Przyborski, Ulisses Moreno-Celis, Alejandro Blanco-Labra and Teresa García-Gasca
Int. J. Mol. Sci. 2024, 25(24), 13258; https://doi.org/10.3390/ijms252413258 - 10 Dec 2024
Cited by 2 | Viewed by 943
Abstract
Recently, we reported that a recombinant Tepary bean (Phaseolus acutifolius) lectin (rTBL-1) induces apoptosis in colon cancer cell lines and that cytotoxicity was related to differential recognition of β1-6 branched N-glycans. Sequencing analysis and resolution of the rTBL-1 3D structure [...] Read more.
Recently, we reported that a recombinant Tepary bean (Phaseolus acutifolius) lectin (rTBL-1) induces apoptosis in colon cancer cell lines and that cytotoxicity was related to differential recognition of β1-6 branched N-glycans. Sequencing analysis and resolution of the rTBL-1 3D structure suggest that glycan specificity could be strongly influenced by two arginine residues, R103 and R130, located in the carbohydrate binding pocket. The aim of this work was to determine the contribution of these residues towards cytotoxic activity. Two rTBL-1 mutants were produced in Pichia pastoris, biochemically characterized, and cytotoxic effects were evaluated on human colorectal cancer cells (HT-29). Substitution of either of the arginine residues with glutamines resulted in significant reductions in cytotoxic activity, with losses of 1.5 and 3 times for R103 and R130, respectively. Docking analysis showed that the mutations decreased lectin affinity binding to some Epidermal Growth Factor Receptor (EGFR)-related N-glycans. Together, these findings confirm that both of the selected arginine residues (R103 and R130) play a key role in the recognition of tumor cell glycoconjugates by rTBL-1. Full article
Show Figures

Figure 1

11 pages, 2435 KiB  
Article
Protein Expression, Amplification, and Mutation of HER2 Gene in Canine Primary Pulmonary Adenocarcinomas: Preliminary Results
by Barbara Brunetti, Dario de Biase, Francesca Millanta, Luisa Vera Muscatello, Enrico Di Oto, Roberta Marchetti, Ester Lidia Laddaga, Antonio De Leo, Giovanni Tallini and Barbara Bacci
Animals 2024, 14(18), 2625; https://doi.org/10.3390/ani14182625 - 10 Sep 2024
Viewed by 1726
Abstract
Recently, human epidermal growth factor receptor 2 (HER2) has emerged as a therapeutic target of interest for non-small-cell lung cancer in humans. The role of HER2 in canine pulmonary adenocarcinomas is poorly documented. To address this gap, this study employed three methodologies: immunohistochemistry [...] Read more.
Recently, human epidermal growth factor receptor 2 (HER2) has emerged as a therapeutic target of interest for non-small-cell lung cancer in humans. The role of HER2 in canine pulmonary adenocarcinomas is poorly documented. To address this gap, this study employed three methodologies: immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), and next-generation sequencing (NGS) to investigate the protein expression, gene amplification, and mutation of HER2 in 19 canine primary pulmonary adenocarcinomas. By IHC, 3 out of 19 cases were overexpressed 3+, 6 were 2+, and 10 were negative. With FISH, 2 cases were amplified (12.5%), 3 were inadequate for the analyses, and the others were non-amplified. With NGS, seven cases were inadequate. All other cases were wild-type, except for one IHC 3+ case, which was amplified with FISH and with a specific mutation already described in human pulmonary adenocarcinoma, V659E. This mutation is probably sensitive to tyrosine kinase inhibitory drugs. These results are similar to those in human medicine and to the few data in the literature on canine lung carcinomas; the presence of 12.5% of amplified cases in dogs lays the foundation for future targeted drugs against HER2 alterations. Full article
(This article belongs to the Special Issue Cancer Immunotherapy Research in Veterinary Medicine)
Show Figures

Figure 1

21 pages, 5025 KiB  
Article
Targeting Grb2 SH3 Domains with Affimer Proteins Provides Novel Insights into Ras Signalling Modulation
by Anna A. S. Tang, Andrew Macdonald, Michael J. McPherson and Darren C. Tomlinson
Biomolecules 2024, 14(8), 1040; https://doi.org/10.3390/biom14081040 - 22 Aug 2024
Cited by 1 | Viewed by 2366
Abstract
Src homology 3 (SH3) domains play a critical role in mediating protein–protein interactions (PPIs) involved in cell proliferation, migration, and the cytoskeleton. Despite their abundance in the human proteome, the functions and molecular interactions of many SH3 domains remain unknown, and this is [...] Read more.
Src homology 3 (SH3) domains play a critical role in mediating protein–protein interactions (PPIs) involved in cell proliferation, migration, and the cytoskeleton. Despite their abundance in the human proteome, the functions and molecular interactions of many SH3 domains remain unknown, and this is in part due to the lack of SH3-domain-specific reagents available for their study. Affimer proteins have been developed as affinity reagents targeting a diverse range of targets, including those involved in PPIs. In this study, Affimer proteins were isolated against both the N- and C-terminal SH3 domains (NSH3 and CSH3) of growth-factor-receptor-bound protein 2 (Grb2), an adapter protein that provides a critical link between cell surface receptors and Ras signalling pathways. Targeting the CSH3 alone for the inhibition of PPIs appeared sufficient for curtailing Ras signalling in mammalian cell lines stimulated with human epidermal growth factor (EGF), which conflicts with the notion that the predominant interactions with Ras activating Son of sevenless (SOS) occur via the NSH3 domain. This result supports a model in which allosteric mechanisms involved in Grb2-SOS1 interaction modulate Ras activation. Full article
(This article belongs to the Special Issue The Role of Scaffold Proteins in Human Diseases)
Show Figures

Figure 1

14 pages, 1688 KiB  
Article
Prognostic and Predictive Significance of Primary Tumor Localization and HER2 Expression in the Treatment of Patients with KRAS Wild-Type Metastatic Colorectal Cancer: Single-Centre Experience from Serbia
by Jelena Radić, Ivan Nikolić, Ivana Kolarov-Bjelobrk, Tijana Vasiljević, Aleksandar Djurić, Vladimir Vidović and Bojana Kožik
J. Pers. Med. 2024, 14(8), 879; https://doi.org/10.3390/jpm14080879 - 20 Aug 2024
Cited by 2 | Viewed by 1333
Abstract
The treatment of patients with metastatic colorectal cancer (mCRC) is complex and is impacted by the location of the primary tumor (LPT). Our study aims to emphasize the importance of LPT as a prognostic and predictive marker as well as to examine the [...] Read more.
The treatment of patients with metastatic colorectal cancer (mCRC) is complex and is impacted by the location of the primary tumor (LPT). Our study aims to emphasize the importance of LPT as a prognostic and predictive marker as well as to examine the significance of HER2 overexpression in patients with mCRC, particularly in relation to the response to Epidermal Growth Factor Receptor Antibody treatment (anti-EGFR therapy). In this study, 181 patients with Kirsten RAS (KRAS) wild-type mCRC who received anti-EGFR therapy were included. Among them, 101 had left colon cancer (LCC) and 80 had right colon cancer (RCC). Results demonstrated that patients with KRAS wild-type LCC had better median overall survival (OS) (43 vs. 33 months, p = 0.005) and progression-free survival (PFS) (6 vs. 3 months, p < 0.001) compared to those with RCC. Multivariate analysis identified mucinous adenocarcinoma (p < 0.001), RCC location (p = 0.022), perineural invasion (p = 0.034), and tumors at the resection margin (p = 0.001) as independent predictors of OS, while mucinous adenocarcinoma (p = 0.001) and RCC location (p = 0.004) independently correlated with significantly shorter PFS. In addition, human epidermal growth factor receptor 2 (HER2) positive expression was significantly associated with worse PFS compared to HER2 negative results (p < 0.001). In conclusion, LPT is an important marker for predicting outcomes in the treatment of wild-type mCRC using anti-EGFR therapy, since patients with RCC have a statistically significantly shorter PFS and OS. Further investigation is needed to understand the role of HER2 overexpression in wild-type mCRC, as these patients also exhibit shorter survival. Full article
(This article belongs to the Section Disease Biomarker)
Show Figures

Figure 1

Back to TopTop