Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = human betacoronaviruses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2323 KiB  
Article
Designing Sandwich ELISA with Broadly Reactive Anti-Nucleocapsid Monoclonal Antibodies to Detect Bat-Borne Merbecoviruses
by Kong Yen Liew, Yaju Wang, Sneha Sree Mullapudi, Dinah binte Aziz, Wenjie Fan, Min Luo, Paul Anantharajah Tambyah and Yee-Joo Tan
Viruses 2025, 17(7), 886; https://doi.org/10.3390/v17070886 - 24 Jun 2025
Cited by 1 | Viewed by 449
Abstract
At least three betacoronaviruses have spilled over from bats to humans and caused severe diseases, highlighting the threat of zoonotic transmission. Thus, it is important to enhance surveillance capabilities by developing tools capable of detecting a broad spectrum of bat-borne betacoronaviruses. Three monoclonal [...] Read more.
At least three betacoronaviruses have spilled over from bats to humans and caused severe diseases, highlighting the threat of zoonotic transmission. Thus, it is important to enhance surveillance capabilities by developing tools capable of detecting a broad spectrum of bat-borne betacoronaviruses. Three monoclonal antibodies (mAbs) targeting the nucleocapsid (N) protein were generated using recombinant N proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV). The cross-reactivities of these mAbs were evaluated against a panel of betacoronaviruses. Sandwich ELISAs (sELISAs) were subsequently developed to detect bat-borne betacoronaviruses that have high zoonotic potential. Among the mAbs, 7A7 demonstrated the broadest cross-reactivity, recognizing betacoronaviruses from the Sarbecovirus, Merbecovirus and Hibecovirus subgenera. The first sELISA, based on mAbs 7A7 and 6G10, successfully detected N protein in all clinical swab samples from COVID-19 patients with cycle threshold (Ct) values < 25, achieving 75% positivity overall (12/16). Using this as a reference, a second sELISA was established by pairing mAb 7A7 with mAb 8E2, which binds to multiple merbecoviruses. This assay detected the N protein of two merbecoviruses, namely the human MERS-CoV and bat-borne HKU5-CoV, at high sensitivity and has a limit of detection (LOD) that is comparable to the first sELISA used successfully to detect COVID-19 infection. These broadly reactive mAbs could be further developed into rapid antigen detection kits for surveillance in high-risk populations with close contact with wild bats to facilitate the early detection of potential zoonotic spillover events. Full article
(This article belongs to the Special Issue Emerging Microbes, Infections and Spillovers, 2nd Edition)
Show Figures

Figure 1

17 pages, 1237 KiB  
Article
Serological Surveillance of Betacoronaviruses in Bat Guano Collectors: Pre-COVID-19 Pandemic and Post-SARS-CoV-2 Emergence
by Sasiprapa Ninwattana, Spencer L. Sterling, Khwankamon Rattanatumhi, Nattakarn Thippamom, Piyapha Hirunpatrawong, Pakamas Sangsub, Thaniwan Cheun-Arom, Dominic Esposito, Chee Wah Tan, Wee Chee Yap, Feng Zhu, Lin-Fa Wang, Eric D. Laing, Supaporn Wacharapluesadee and Opass Putcharoen
Viruses 2025, 17(6), 837; https://doi.org/10.3390/v17060837 - 10 Jun 2025
Viewed by 1151
Abstract
Community-based serosurveillance for emerging zoonotic viruses can provide a powerful and cost-effective measurement of cryptic spillovers. Betacoronaviruses, including SARS-CoV, SARS-CoV-2 and MERS-CoV, are known to infect bats and can cause severe respiratory illness in humans, yet remain under-surveyed in high-risk populations. This study [...] Read more.
Community-based serosurveillance for emerging zoonotic viruses can provide a powerful and cost-effective measurement of cryptic spillovers. Betacoronaviruses, including SARS-CoV, SARS-CoV-2 and MERS-CoV, are known to infect bats and can cause severe respiratory illness in humans, yet remain under-surveyed in high-risk populations. This study aimed to determine the seroprevalence of betacoronaviruses in an occupational cohort in contact with bats before and after the emergence of SARS-CoV-2. Serum samples from pre- and post-COVID-19 pandemic were screened using antigen-based multiplex microsphere immunoassays (MMIAs) and a multiplex surrogate virus neutralization test (sVNT). Pre-pandemic samples showed no SARS-CoV-2 antibodies, while post-pandemic samples from vaccinated participants displayed binding and neutralizing antibodies against SARS-CoV-2 and a related bat CoV. Furthermore, one participant (1/237, 0.43%) had persistent antibodies against MERS-CoV in 2017, 2018 and 2021 but was seronegative in 2023, despite reporting no history of traveling abroad or severe pneumonia. The observed sustained antibody levels indicate a possible exposure to MERS-CoV or a MERS-CoV-like virus, although the etiology and clinical relevance of this finding remains unclear. Ongoing surveillance in high-risk populations remains crucial for understanding virus epidemiology and mitigating zoonotic transmission risk. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

24 pages, 6076 KiB  
Article
Betacoronaviruses Differentially Activate the Integrated Stress Response to Optimize Viral Replication in Lung-Derived Cell Lines
by David M. Renner, Nicholas A. Parenti, Nicole Bracci and Susan R. Weiss
Viruses 2025, 17(1), 120; https://doi.org/10.3390/v17010120 - 16 Jan 2025
Cited by 1 | Viewed by 1572
Abstract
The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus—HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)—, to study betacoronavirus interactions [...] Read more.
The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus—HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)—, to study betacoronavirus interactions with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation. We demonstrate that MERS-CoV, HCoV-OC43, and SARS-CoV-2 all activate PERK and induce responses downstream of p-eIF2α, while only SARS-CoV-2 induces detectable p-eIF2α during infection. Using a small molecule inhibitor of eIF2α dephosphorylation, we provide evidence that MERS-CoV and HCoV-OC43 maximize viral replication through p-eIF2α dephosphorylation. Interestingly, genetic ablation of growth arrest and DNA damage-inducible protein (GADD34) expression, an inducible protein phosphatase 1 (PP1)-interacting partner targeting eIF2α for dephosphorylation, did not significantly alter HCoV-OC43 or SARS-CoV-2 replication, while siRNA knockdown of the constitutive PP1 partner, constitutive repressor of eIF2α phosphorylation (CReP), dramatically reduced HCoV-OC43 replication. Combining GADD34 knockout with CReP knockdown had the maximum impact on HCoV-OC43 replication, while SARS-CoV-2 replication was unaffected. Overall, we conclude that eIF2α dephosphorylation is critical for efficient protein production and replication during MERS-CoV and HCoV-OC43 infection. SARS-CoV-2, however, appears to be insensitive to p-eIF2α and, during infection, may even downregulate dephosphorylation to limit host translation. Full article
(This article belongs to the Special Issue Coronaviruses Pathogenesis, Immunity, and Antivirals)
Show Figures

Figure 1

31 pages, 5365 KiB  
Article
Increased Susceptibility of Rousettus aegyptiacus Bats to Respiratory SARS-CoV-2 Challenge Despite Its Distinct Tropism for Gut Epithelia in Bats
by Björn-Patrick Mohl, Claudia Blaurock, Angele Breithaupt, Alexander Riek, John R. Speakman, Catherine Hambly, Marcel Bokelmann, Gang Pei, Balal Sadeghi, Anca Dorhoi and Anne Balkema-Buschmann
Viruses 2024, 16(11), 1717; https://doi.org/10.3390/v16111717 - 31 Oct 2024
Cited by 2 | Viewed by 2296
Abstract
Increasing evidence suggests bats are the ancestral hosts of the majority of coronaviruses. In general, coronaviruses primarily target the gastrointestinal system, while some strains, especially Betacoronaviruses with the most relevant representatives SARS-CoV, MERS-CoV, and SARS-CoV-2, also cause severe respiratory disease in humans and [...] Read more.
Increasing evidence suggests bats are the ancestral hosts of the majority of coronaviruses. In general, coronaviruses primarily target the gastrointestinal system, while some strains, especially Betacoronaviruses with the most relevant representatives SARS-CoV, MERS-CoV, and SARS-CoV-2, also cause severe respiratory disease in humans and other mammals. We previously reported the susceptibility of Rousettus aegyptiacus (Egyptian fruit bats) to intranasal SARS-CoV-2 infection. Here, we compared their permissiveness to an oral infection versus respiratory challenge (intranasal or orotracheal) by assessing virus shedding, host immune responses, tissue-specific pathology, and physiological parameters. While respiratory challenge with a moderate infection dose of 1 × 104 TCID50 caused a systemic infection with oral and nasal shedding of replication-competent virus, the oral challenge only induced nasal shedding of low levels of viral RNA. Even after a challenge with a higher infection dose of 1 × 106 TCID50, no replication-competent virus was detectable in any of the samples of the orally challenged bats. We postulate that SARS-CoV-2 is inactivated by HCl and digested by pepsin in the stomach of R. aegyptiacus, thereby decreasing the efficiency of an oral infection. Therefore, fecal shedding of RNA seems to depend on systemic dissemination upon respiratory infection. These findings may influence our general understanding of the pathophysiology of coronavirus infections in bats. Full article
(This article belongs to the Special Issue Antiviral Immune Responses of Bat)
Show Figures

Figure 1

12 pages, 1721 KiB  
Article
MultiTEP-Based Vaccines Targeting SARS-CoV-2 Spike Protein IgG Epitopes Elicit Robust Binding Antibody Titers with Limited Virus-Neutralizing Activity
by Tatevik Antonyan, Garri Chilingaryan, Karen Zagorski, Manush Ghazaryan, Armine Hovakimyan, Hayk Davtyan, Irina Petrushina, Olga King, Roman Kniazev, Nikolai Petrovsky and Anahit Ghochikyan
Pathogens 2024, 13(6), 520; https://doi.org/10.3390/pathogens13060520 - 20 Jun 2024
Cited by 2 | Viewed by 1882
Abstract
Within the last two decades, SARS-CoV-2 was the third zoonotic severe acute respiratory betacoronavirus (sarbecovirus) to infect humans, following SARS and MERS. The disruptions caused by the pandemic underscore the need for a universal vaccine against respiratory betacoronaviruses. Our group previously developed the [...] Read more.
Within the last two decades, SARS-CoV-2 was the third zoonotic severe acute respiratory betacoronavirus (sarbecovirus) to infect humans, following SARS and MERS. The disruptions caused by the pandemic underscore the need for a universal vaccine against respiratory betacoronaviruses. Our group previously developed the universal platform for vaccine development, MultiTEP, which has been utilized in this study to generate a range of SARS-CoV-2 epitope vaccine candidates. We prepared and characterized 18 vaccines incorporating small peptide fragments from SARS-CoV-2 Spike protein fused with the MultiTEP sequence using overlapping PCR. Wild-type mice were immunized intramuscularly with the immunogen formulated in AdvaxCpG adjuvant. Serum antibodies were detected by ELISA, surrogate neutralization, and pseudovirus neutralization assays. Finally, the most promising vaccine candidate was administered to three non-human primates. All vaccines generated high titers of spike-binding IgG antibodies. However, only three vaccines generated antibodies that blocked RBD binding to the ACE2 receptor in a surrogate virus neutralization assay. However, none of the vaccines induced antibodies able to neutralize pseudotype viruses, including after the administration of the lead vaccine to NHPs. MultiTEP-based COVID-19 vaccines elicited robust, IgG-binding responses against the Spike protein in mice and non-human primates, but these antibodies were not neutralizing, underscoring the need to refine this approach further. Full article
Show Figures

Figure 1

16 pages, 1214 KiB  
Review
Global Distribution and Molecular Evolution of Bat Coronaviruses
by Mohamed El Sayes, Rebecca Badra, Mohamed A. Ali, Rabeh El-Shesheny and Ghazi Kayali
Zoonotic Dis. 2024, 4(2), 146-161; https://doi.org/10.3390/zoonoticdis4020014 - 14 May 2024
Cited by 1 | Viewed by 3144
Abstract
Bat coronaviruses cause a wide range of illnesses in humans and animals. Bats are known to harbor a wide diversity of Alphacoronaviruses and Betacoronaviruses. Betacoronaviruses have been linked to Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and other diseases such [...] Read more.
Bat coronaviruses cause a wide range of illnesses in humans and animals. Bats are known to harbor a wide diversity of Alphacoronaviruses and Betacoronaviruses. Betacoronaviruses have been linked to Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and other diseases such as gastroenteritis, bronchiolitis, and pneumonia. In the last 20 years, three betacoronaviruses emerged and caused widespread outbreaks in humans, including two deadly betacoronavirus epidemics, SARS-CoV, with mortality rate of 10%, and MERS-CoV, with mortality rate of 34.7%, and SARS-CoV-2, which caused the COVID-19 pandemic, with mortality rate of 3.4%. Studies have shown that bats are the main natural reservoirs for these viruses or their ancestral viruses. Observed variations in bat coronavirus genomes indicate that these viruses may have a potential to transmit to other hosts in close contact with humans and subsequently transmit to humans. As of today, there are no reported cases of direct coronavirus transmission from bats to humans. One reason for this might be that intermediate hosts are required for the transmission of bat coronaviruses to humans. Further studies are needed to map the amino acids and genomic regions responsible for the interactions between the spike of coronavirus and its receptors. Full article
Show Figures

Figure 1

23 pages, 1257 KiB  
Review
Back to the Basics of SARS-CoV-2 Biochemistry: Microvascular Occlusive Glycan Bindings Govern Its Morbidities and Inform Therapeutic Responses
by David E. Scheim, Peter I. Parry, David J. Rabbolini, Colleen Aldous, Morimasa Yagisawa, Robert Clancy, Thomas J. Borody and Wendy E. Hoy
Viruses 2024, 16(4), 647; https://doi.org/10.3390/v16040647 - 22 Apr 2024
Cited by 6 | Viewed by 8169
Abstract
Consistent with the biochemistry of coronaviruses as well established over decades, SARS-CoV-2 makes its initial attachment to host cells through the binding of its spike protein (SP) to sialylated glycans (containing the monosaccharide sialic acid) on the cell surface. The virus can then [...] Read more.
Consistent with the biochemistry of coronaviruses as well established over decades, SARS-CoV-2 makes its initial attachment to host cells through the binding of its spike protein (SP) to sialylated glycans (containing the monosaccharide sialic acid) on the cell surface. The virus can then slide over and enter via ACE2. SARS-CoV-2 SP attaches particularly tightly to the trillions of red blood cells (RBCs), platelets and endothelial cells in the human body, each cell very densely coated with sialic acid surface molecules but having no ACE2 or minimal ACE2. These interlaced attachments trigger the blood cell aggregation, microvascular occlusion and vascular damage that underlie the hypoxia, blood clotting and related morbidities of severe COVID-19. Notably, the two human betacoronaviruses that express a sialic acid-cleaving enzyme are benign, while the other three—SARS, SARS-CoV-2 and MERS—are virulent. RBC aggregation experimentally induced in several animal species using an injected polysaccharide caused most of the same morbidities of severe COVID-19. This glycan biochemistry is key to disentangling controversies that have arisen over the efficacy of certain generic COVID-19 treatment agents and the safety of SP-based COVID-19 vaccines. More broadly, disregard for the active physiological role of RBCs yields unreliable or erroneous reporting of pharmacokinetic parameters as routinely obtained for most drugs and other bioactive agents using detection in plasma, with whole-blood levels being up to 30-fold higher. Appreciation of the active role of RBCs can elucidate the microvascular underpinnings of other health conditions, including cardiovascular disease, and therapeutic opportunities to address them. Full article
(This article belongs to the Special Issue Glycans in Virus-Host Interactions)
Show Figures

Figure 1

28 pages, 7343 KiB  
Article
Accumulation Dynamics of Defective Genomes during Experimental Evolution of Two Betacoronaviruses
by Julia Hillung, María J. Olmo-Uceda, Juan C. Muñoz-Sánchez and Santiago F. Elena
Viruses 2024, 16(4), 644; https://doi.org/10.3390/v16040644 - 20 Apr 2024
Cited by 9 | Viewed by 2289
Abstract
Virus-encoded replicases often generate aberrant RNA genomes, known as defective viral genomes (DVGs). When co-infected with a helper virus providing necessary proteins, DVGs can multiply and spread. While DVGs depend on the helper virus for propagation, they can in some cases disrupt infectious [...] Read more.
Virus-encoded replicases often generate aberrant RNA genomes, known as defective viral genomes (DVGs). When co-infected with a helper virus providing necessary proteins, DVGs can multiply and spread. While DVGs depend on the helper virus for propagation, they can in some cases disrupt infectious virus replication, impact immune responses, and affect viral persistence or evolution. Understanding the dynamics of DVGs alongside standard viral genomes during infection remains unclear. To address this, we conducted a long-term experimental evolution of two betacoronaviruses, the human coronavirus OC43 (HCoV-OC43) and the murine hepatitis virus (MHV), in cell culture at both high and low multiplicities of infection (MOI). We then performed RNA-seq at regular time intervals, reconstructed DVGs, and analyzed their accumulation dynamics. Our findings indicate that DVGs evolved to exhibit greater diversity and abundance, with deletions and insertions being the most common types. Notably, some high MOI deletions showed very limited temporary existence, while others became prevalent over time. We observed differences in DVG abundance between high and low MOI conditions in HCoV-OC43 samples. The size distribution of HCoV-OC43 genomes with deletions differed between high and low MOI passages. In low MOI lineages, short and long DVGs were the most common, with an additional cluster in high MOI lineages which became more prevalent along evolutionary time. MHV also showed variations in DVG size distribution at different MOI conditions, though they were less pronounced compared to HCoV-OC43, suggesting a more random distribution of DVG sizes. We identified hotspot regions for deletions that evolved at a high MOI, primarily within cistrons encoding structural and accessory proteins. In conclusion, our study illustrates the widespread formation of DVGs during betacoronavirus evolution, influenced by MOI and cell- and virus-specific factors. Full article
(This article belongs to the Special Issue Viruses 2024—A World of Viruses)
Show Figures

Figure 1

37 pages, 4320 KiB  
Article
Influence of Seasonality and Public-Health Interventions on the COVID-19 Pandemic in Northern Europe
by Gerry A. Quinn, Michael Connolly, Norman E. Fenton, Steven J. Hatfill, Paul Hynds, Coilín ÓhAiseadha, Karol Sikora, Willie Soon and Ronan Connolly
J. Clin. Med. 2024, 13(2), 334; https://doi.org/10.3390/jcm13020334 - 6 Jan 2024
Cited by 6 | Viewed by 28350
Abstract
Background: Most government efforts to control the COVID-19 pandemic revolved around non-pharmaceutical interventions (NPIs) and vaccination. However, many respiratory diseases show distinctive seasonal trends. In this manuscript, we examined the contribution of these three factors to the progression of the COVID-19 pandemic. Methods: [...] Read more.
Background: Most government efforts to control the COVID-19 pandemic revolved around non-pharmaceutical interventions (NPIs) and vaccination. However, many respiratory diseases show distinctive seasonal trends. In this manuscript, we examined the contribution of these three factors to the progression of the COVID-19 pandemic. Methods: Pearson correlation coefficients and time-lagged analysis were used to examine the relationship between NPIs, vaccinations and seasonality (using the average incidence of endemic human beta-coronaviruses in Sweden over a 10-year period as a proxy) and the progression of the COVID-19 pandemic as tracked by deaths; cases; hospitalisations; intensive care unit occupancy and testing positivity rates in six Northern European countries (population 99.12 million) using a population-based, observational, ecological study method. Findings: The waves of the pandemic correlated well with the seasonality of human beta-coronaviruses (HCoV-OC43 and HCoV-HKU1). In contrast, we could not find clear or consistent evidence that the stringency of NPIs or vaccination reduced the progression of the pandemic. However, these results are correlations and not causations. Implications: We hypothesise that the apparent influence of NPIs and vaccines might instead be an effect of coronavirus seasonality. We suggest that policymakers consider these results when assessing policy options for future pandemics. Limitations: The study is limited to six temperate Northern European countries with spatial and temporal variations in metrics used to track the progression of the COVID-19 pandemic. Caution should be exercised when extrapolating these findings. Full article
(This article belongs to the Section Infectious Diseases)
Show Figures

Figure 1

14 pages, 3447 KiB  
Review
Corona- and Paramyxoviruses in Bats from Brazil: A Matter of Concern?
by Matheus Nunes Weber and Mariana Soares da Silva
Animals 2024, 14(1), 88; https://doi.org/10.3390/ani14010088 - 26 Dec 2023
Cited by 4 | Viewed by 2486
Abstract
Chiroptera are one of the most diverse mammal orders. They are considered reservoirs of main human pathogens, where coronaviruses (CoVs) and paramyxoviruses (PMVs) may be highlighted. Moreover, the growing number of publications on CoVs and PMVs in wildlife reinforces the scientific community’s interest [...] Read more.
Chiroptera are one of the most diverse mammal orders. They are considered reservoirs of main human pathogens, where coronaviruses (CoVs) and paramyxoviruses (PMVs) may be highlighted. Moreover, the growing number of publications on CoVs and PMVs in wildlife reinforces the scientific community’s interest in eco-vigilance, especially because of the emergence of important human pathogens such as the SARS-CoV-2 and Nipha viruses. Considering that Brazil presents continental dimensions, is biologically rich containing one of the most diverse continental biotas and presents a rich biodiversity of animals classified in the order Chiroptera, the mapping of CoV and PMV genetics related to human pathogens is important and the aim of the present work. CoVs can be classified into four genera: Alphacoronavirus, Betacoronavirus, Deltacoronavirus and Gammacoronavirus. Delta- and gammacoronaviruses infect mainly birds, while alpha- and betacoronaviruses contain important animal and human pathogens. Almost 60% of alpha- and betacoronaviruses are related to bats, which are considered natural hosts of these viral genera members. The studies on CoV presence in bats from Brazil have mainly assayed phyllostomid, molossid and vespertilionid bats in the South, Southeast and North territories. Despite Brazil not hosting rhinophilid or pteropodid bats, which are natural reservoirs of SARS-related CoVs and henipaviruses, respectively, CoVs and PMVs reported in Brazilian bats are genetically closely related to some human pathogens. Most works performed with Brazilian bats reported alpha-CoVs that were closely related to other bat-CoVs, despite a few reports of beta-CoVs grouped in the Merbecovirus and Embecovirus subgenera. The family Paramyxoviridae includes four subfamilies (Avulavirinae, Metaparamyxovirinae, Orthoparamyxovirinae and Rubulavirinae), and bats are significant drivers of PMV cross-species viral transmission. Additionally, the studies that have evaluated PMV presence in Brazilian bats have mainly found sequences classified in the Jeilongvirus and Morbillivirus genera that belong to the Orthoparamyxovirinae subfamily. Despite the increasing amount of research on Brazilian bats, studies analyzing these samples are still scarce. When surveying the representativeness of the CoVs and PMVs found and the available genomic sequences, it can be perceived that there may be gaps in the knowledge. The continuous monitoring of viral sequences that are closely related to human pathogens may be helpful in mapping and predicting future hotspots in the emergence of zoonotic agents. Full article
(This article belongs to the Special Issue Surveillance of Microbial and Parasitic Agents in Wildlife)
Show Figures

Figure 1

35 pages, 3673 KiB  
Review
Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19
by David E. Scheim, Paola Vottero, Alessandro D. Santin and Allen G. Hirsh
Int. J. Mol. Sci. 2023, 24(23), 17039; https://doi.org/10.3390/ijms242317039 - 1 Dec 2023
Cited by 12 | Viewed by 8868
Abstract
Consistent with well-established biochemical properties of coronaviruses, sialylated glycan attachments between SARS-CoV-2 spike protein (SP) and host cells are key to the virus’s pathology. SARS-CoV-2 SP attaches to and aggregates red blood cells (RBCs), as shown in many pre-clinical and clinical studies, causing [...] Read more.
Consistent with well-established biochemical properties of coronaviruses, sialylated glycan attachments between SARS-CoV-2 spike protein (SP) and host cells are key to the virus’s pathology. SARS-CoV-2 SP attaches to and aggregates red blood cells (RBCs), as shown in many pre-clinical and clinical studies, causing pulmonary and extrapulmonary microthrombi and hypoxia in severe COVID-19 patients. SARS-CoV-2 SP attachments to the heavily sialylated surfaces of platelets (which, like RBCs, have no ACE2) and endothelial cells (having minimal ACE2) compound this vascular damage. Notably, experimentally induced RBC aggregation in vivo causes the same key morbidities as for severe COVID-19, including microvascular occlusion, blood clots, hypoxia and myocarditis. Key risk factors for COVID-19 morbidity, including older age, diabetes and obesity, are all characterized by markedly increased propensity to RBC clumping. For mammalian species, the degree of clinical susceptibility to COVID-19 correlates to RBC aggregability with p = 0.033. Notably, of the five human betacoronaviruses, the two common cold strains express an enzyme that releases glycan attachments, while the deadly SARS, SARS-CoV-2 and MERS do not, although viral loads for COVID-19 and the two common cold infections are similar. These biochemical insights also explain the previously puzzling clinical efficacy of certain generics against COVID-19 and may support the development of future therapeutic strategies for COVID-19 and long COVID patients. Full article
(This article belongs to the Special Issue COVID-19 Coagulopathy: Advances on Pathophysiology and Therapies)
Show Figures

Graphical abstract

13 pages, 3573 KiB  
Article
HuCoPIA: An Atlas of Human vs. SARS-CoV-2 Interactome and the Comparative Analysis with Other Coronaviridae Family Viruses
by Naveen Duhan and Rakesh Kaundal
Viruses 2023, 15(2), 492; https://doi.org/10.3390/v15020492 - 10 Feb 2023
Cited by 1 | Viewed by 2563
Abstract
SARS-CoV-2, a novel betacoronavirus strain, has caused a pandemic that has claimed the lives of nearly 6.7M people worldwide. Vaccines and medicines are being developed around the world to reduce the disease spread, fatality rates, and control the new variants. Understanding the protein-protein [...] Read more.
SARS-CoV-2, a novel betacoronavirus strain, has caused a pandemic that has claimed the lives of nearly 6.7M people worldwide. Vaccines and medicines are being developed around the world to reduce the disease spread, fatality rates, and control the new variants. Understanding the protein-protein interaction mechanism of SARS-CoV-2 in humans, and their comparison with the previous SARS-CoV and MERS strains, is crucial for these efforts. These interactions might be used to assess vaccination effectiveness, diagnose exposure, and produce effective biotherapeutics. Here, we present the HuCoPIA database, which contains approximately 100,000 protein-protein interactions between humans and three strains (SARS-CoV-2, SARS-CoV, and MERS) of betacoronavirus. The interactions in the database are divided into common interactions between all three strains and those unique to each strain. It also contains relevant functional annotation information of human proteins. The HuCoPIA database contains SARS-CoV-2 (41,173), SARS-CoV (31,997), and MERS (26,862) interactions, with functional annotation of human proteins like subcellular localization, tissue-expression, KEGG pathways, and Gene ontology information. We believe HuCoPIA will serve as an invaluable resource to diverse experimental biologists, and will help to advance the research in better understanding the mechanism of betacoronaviruses. Full article
(This article belongs to the Section SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

19 pages, 4916 KiB  
Article
Coronaviruses Are Abundant and Genetically Diverse in West and Central African Bats, including Viruses Closely Related to Human Coronaviruses
by Dowbiss Meta Djomsi, Audrey Lacroix, Abdoul Karim Soumah, Eddy Kinganda Lusamaki, Asma Mesdour, Raisa Raulino, Amandine Esteban, Innocent Ndong Bass, Flaubert Auguste Mba Djonzo, Souana Goumou, Simon Pierre Ndimbo-Kimugu, Guy Lempu, Placide Mbala Kingebeni, Daniel Mukadi Bamuleka, Jacques Likofata, Jean-Jacques Muyembe Tamfum, Abdoulaye Toure, Eitel Mpoudi Ngole, Charles Kouanfack, Eric Delaporte, Alpha Kabinet Keita, Steve Ahuka-Mundeke, Ahidjo Ayouba and Martine Peetersadd Show full author list remove Hide full author list
Viruses 2023, 15(2), 337; https://doi.org/10.3390/v15020337 - 25 Jan 2023
Cited by 8 | Viewed by 3456
Abstract
Bats are at the origin of human coronaviruses, either directly or via an intermediate host. We tested swabs from 4597 bats (897 from the Democratic Republic of Congo (DRC), 2191 from Cameroon and 1509 from Guinea) with a broadly reactive PCR in the [...] Read more.
Bats are at the origin of human coronaviruses, either directly or via an intermediate host. We tested swabs from 4597 bats (897 from the Democratic Republic of Congo (DRC), 2191 from Cameroon and 1509 from Guinea) with a broadly reactive PCR in the RdRp region. Coronaviruses were detected in 903 (19.6%) bats and in all species, with more than 25 individuals tested. The highest prevalence was observed in Eidolon helvum (239/733; 39.9%) and Rhinolophus sp. (306/899; 34.1%), followed by Hipposideros sp. (61/291; 20.9%). Frugivorous bats were predominantly infected with beta coronaviruses from the Nobecovirus subgenus (93.8%), in which at least 6 species/genus-specific subclades were observed. In contrast, insectivorous bats were infected with beta-coronaviruses from different subgenera (Nobecovirus (8.5%), Hibecovirus (32.8%), Merbecovirus (0.5%) and Sarbecovirus (57.6%)) and with a high diversity of alpha-coronaviruses. Overall, our study shows a high prevalence and genetic diversity of coronaviruses in bats and illustrates that Rhinolophus bats in Africa are infected at high levels with the Sarbecovirus subgenus, to which SARS-CoV-2 belongs. It is important to characterize in more detail the different coronavirus lineages from bats for their potential to infect human cells, their evolution and to study frequency and modes of contact between humans and bats in Africa. Full article
(This article belongs to the Collection Coronaviruses)
Show Figures

Figure 1

34 pages, 1483 KiB  
Review
Recombinant Protein Vaccines against Human Betacoronaviruses: Strategies, Approaches and Progress
by Angelina Kovalenko, Ekaterina Ryabchevskaya, Ekaterina Evtushenko, Nikolai Nikitin and Olga Karpova
Int. J. Mol. Sci. 2023, 24(2), 1701; https://doi.org/10.3390/ijms24021701 - 15 Jan 2023
Cited by 12 | Viewed by 5317
Abstract
Betacoronaviruses have already troubled humanity more than once. In 2002–2003 and 2012, the SARS-CoV and MERS-CoV, respectively, caused outbreaks of respiratory syndromes with a fatal outcome. The spread of the SARS-CoV-2 coronavirus has become a pandemic. These three coronaviruses belong to the genus [...] Read more.
Betacoronaviruses have already troubled humanity more than once. In 2002–2003 and 2012, the SARS-CoV and MERS-CoV, respectively, caused outbreaks of respiratory syndromes with a fatal outcome. The spread of the SARS-CoV-2 coronavirus has become a pandemic. These three coronaviruses belong to the genus Betacoronavirus and have a zoonotic origin. The emergence of new coronavirus infections in the future cannot be ruled out, and vaccination is the main way to prevent the spread of the infection. Previous experience in the development of vaccines against SARS and MERS has helped to develop a number of vaccines against SARS-CoV-2 in a fairly short time. Among them, there are quite a few recombinant protein vaccines, which seem to be very promising in terms of safety, minimization of side effects, storage and transportation conditions. The problem of developing a universal betacoronavirus vaccine is also still relevant. Here, we summarize the information on the designing of vaccines based on recombinant proteins against highly pathogenic human betacoronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2. Full article
(This article belongs to the Special Issue Protein Engineering: The Present and the Future 2.0)
Show Figures

Figure 1

13 pages, 544 KiB  
Article
Variability in the Clinical Course of COVID-19 in a Retrospective Analysis of a Large Real-World Database
by Robert Flisiak, Piotr Rzymski, Dorota Zarębska-Michaluk, Przemysław Ciechanowski, Krystyna Dobrowolska, Magdalena Rogalska, Jerzy Jaroszewicz, Anna Szymanek-Pasternak, Marta Rorat, Dorota Kozielewicz, Justyna Kowalska, Ewa Dutkiewicz, Katarzyna Sikorska and Anna Moniuszko-Malinowska
Viruses 2023, 15(1), 149; https://doi.org/10.3390/v15010149 - 3 Jan 2023
Cited by 37 | Viewed by 4426
Abstract
The COVID-19 pandemic proceeds in waves, with variable characteristics of the clinical picture resulting from the evolution of the SARS-CoV-2 virus. This study aimed to compare the epidemiological characteristics, symptomatology, and outcomes of the disease in patients hospitalized for COVID-19 during periods of [...] Read more.
The COVID-19 pandemic proceeds in waves, with variable characteristics of the clinical picture resulting from the evolution of the SARS-CoV-2 virus. This study aimed to compare the epidemiological characteristics, symptomatology, and outcomes of the disease in patients hospitalized for COVID-19 during periods of different variants dominance. Comparing the periods of dominance of variants preceding the Delta variant, the Delta period was characterized by a higher share of hospitalized females, less frequent comorbidities among patients, and a different age distribution. The lowest need for oxygen therapy and mechanical ventilation was observed under Omicron dominance. The triad of classic COVID-19 symptoms, cough, fever, dyspnoea, and fatigue, were most prevalent during the Delta period, and significantly less common under the Omicron dominance. During the Omicron period, nearly twice as many patients as in the previous periods could be discharged from the hospital within 7 days; the overall 28-day mortality was significantly lower compared to that of the Delta period. It also did not differ between periods that were dominated by the BA.1 and BA.2 subvariants. The study indicates that the Omicron SARS-CoV-2 variant that dominated between January and June 2022 caused a disease which resembled the common cold, and was caused by seasonal alpha and beta-coronaviruses with a low pathogenicity for humans. However, one should note that this effect may not only have been related to biological features of the Omicron lineage, but may additionally have been driven by the increased levels of immunization through natural infections and vaccinations, for which we could not account for due to a lack of sufficient data. Full article
(This article belongs to the Collection SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

Back to TopTop