Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (297)

Search Parameters:
Keywords = human–environment feedback

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1470 KiB  
Article
An NMPC-ECBF Framework for Dynamic Motion Planning and Execution in Vision-Based Human–Robot Collaboration
by Dianhao Zhang, Mien Van, Pantelis Sopasakis and Seán McLoone
Machines 2025, 13(8), 672; https://doi.org/10.3390/machines13080672 (registering DOI) - 1 Aug 2025
Abstract
To enable safe and effective human–robot collaboration (HRC) in smart manufacturing, it is critical to seamlessly integrate sensing, cognition, and prediction into the robot controller for real-time awareness, response, and communication inside a heterogeneous environment (robots, humans, and equipment). The proposed approach takes [...] Read more.
To enable safe and effective human–robot collaboration (HRC) in smart manufacturing, it is critical to seamlessly integrate sensing, cognition, and prediction into the robot controller for real-time awareness, response, and communication inside a heterogeneous environment (robots, humans, and equipment). The proposed approach takes advantage of the prediction capabilities of nonlinear model predictive control (NMPC) to execute safe path planning based on feedback from a vision system. To satisfy the requirements of real-time path planning, an embedded solver based on a penalty method is applied. However, due to tight sampling times, NMPC solutions are approximate; therefore, the safety of the system cannot be guaranteed. To address this, we formulate a novel safety-critical paradigm that uses an exponential control barrier function (ECBF) as a safety filter. Several common human–robot assembly subtasks have been integrated into a real-life HRC assembly task to validate the performance of the proposed controller and to investigate whether integrating human pose prediction can help with safe and efficient collaboration. The robot uses OptiTrack cameras for perception and dynamically generates collision-free trajectories to the predicted target interactive position. Results for a number of different configurations confirm the efficiency of the proposed motion planning and execution framework, with a 23.2% reduction in execution time achieved for the HRC task compared to an implementation without human motion prediction. Full article
(This article belongs to the Special Issue Visual Measurement and Intelligent Robotic Manufacturing)
Show Figures

Figure 1

15 pages, 10795 KiB  
Article
DigiHortiRobot: An AI-Driven Digital Twin Architecture for Hydroponic Greenhouse Horticulture with Dual-Arm Robotic Automation
by Roemi Fernández, Eduardo Navas, Daniel Rodríguez-Nieto, Alain Antonio Rodríguez-González and Luis Emmi
Future Internet 2025, 17(8), 347; https://doi.org/10.3390/fi17080347 (registering DOI) - 31 Jul 2025
Viewed by 40
Abstract
The integration of digital twin technology with robotic automation holds significant promise for advancing sustainable horticulture in controlled environment agriculture. This article presents DigiHortiRobot, a novel AI-driven digital twin architecture tailored for hydroponic greenhouse systems. The proposed framework integrates real-time sensing, predictive modeling, [...] Read more.
The integration of digital twin technology with robotic automation holds significant promise for advancing sustainable horticulture in controlled environment agriculture. This article presents DigiHortiRobot, a novel AI-driven digital twin architecture tailored for hydroponic greenhouse systems. The proposed framework integrates real-time sensing, predictive modeling, task planning, and dual-arm robotic execution within a modular, IoT-enabled infrastructure. DigiHortiRobot is structured into three progressive implementation phases: (i) monitoring and data acquisition through a multimodal perception system; (ii) decision support and virtual simulation for scenario analysis and intervention planning; and (iii) autonomous execution with feedback-based model refinement. The Physical Layer encompasses crops, infrastructure, and a mobile dual-arm robot; the virtual layer incorporates semantic modeling and simulation environments; and the synchronization layer enables continuous bi-directional communication via a nine-tier IoT architecture inspired by FIWARE standards. A robot task assignment algorithm is introduced to support operational autonomy while maintaining human oversight. The system is designed to optimize horticultural workflows such as seeding and harvesting while allowing farmers to interact remotely through cloud-based interfaces. Compared to previous digital agriculture approaches, DigiHortiRobot enables closed-loop coordination among perception, simulation, and action, supporting real-time task adaptation in dynamic environments. Experimental validation in a hydroponic greenhouse confirmed robust performance in both seeding and harvesting operations, achieving over 90% accuracy in localizing target elements and successfully executing planned tasks. The platform thus provides a strong foundation for future research in predictive control, semantic environment modeling, and scalable deployment of autonomous systems for high-value crop production. Full article
(This article belongs to the Special Issue Advances in Smart Environments and Digital Twin Technologies)
Show Figures

Figure 1

37 pages, 1895 KiB  
Review
A Review of Artificial Intelligence and Deep Learning Approaches for Resource Management in Smart Buildings
by Bibars Amangeldy, Timur Imankulov, Nurdaulet Tasmurzayev, Gulmira Dikhanbayeva and Yedil Nurakhov
Buildings 2025, 15(15), 2631; https://doi.org/10.3390/buildings15152631 - 25 Jul 2025
Viewed by 455
Abstract
This comprehensive review maps the fast-evolving landscape in which artificial intelligence (AI) and deep-learning (DL) techniques converge with the Internet of Things (IoT) to manage energy, comfort, and sustainability across smart environments. A PRISMA-guided search of four databases retrieved 1358 records; after applying [...] Read more.
This comprehensive review maps the fast-evolving landscape in which artificial intelligence (AI) and deep-learning (DL) techniques converge with the Internet of Things (IoT) to manage energy, comfort, and sustainability across smart environments. A PRISMA-guided search of four databases retrieved 1358 records; after applying inclusion criteria, 143 peer-reviewed studies published between January 2019 and April 2025 were analyzed. This review shows that AI-driven controllers—especially deep-reinforcement-learning agents—deliver median energy savings of 18–35% for HVAC and other major loads, consistently outperforming rule-based and model-predictive baselines. The evidence further reveals a rapid diversification of methods: graph-neural-network models now capture spatial interdependencies in dense sensor grids, federated-learning pilots address data-privacy constraints, and early integrations of large language models hint at natural-language analytics and control interfaces for heterogeneous IoT devices. Yet large-scale deployment remains hindered by fragmented and proprietary datasets, unresolved privacy and cybersecurity risks associated with continuous IoT telemetry, the growing carbon and compute footprints of ever-larger models, and poor interoperability among legacy equipment and modern edge nodes. The authors of researches therefore converges on several priorities: open, high-fidelity benchmarks that marry multivariate IoT sensor data with standardized metadata and occupant feedback; energy-aware, edge-optimized architectures that lower latency and power draw; privacy-centric learning frameworks that satisfy tightening regulations; hybrid physics-informed and explainable models that shorten commissioning time; and digital-twin platforms enriched by language-model reasoning to translate raw telemetry into actionable insights for facility managers and end users. Addressing these gaps will be pivotal to transforming isolated pilots into ubiquitous, trustworthy, and human-centered IoT ecosystems capable of delivering measurable gains in efficiency, resilience, and occupant wellbeing at scale. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

21 pages, 2941 KiB  
Article
Dynamic Proxemic Model for Human–Robot Interactions Using the Golden Ratio
by Tomáš Spurný, Ján Babjak, Zdenko Bobovský and Aleš Vysocký
Appl. Sci. 2025, 15(15), 8130; https://doi.org/10.3390/app15158130 - 22 Jul 2025
Viewed by 227
Abstract
This paper presents a novel approach to determine dynamic safety and comfort zones in human–robot interactions (HRIs), with a focus on service robots operating in dynamic environments with people. The proposed proxemic model leverages the golden ratio-based comfort zone distribution and ISO safety [...] Read more.
This paper presents a novel approach to determine dynamic safety and comfort zones in human–robot interactions (HRIs), with a focus on service robots operating in dynamic environments with people. The proposed proxemic model leverages the golden ratio-based comfort zone distribution and ISO safety standards to define adaptive proxemic boundaries for robots around humans. Unlike traditional fixed-threshold approaches, this novel method proposes a gradual and context-sensitive modulation of robot behaviour based on human position, orientation, and relative velocity. The system was implemented on an NVIDIA Jetson Xavier NX platform using a ZED 2i stereo depth camera Stereolabs, New York, USA and tested on two mobile robotic platforms: Go1 Unitree, Hangzhou, China (quadruped) and Scout Mini Agilex, Dongguan, China (wheeled). The initial verification of proposed proxemic model through experimental comfort validation was conducted using two simple interaction scenarios, and subjective feedback was collected from participants using a modified Godspeed Questionnaire Series. The results show that the participants felt comfortable during the experiments with robots. This acceptance of the proposed methodology plays an initial role in supporting further research of the methodology. The proposed solution also facilitates integration into existing navigation frameworks and opens pathways towards socially aware robotic systems. Full article
(This article belongs to the Special Issue Intelligent Robotics: Design and Applications)
Show Figures

Figure 1

36 pages, 6020 KiB  
Article
“It Felt Like Solving a Mystery Together”: Exploring Virtual Reality Card-Based Interaction and Story Co-Creation Collaborative System Design
by Yaojiong Yu, Mike Phillips and Gianni Corino
Appl. Sci. 2025, 15(14), 8046; https://doi.org/10.3390/app15148046 - 19 Jul 2025
Viewed by 332
Abstract
Virtual reality interaction design and story co-creation design for multiple users is an interdisciplinary research field that merges human–computer interaction, creative design, and virtual reality technologies. Story co-creation design enables multiple users to collectively generate and share narratives, allowing them to contribute to [...] Read more.
Virtual reality interaction design and story co-creation design for multiple users is an interdisciplinary research field that merges human–computer interaction, creative design, and virtual reality technologies. Story co-creation design enables multiple users to collectively generate and share narratives, allowing them to contribute to the storyline, modify plot trajectories, and craft characters, thereby facilitating a dynamic storytelling experience. Through advanced virtual reality interaction design, collaboration and social engagement can be further enriched to encourage active participation. This study investigates the facilitation of narrative creation and enhancement of storytelling skills in virtual reality by leveraging existing research on story co-creation design and virtual reality technology. Subsequently, we developed and evaluated the virtual reality card-based collaborative storytelling platform Co-Relay. By analyzing interaction data and user feedback obtained from user testing and experimental trials, we observed substantial enhancements in user engagement, immersion, creativity, and fulfillment of emotional and social needs compared to a conventional web-based storytelling platform. The primary contribution of this study lies in demonstrating how the incorporation of story co-creation can elevate storytelling proficiency, plot development, and social interaction within the virtual reality environment. Our novel methodology offers a fresh outlook on the design of collaborative narrative creation in virtual reality, particularly by integrating participatory multi-user storytelling platforms that blur the traditional boundaries between creators and audiences, as well as between fiction and reality. Full article
(This article belongs to the Special Issue Extended Reality (XR) and User Experience (UX) Technologies)
Show Figures

Figure 1

37 pages, 618 KiB  
Systematic Review
Interaction, Artificial Intelligence, and Motivation in Children’s Speech Learning and Rehabilitation Through Digital Games: A Systematic Literature Review
by Chra Abdoulqadir and Fernando Loizides
Information 2025, 16(7), 599; https://doi.org/10.3390/info16070599 - 12 Jul 2025
Viewed by 480
Abstract
The integration of digital serious games into speech learning (rehabilitation) has demonstrated significant potential in enhancing accessibility and inclusivity for children with speech disabilities. This review of the state of the art examines the role of serious games, Artificial Intelligence (AI), and Natural [...] Read more.
The integration of digital serious games into speech learning (rehabilitation) has demonstrated significant potential in enhancing accessibility and inclusivity for children with speech disabilities. This review of the state of the art examines the role of serious games, Artificial Intelligence (AI), and Natural Language Processing (NLP) in speech rehabilitation, with a particular focus on interaction modalities, engagement autonomy, and motivation. We have reviewed 45 selected studies. Our key findings show how intelligent tutoring systems, adaptive voice-based interfaces, and gamified speech interventions can empower children to engage in self-directed speech learning, reducing dependence on therapists and caregivers. The diversity of interaction modalities, including speech recognition, phoneme-based exercises, and multimodal feedback, demonstrates how AI and Assistive Technology (AT) can personalise learning experiences to accommodate diverse needs. Furthermore, the incorporation of gamification strategies, such as reward systems and adaptive difficulty levels, has been shown to enhance children’s motivation and long-term participation in speech rehabilitation. The gaps identified show that despite advancements, challenges remain in achieving universal accessibility, particularly regarding speech recognition accuracy, multilingual support, and accessibility for users with multiple disabilities. This review advocates for interdisciplinary collaboration across educational technology, special education, cognitive science, and human–computer interaction (HCI). Our work contributes to the ongoing discourse on lifelong inclusive education, reinforcing the potential of AI-driven serious games as transformative tools for bridging learning gaps and promoting speech rehabilitation beyond clinical environments. Full article
Show Figures

Graphical abstract

40 pages, 2250 KiB  
Review
Comprehensive Comparative Analysis of Lower Limb Exoskeleton Research: Control, Design, and Application
by Sk Hasan and Nafizul Alam
Actuators 2025, 14(7), 342; https://doi.org/10.3390/act14070342 - 9 Jul 2025
Viewed by 565
Abstract
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric [...] Read more.
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric use, and industrial support. Applications range from sit-to-stand transitions and post-stroke therapy to balance support and real-world navigation. Control approaches vary from traditional impedance and fuzzy logic models to advanced data-driven frameworks, including reinforcement learning, recurrent neural networks, and digital twin-based optimization. These controllers support personalized and adaptive interaction, enabling real-time intent recognition, torque modulation, and gait phase synchronization across different users and tasks. Hardware platforms include powered multi-degree-of-freedom exoskeletons, passive assistive devices, compliant joint systems, and pediatric-specific configurations. Innovations in actuator design, modular architecture, and lightweight materials support increased usability and energy efficiency. Sensor systems integrate EMG, EEG, IMU, vision, and force feedback, supporting multimodal perception for motion prediction, terrain classification, and user monitoring. Human–robot interaction strategies emphasize safe, intuitive, and cooperative engagement. Controllers are increasingly user-specific, leveraging biosignals and gait metrics to tailor assistance. Evaluation methodologies include simulation, phantom testing, and human–subject trials across clinical and real-world environments, with performance measured through joint tracking accuracy, stability indices, and functional mobility scores. Overall, the review highlights the field’s evolution toward intelligent, adaptable, and user-centered systems, offering promising solutions for rehabilitation, mobility enhancement, and assistive autonomy in diverse populations. Following a detailed review of current developments, strategic recommendations are made to enhance and evolve existing exoskeleton technologies. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

25 pages, 2618 KiB  
Review
International Trends and Influencing Factors in the Integration of Artificial Intelligence in Education with the Application of Qualitative Methods
by Juan Luis Cabanillas-García
Informatics 2025, 12(3), 61; https://doi.org/10.3390/informatics12030061 - 4 Jul 2025
Viewed by 559
Abstract
This study offers a comprehensive examination of the scientific output related to the integration of Artificial Intelligence (AI) in education using qualitative research methods, which is an emerging intersection that reflects growing interest in understanding the pedagogical, ethical, and methodological implications of AI [...] Read more.
This study offers a comprehensive examination of the scientific output related to the integration of Artificial Intelligence (AI) in education using qualitative research methods, which is an emerging intersection that reflects growing interest in understanding the pedagogical, ethical, and methodological implications of AI in educational contexts. Grounded in a theoretical framework that emphasizes the potential of AI to support personalized learning, augment instructional design, and facilitate data-driven decision-making, this study conducts a Systematic Literature Review and bibliometric analysis of 630 publications indexed in Scopus between 2014 and 2024. The results show a significant increase in scholarly output, particularly since 2020, with notable contributions from authors and institutions in the United States, China, and the United Kingdom. High-impact research is found in top-tier journals, and dominant themes include health education, higher education, and the use of AI for feedback and assessment. The findings also highlight the role of semi-structured interviews, thematic analysis, and interdisciplinary approaches in capturing the nuanced impacts of AI integration. The study concludes that qualitative methods remain essential for critically evaluating AI’s role in education, reinforcing the need for ethically sound, human-centered, and context-sensitive applications of AI technologies in diverse learning environments. Full article
(This article belongs to the Section Social Informatics and Digital Humanities)
Show Figures

Figure 1

14 pages, 311 KiB  
Proceeding Paper
Enterprise-Wide Data Integration for Smart Maintenance: A Scalable Architecture for Predictive Maintenance Applications at Toyota Manufacturing
by Soufiane Douimia, Abdelghani Bekrar, Yassin El Hilali and Abdessamad Ait El Cadi
Eng. Proc. 2025, 97(1), 46; https://doi.org/10.3390/engproc2025097046 - 2 Jul 2025
Viewed by 323
Abstract
Manufacturing enterprises implementing Industry 4.0 technologies face significant challenges in integrating heterogeneous maintenance data sources and deploying AI solutions effectively. While various AI methods exist for predictive maintenance, the fundamental challenge lies in creating a cohesive architecture that enables seamless data flow and [...] Read more.
Manufacturing enterprises implementing Industry 4.0 technologies face significant challenges in integrating heterogeneous maintenance data sources and deploying AI solutions effectively. While various AI methods exist for predictive maintenance, the fundamental challenge lies in creating a cohesive architecture that enables seamless data flow and AI deployment. This paper presents a standardized architecture framework with initial implementation steps at Toyota Motor Manufacturing France. The proposed architecture introduces a four-layer approach: (1) a unified data acquisition layer integrating IoT sensors, CMMS, and legacy systems through standardized interfaces (OPC UA/MQTT), (2) a data quality and standardization layer ensuring consistent formats and automated validation, (3) a modular AI deployment layer supporting anomaly detection (Wavelet-based analysis and Deep Learning) and remaining useful life prediction (LSTM networks), and (4) a maintenance workflow integration layer with bi-directional feedback. Key innovations include a unified maintenance data model, configurable data quality pipelines, and human-in-the-loop decision support. A conceptual validation suggests this architecture can improve integration efficiency and reduce equipment downtime. This research contributes to smart maintenance by providing a scalable architecture that balances interoperability, data quality, and practical deployment in brownfield environments. Full article
Show Figures

Figure 1

29 pages, 1363 KiB  
Article
Comparing ChatGPT Feedback and Peer Feedback in Shaping Students’ Evaluative Judgement of Statistical Analysis: A Case Study
by Xiao Xie, Lawrence Jun Zhang and Aaron J. Wilson
Behav. Sci. 2025, 15(7), 884; https://doi.org/10.3390/bs15070884 - 28 Jun 2025
Cited by 1 | Viewed by 1934
Abstract
Higher Degree by Research (HDR) students in language and education disciplines, particularly those enrolled in thesis-only programmes, are increasingly expected to interpret complex statistical data. However, many lack the analytical skills required for independent statistical analysis, posing challenges to their research competence. This [...] Read more.
Higher Degree by Research (HDR) students in language and education disciplines, particularly those enrolled in thesis-only programmes, are increasingly expected to interpret complex statistical data. However, many lack the analytical skills required for independent statistical analysis, posing challenges to their research competence. This study investigated the pedagogical potential of ChatGPT-4o feedback and peer feedback in supporting students’ evaluative judgement during a 14-week doctoral-level statistical analysis course at a research-intensive university. Thirty-two doctoral students were assigned to receive either ChatGPT feedback or peer feedback on a mid-term assignment. They were then required to complete written reflections. Follow-up interviews with six selected participants revealed that each feedback modality influenced their evaluative judgement differently across three dimensions: hard (accuracy-based), soft (value-based), and dynamic (process-based). While ChatGPT provided timely and detailed guidance, it offered limited support for students’ confidence in verifying accuracy. Peer feedback promoted critical reflection and collaboration but varied in quality. We therefore argue that strategically combining ChatGPT feedback and peer feedback may better support novice researchers in developing statistical competence in hybrid human–AI learning environments. Full article
Show Figures

Figure 1

24 pages, 7080 KiB  
Review
Responsible Resilience in Cyber–Physical–Social Systems: A New Paradigm for Emergent Cyber Risk Modeling
by Theresa Sobb, Nour Moustafa and Benjamin Turnbull
Future Internet 2025, 17(7), 282; https://doi.org/10.3390/fi17070282 - 25 Jun 2025
Cited by 1 | Viewed by 327
Abstract
As cyber systems increasingly converge with physical infrastructure and social processes, they give rise to Complex Cyber–Physical–Social Systems (C-CPSS), whose emergent behaviors pose unique risks to security and mission assurance. Traditional cyber–physical system models often fail to address the unpredictability arising from human [...] Read more.
As cyber systems increasingly converge with physical infrastructure and social processes, they give rise to Complex Cyber–Physical–Social Systems (C-CPSS), whose emergent behaviors pose unique risks to security and mission assurance. Traditional cyber–physical system models often fail to address the unpredictability arising from human and organizational dynamics, leaving critical gaps in how cyber risks are assessed and managed across interconnected domains. The challenge lies in building resilient systems that not only resist disruption, but also absorb, recover, and adapt—especially in the face of complex, nonlinear, and often unintentionally emergent threats. This paper introduces the concept of ‘responsible resilience’, defined as the capacity of systems to adapt to cyber risks using trustworthy, transparent agent-based models that operate within socio-technical contexts. We identify a fundamental research gap in the treatment of social complexity and emergence in existing the cyber–physical system literature. To address this, we propose the E3R modeling paradigm—a novel framework for conceptualizing Emergent, Risk-Relevant Resilience in C-CPSS. This paradigm synthesizes human-in-the-loop diagrams, agent-based Artificial Intelligence simulations, and ontology-driven representations to model the interdependencies and feedback loops driving unpredictable cyber risk propagation more effectively. Compared to conventional cyber–physical system models, E3R accounts for adaptive risks across social, cyber, and physical layers, enabling a more accurate and ethically grounded foundation for cyber defence and mission assurance. Our analysis of the literature review reveals the underrepresentation of socio-emergent risk modeling in the literature, and our results indicate that existing models—especially those in industrial and healthcare applications of cyber–physical systems—lack the generalizability and robustness necessary for complex, cross-domain environments. The E3R framework thus marks a significant step forward in understanding and mitigating emergent threats in future digital ecosystems. Full article
(This article belongs to the Special Issue Internet of Things and Cyber-Physical Systems, 3rd Edition)
Show Figures

Figure 1

27 pages, 3053 KiB  
Article
A Coupled Model of System Dynamics and Environmental Models for the Development Process Deduction of the Yangtze River Basin: Model Construction Method
by Chong Li, Tao Yu, Ning Jia, Pei Yang and Qing Xia
Water 2025, 17(13), 1874; https://doi.org/10.3390/w17131874 - 24 Jun 2025
Viewed by 810
Abstract
The Yangtze River Basin, the largest river basin in China, faces complex challenges in population, economy and water issues. This study builds a Systemic Deduction Model of the Development of Yangtze River Basin (SDMY), which is based on system dynamics coupled with the [...] Read more.
The Yangtze River Basin, the largest river basin in China, faces complex challenges in population, economy and water issues. This study builds a Systemic Deduction Model of the Development of Yangtze River Basin (SDMY), which is based on system dynamics coupled with the water environmental model. It generalizes the Yangtze River Basin into five subsystems at the province level as well as two subsystems at the river basin level, quantifying the interaction and feedback relationships within and among each subsystem through functions. SDMY has passed the feasibility verification and the sensitivity analysis. The application results from 2000 to 2100 of SDMY show the positive development trend of gross domestic product (GDP), grain production, energy consumption, and forest coverage, as well as the significant risk of population decline. The water pollutants chemical oxygen demand (COD) and total phosphorus (TP), the water security level, and the river longitudinal connectivity of the Yangtze River Basin show reasonable and meaningful development trends, as the results indicate. This paper proves that SDMY could be a quantitative simulation tool for analyzing the long-term mutual feedback and evolution of the human–water relationship and society–economy–environment system in a large river basin. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

17 pages, 2412 KiB  
Article
A Gamified AI-Driven System for Depression Monitoring and Management
by Sanaz Zamani, Adnan Rostami, Minh Nguyen, Roopak Sinha and Samaneh Madanian
Appl. Sci. 2025, 15(13), 7088; https://doi.org/10.3390/app15137088 - 24 Jun 2025
Viewed by 565
Abstract
Depression affects millions of people worldwide and remains a significant challenge in mental health care. Despite advances in pharmacological and psychotherapeutic treatments, there is a critical need for accessible and engaging tools that help individuals manage their mental health in real time. This [...] Read more.
Depression affects millions of people worldwide and remains a significant challenge in mental health care. Despite advances in pharmacological and psychotherapeutic treatments, there is a critical need for accessible and engaging tools that help individuals manage their mental health in real time. This paper presents a novel gamified, AI-driven system embedded within Internet of Things (IoT)-enabled environments to address this gap. The proposed platform combines micro-games, adaptive surveys, sensor data, and AI analytics to support personalized and context-aware depression monitoring and self-regulation. Unlike traditional static models, this system continuously tracks behavioral, cognitive, and environmental patterns. This data is then used to deliver timely, tailored interventions. One of its key strengths is a research-ready design that enables real-time simulation, algorithm testing, and hypothesis exploration without relying on large-scale human trials. This makes it easier to study cognitive and emotional trends and improve AI models efficiently. The system is grounded in metacognitive principles. It promotes user engagement and self-awareness through interactive feedback and reflection. Gamification improves the user experience without compromising clinical relevance. We present a unified framework, robust evaluation methods, and insights into scalable mental health solutions. Combining AI, IoT, and gamification, this platform offers a promising new approach for smart, responsive, and data-driven mental health support in modern living environments. Full article
(This article belongs to the Special Issue Advanced IoT/ICT Technologies in Smart Systems)
Show Figures

Figure 1

28 pages, 1791 KiB  
Article
Speech Recognition-Based Wireless Control System for Mobile Robotics: Design, Implementation, and Analysis
by Sandeep Gupta, Udit Mamodiya and Ahmed J. A. Al-Gburi
Automation 2025, 6(3), 25; https://doi.org/10.3390/automation6030025 - 24 Jun 2025
Viewed by 921
Abstract
This paper describes an innovative wireless mobile robotics control system based on speech recognition, where the ESP32 microcontroller is used to control motors, facilitate Bluetooth communication, and deploy an Android application for the real-time speech recognition logic. With speech processed on the Android [...] Read more.
This paper describes an innovative wireless mobile robotics control system based on speech recognition, where the ESP32 microcontroller is used to control motors, facilitate Bluetooth communication, and deploy an Android application for the real-time speech recognition logic. With speech processed on the Android device and motor commands handled on the ESP32, the study achieves significant performance gains through distributed architectures while maintaining low latency for feedback control. In experimental tests over a range of 1–10 m, stable 110–140 ms command latencies, with low variation (±15 ms) were observed. The system’s voice and manual button modes both yield over 92% accuracy with the aid of natural language processing, resulting in training requirements being low, and displaying strong performance in high-noise environments. The novelty of this work is evident through an adaptive keyword spotting algorithm for improved recognition performance in high-noise environments and a gradual latency management system that optimizes processing parameters in the presence of noise. By providing a user-friendly, real-time speech interface, this work serves to enhance human–robot interaction when considering future assistive devices, educational platforms, and advanced automated navigation research. Full article
(This article belongs to the Section Robotics and Autonomous Systems)
Show Figures

Figure 1

26 pages, 11510 KiB  
Article
Beyond Color: Phenomic and Physiological Tomato Harvest Maturity Assessment in an NFT Hydroponic Growing System
by Dugan Um, Chandana Koram, Prasad Nethala, Prashant Reddy Kasu, Shawana Tabassum, A. K. M. Sarwar Inam and Elvis D. Sangmen
Agronomy 2025, 15(7), 1524; https://doi.org/10.3390/agronomy15071524 - 23 Jun 2025
Viewed by 513
Abstract
Current tomato harvesters rely primarily on external color as the sole indicator of ripeness. However, this approach often results in premature harvesting, leading to insufficient lycopene accumulation and a suboptimal nutritional content for human consumption. Such limitations are especially critical in controlled-environment agriculture [...] Read more.
Current tomato harvesters rely primarily on external color as the sole indicator of ripeness. However, this approach often results in premature harvesting, leading to insufficient lycopene accumulation and a suboptimal nutritional content for human consumption. Such limitations are especially critical in controlled-environment agriculture (CEA) systems, where maximizing fruit quality and nutrient density is essential for both the yield and consumer health. To address that challenge, this study introduces a novel, multimodal harvest readiness framework tailored to nutrient film technology (NFT)-based smart farms. The proposed approach integrates plant-level stress diagnostics and fruit-level phenotyping using wearable biosensors, AI-assisted computer vision, and non-invasive physiological sensing. Key physiological markers—including the volatile organic compound (VOC) methanol, phytohormones salicylic acid (SA) and indole-3-acetic acid (IAA), and nutrients nitrate and ammonium concentrations—are combined with phenomic traits such as fruit color (a*), size, chlorophyll index (rGb), and water status. The innovation lies in a four-stage decision-making pipeline that filters physiologically stressed plants before selecting ripened fruits based on internal and external quality indicators. Experimental validation across four plant conditions (control, water-stressed, light-stressed, and wounded) demonstrated the efficacy of VOC and hormone sensors in identifying optimal harvest candidates. Additionally, the integration of low-cost electrochemical ion sensors provides scalable nutrient monitoring within NFT systems. This research delivers a robust, sensor-driven framework for autonomous, data-informed harvesting decisions in smart indoor agriculture. By fusing real-time physiological feedback with AI-enhanced phenotyping, the system advances precision harvest timing, improves fruit nutritional quality, and sets the foundation for resilient, feedback-controlled farming platforms suited to meeting global food security and sustainability demands. Full article
(This article belongs to the Collection AI, Sensors and Robotics for Smart Agriculture)
Show Figures

Figure 1

Back to TopTop