Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = hub height variation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 14650 KiB  
Article
Monitoring Leaf Rust and Yellow Rust in Wheat with 3D LiDAR Sensing
by Jaime Nolasco Rodríguez-Vázquez, Orly Enrique Apolo-Apolo, Fernando Martínez-Moreno, Luis Sánchez-Fernández and Manuel Pérez-Ruiz
Remote Sens. 2025, 17(6), 1005; https://doi.org/10.3390/rs17061005 - 13 Mar 2025
Viewed by 795
Abstract
Leaf rust and yellow rust are globally significant fungal diseases that severely impact wheat production, causing yield losses of up to 60% in highly susceptible cultivars. Early and accurate detection is crucial for integrating precision crop protection strategies to mitigate these losses. This [...] Read more.
Leaf rust and yellow rust are globally significant fungal diseases that severely impact wheat production, causing yield losses of up to 60% in highly susceptible cultivars. Early and accurate detection is crucial for integrating precision crop protection strategies to mitigate these losses. This study investigates the potential of 3D LiDAR technology for monitoring rust-induced physiological changes in wheat by analyzing variations in plant height, biomass, and light reflectance intensity. Results showed that grain yield decreased by 10–50% depending on cultivar susceptibility, with the durum wheat cultivar ‘Kiko Nick’ and bread wheat ‘Califa’ exhibiting the most severe reductions (~50–60%). While plant height and biomass remained relatively unaffected, LiDAR-derived intensity values strongly correlated with disease severity (R2 = 0.62–0.81, depending on the cultivar and infection stage). These findings demonstrate that LiDAR can serve as a non-destructive, high-throughput tool for early rust detection and biomass estimation, highlighting its potential for integration into precision agriculture workflows to enhance disease monitoring and improve wheat yield forecasting. To promote transparency and reproducibility, the dataset used in this study is openly available on Zenodo, and all processing code is accessible via GitHub, cited at the end of this manuscript. Full article
(This article belongs to the Special Issue Advancements in Remote Sensing for Sustainable Agriculture)
Show Figures

Figure 1

31 pages, 60968 KiB  
Article
Unveiling Salt Tolerance Mechanisms and Hub Genes in Alfalfa (Medicago sativa L.) Through Transcriptomic and WGCNA Analysis
by Fengdan Wang, Hanfu Wu, Mei Yang, Wen Xu, Wenjie Zhao, Rui Qiu, Ning Kang and Guowen Cui
Plants 2024, 13(22), 3141; https://doi.org/10.3390/plants13223141 - 8 Nov 2024
Cited by 6 | Viewed by 1735
Abstract
Alfalfa (Medicago sativa L.), an important forage crop with high nutritional value and good palatability, plays a vital role in the development of animal husbandry in China. In Northeast China, there are vast areas of saline–alkali land that remain undeveloped. Given that [...] Read more.
Alfalfa (Medicago sativa L.), an important forage crop with high nutritional value and good palatability, plays a vital role in the development of animal husbandry in China. In Northeast China, there are vast areas of saline–alkali land that remain undeveloped. Given that alfalfa is a highly adaptable forage crop, exploring its salt tolerance at the molecular transcriptional level and identifying salt-tolerant genes has great significance for breeding salt-resistant alfalfa varieties. This also provides valuable genetic resources for better utilization of saline–alkali land. In this study, we conducted two rounds of screening on 41 alfalfa varieties and identified WL168 as a salt-sensitive variety and Longmu801 as a salt-tolerant variety. After 7 days of 300 mM salt stress, both varieties showed a decreasing trend in plant height, fresh weight, and dry weight over time, but Longmu801 demonstrated better water retention ability compared to WL168. Chlorophyll content also declined, but chlorophyll a and total chlorophyll levels in Longmu801 were higher than in WL168. Hydrogen peroxide and malondialdehyde levels increased overall, but Longmu801 had significantly lower levels than WL168 under prolonged stress. Both varieties showed increasing trends in soluble sugars, proline, and antioxidant enzymes (SOD, POD, CAT), with Longmu801 significantly outperforming WL168. This suggests that the two varieties share similar growth and physiological response mechanisms, with their differences primarily arising from variations in indicator levels. In the above, comparisons between varieties were conducted based on the relative values of the indicators in relation to their controls. Transcriptomic analysis revealed that under salt stress, Longmu801 had 16,485 differentially expressed genes (DEGs) relative to its control, while WL168 had 18,726 DEGs compared to its control. Among these, 2164 DEGs shared the same expression trend, with GO functions enriched in response to oxidative stress, nucleus, plasma membrane, and others. The KEGG pathways were enriched in phenylpropanoid biosynthesis, protein processing in the endoplasmic reticulum, starch and sucrose metabolism, and others. This suggests that alfalfa’s transcriptional response mechanism to salt stress involves these pathways. Additionally, the variety-specific DEGs were also enriched in the same KEGG pathways and GO functions, indicating that the differences between the two varieties stem from their unique stress-responsive DEGs, while their overall mechanisms for coping with stress remain similar. To further identify salt stress-related genes, this study conducted WGCNA analysis using 32,683 genes and physiological indicators. Six modules closely related to physiological traits were identified, and the top five genes ranked by degree in each module were selected as hub genes. Further analysis of these hub genes identified five genes directly related to salt stress: Msa085011, Msa0605650, Msa0397400, Msa1258740, and Msa0958830. Mantel test analysis revealed that these genes showed strong correlations with physiological indicators. This study will provide important insights for breeding salt-tolerant alfalfa varieties. Full article
(This article belongs to the Special Issue Crop Functional Genomics and Biological Breeding)
Show Figures

Graphical abstract

17 pages, 3949 KiB  
Article
Assessment of Numerical Forecasts for Hub-Height Wind Resource Parameters during an Episode of Significant Wind Speed Fluctuations
by Jingyue Mo, Yanbo Shen, Bin Yuan, Muyuan Li, Chenchen Ding, Beixi Jia, Dong Ye and Dan Wang
Atmosphere 2024, 15(9), 1112; https://doi.org/10.3390/atmos15091112 - 13 Sep 2024
Viewed by 1066
Abstract
This study conducts a comprehensive evaluation of four scenario experiments using the CMA_WSP, WRF, and WRF_FITCH models to enhance forecasts of hub-height wind speeds at multiple wind farms in Northern China, particularly under significant wind speed fluctuations during high wind conditions. The experiments [...] Read more.
This study conducts a comprehensive evaluation of four scenario experiments using the CMA_WSP, WRF, and WRF_FITCH models to enhance forecasts of hub-height wind speeds at multiple wind farms in Northern China, particularly under significant wind speed fluctuations during high wind conditions. The experiments apply various wind speed calculation methods, including the Monin–Obukhov similarity theory (ST) and wind farm parameterization (WFP), within a 9 km resolution framework. Data from four geographically distinct stations were analyzed to assess their forecast accuracy over a 72 h period, focusing on the transitional wind events characterized by substantial fluctuations. The CMA_WSP model with the ST method (CMOST) achieved the highest scores across the evaluation metrics. Meanwhile, the WRF_FITCH model with the WFP method (FETA) demonstrated superior performance to the other WRF models, achieving the lowest RMSE and a greater stability. Nevertheless, all models encountered difficulties in predicting the exact timing of extreme wind events. This study also explores the effects of these methods on the wind power density (WPD) distribution, emphasizing the boundary layer’s influence at the hub-heighthub-height of 85 m. This influence leads to significant variations in the central and coastal regions. In contrast to other methods that account for the comprehensive effects of the entire boundary layer, the ST method primarily relies on the near-surface 10 m wind speed to calculate the hub-height wind speed. These findings provide important insights for enhancing wind speed and WPD forecasts under transitional weather conditions. Full article
(This article belongs to the Special Issue Solar Irradiance and Wind Forecasting)
Show Figures

Figure 1

11 pages, 3732 KiB  
Article
Analysis of Near-Surface Wind Shear Characteristics over Land in China
by Ling Yuan, Fengzhi Yang, Xia Ruan, Feng Zou and Qi Luo
Atmosphere 2024, 15(5), 582; https://doi.org/10.3390/atmos15050582 - 10 May 2024
Cited by 1 | Viewed by 1999
Abstract
Wind shear is one of the crucial parameters in wind resource assessment and also serves as a vital parameter and basis for determining wind turbines’ selection and hub height. Existing studies have only focused on typical underlying surface areas, but a relatively limited [...] Read more.
Wind shear is one of the crucial parameters in wind resource assessment and also serves as a vital parameter and basis for determining wind turbines’ selection and hub height. Existing studies have only focused on typical underlying surface areas, but a relatively limited comprehensive analysis of wind shear characteristics in different complex environments remains. This study analyzes the daily and monthly variations in wind shear index (α) at the station scale based on the observations from 754 wind measurement towers across land surfaces in China. The distribution and empirical values of wind shear in different wind regions and underlying surface types are also investigated. The research findings indicate that the wind shear index derived from fitting the complete annual average wind speeds at multiple height levels of meteorological towers can accurately characterize the stratification state of the atmospheric boundary layer. The variation pattern of solar radiation influences the daily α value in typical regions. In mountainous and desert areas, the monthly variation tends to be higher in autumn and winter and lower in spring and summer. However, its monthly variation shows relatively smaller fluctuations in plain regions. The comprehensive α value over land regions in China is 0.135. The α values for I, II, III, and IV wind fields are 0.111, 0.163, 0.1, and 0.153, respectively. Its values for mountainous, plains, grassland, and desert regions are 0.12, 0.273, 0.123, and 0.104, respectively. By conducting statistical analysis on α values across different wind regions, guidance is provided for extrapolating surface wind speeds to hub-height wind speeds. This serves as a reference for wind energy resource assessment, wind turbine selection, and hub height determination in the atmospheric boundary layer of China. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

17 pages, 4310 KiB  
Article
Reasons for the Recent Onshore Wind Capacity Factor Increase
by Christopher Jung and Dirk Schindler
Energies 2023, 16(14), 5390; https://doi.org/10.3390/en16145390 - 14 Jul 2023
Cited by 3 | Viewed by 4053
Abstract
Increasing wind capacity and capacity factors (CF) are essential for achieving the goals set by the Paris Climate Agreement. From 2010–2012 to 2018–2020, the 3-year mean CF of the global onshore wind turbine fleet rose from 0.22 to 0.25. Wind turbine [...] Read more.
Increasing wind capacity and capacity factors (CF) are essential for achieving the goals set by the Paris Climate Agreement. From 2010–2012 to 2018–2020, the 3-year mean CF of the global onshore wind turbine fleet rose from 0.22 to 0.25. Wind turbine siting, wind turbine technology, hub height, and curtailed wind energy are well-known CF drivers. However, the extent of these drivers for CF is unknown. Thus, the goal is to quantify the shares of the four drivers in CF development in Germany as a case. Newly developed national power curves from high-resolution wind speed models and hourly energy market data are the basis for the study. We created four scenarios, each with one driver kept constant at the 2010–2012 level, in order to quantify the share of a driver for CF change between 2010–2012 and 2019–2021. The results indicated that rising hub heights increased CF by 10.4%. Improved wind turbine technology caused 7.3% higher CF. However, the absolute CF increase amounted to only 11.9%. It is because less favorable wind turbine sites and curtailment in the later period moderated the CF increase by 2.1% and 3.6%, respectively. The drivers are mainly responsible for perennial CF development. In contrast, variations in wind resource availability drive the enormous CF inter-annual variability. No multi-year wind resource change was detected. Full article
(This article belongs to the Special Issue Recent Development and Future Perspective of Wind Power Generation)
Show Figures

Figure 1

17 pages, 5107 KiB  
Article
Impact on Energy Yield of Varying Turbine Designs under Conditions of Misalignment to the Current Flow
by Luke Evans, Ian Ashton and Brian G. Sellar
Energies 2023, 16(9), 3923; https://doi.org/10.3390/en16093923 - 6 May 2023
Cited by 4 | Viewed by 1792
Abstract
Tidal energy resource characterisation using acoustic velocimetry sensors mounted on the seabed informs developers of the location and performance of a tidal energy converter (TEC). This work studies the consequences of miscalculating the established flow direction, i.e., the direction of assumed maximum energy [...] Read more.
Tidal energy resource characterisation using acoustic velocimetry sensors mounted on the seabed informs developers of the location and performance of a tidal energy converter (TEC). This work studies the consequences of miscalculating the established flow direction, i.e., the direction of assumed maximum energy yield. Considering data only above the proposed TEC cut-in velocities showed a difference in the estimated flow direction of up to 4°. Using a power weighted rotor average (PWRA) method to obtain the established flow direction resulted in a difference of less than 1° compared with the hub-height estimate. This study then analysed the impact of turbine alignment on annual energy production (AEP) estimates for a non-yawing tidal turbine. Three variants of horizontal axis tidal turbines, which operate in different locations of the water column, were examined; one using measured data, and the other two via modelled through power curves. During perfect alignment to the established flow direction, natural variations in flow meant that the estimate of AEP differed by up to 1.1% from the theoretical maximum of a fully yawed turbine. In the case of misalignment from the established flow direction, the difference in AEP increased. For a 15° misalignment, the AEP differed by up to 13%. These results quantify important uncertainties in tidal energy site design and performance assessment. Full article
Show Figures

Figure 1

30 pages, 13398 KiB  
Article
Numerical Analysis of the Effects of Different Rotor Tip Gaps in a Radial Turbine Operating at High Pressure Ratios Reaching Choked Flow
by José Galindo, Andrés Tiseira, Roberto Navarro, Lukas Benjamin Inhestern and Juan David Echavarría
Energies 2022, 15(24), 9449; https://doi.org/10.3390/en15249449 - 13 Dec 2022
Cited by 2 | Viewed by 2145
Abstract
To operate, radial turbines used in turbochargers require a minimum tip gap between the rotor blades and the stationary wall casing (shroud). This gap generates leakage flow driven by the pressure difference between the pressure and suction side. The tip leakage flow is [...] Read more.
To operate, radial turbines used in turbochargers require a minimum tip gap between the rotor blades and the stationary wall casing (shroud). This gap generates leakage flow driven by the pressure difference between the pressure and suction side. The tip leakage flow is largely unturned, which translates into a reduction of the shaft work due to the decrease in the total pressure. This paper investigates the flow through the rotor blade tip gap and the effects on the main flow when the turbine operates at a lower and higher pressure ratio with the presence of supersonic regions at the rotor trailing edge for two rotational speeds using computational fluid dynamics (CFD). The rotor tip gap has been decreased and increased up to 50% of the original tip gap geometry given by the manufacturer. Depending on the operational point, the results reveal that a reduction of 50% of the tip gap can lead to an increase of almost 3% in the efficiency, whereas a rise in 50% in the gap penalty the efficiency up to 3%. Furthermore, a supersonic region appears in the tip gap just when the flow enters through the pressure side, then the flow accelerates, leaving the suction side with a higher relative Mach number, generating a vortex by mixing with the mainstream. The effects of the vortex with the variation of the tip gap on the choked area at the rotor trailing edge presents a more significant change at higher than lower speeds. At a higher speed, the choked region closer to the shroud is due to the high relative inlet flow angle and the effects of the high relative motion of the shroud wall. Furthermore, this relative motion forces the tip leakage vortex to stay closer to the tip suction side, generating a subsonic region, which increases with the tip gap height. The leakage flow at lower and higher rotational speed does not affect the main flow close to the hub. However, close to the shroud, the velocity profile changes, and the generated entropy increases when the flow goes through the tip gap. Full article
(This article belongs to the Special Issue Advanced Computational Fluid Dynamics Modeling)
Show Figures

Figure 1

13 pages, 2573 KiB  
Article
Feasibility Study of Harnessing Low Wind Speed Turbine as Hybrid Power Source for Offshore Platforms
by Izleena Md Iqbar, Masdi Muhammad, Syed Ihtsham Ul-Haq Gilani and Frank Adam
J. Mar. Sci. Eng. 2022, 10(7), 963; https://doi.org/10.3390/jmse10070963 - 14 Jul 2022
Cited by 4 | Viewed by 2836
Abstract
In this study, the viability of harnessing wind energy for offshore oil and gas (O&G) platforms as a micro-grid solution in low wind speed regions to power O&G platforms is explored. However, wind, as a renewable energy, is known to be highly variable [...] Read more.
In this study, the viability of harnessing wind energy for offshore oil and gas (O&G) platforms as a micro-grid solution in low wind speed regions to power O&G platforms is explored. However, wind, as a renewable energy, is known to be highly variable and is unable to provide standalone power reliably within a micro-grid solution due to the variation of the wind speed at hub height, which subsequently leads to a variation of the power outcome. Here, a hybrid power generation concept is developed in which one gas turbine generator (GTG) is replaced with a floating horizontal axis wind turbine (WT) system. By setting up this system, the reduction of the maintenance costs of the GTGs and the reduction of fuel gas consumption reduces carbon dioxide (CO2) emissions. In addition to this, the fuel gas savings in terms of the business side of such a solution provide a positive revenue impact. In this feasibility study, a technical framework is developed, followed by an economic framework. In the technical framework, wind assessments are performed to obtain the annual energy production for the selected field. Furthermore, an economic framework is established for both conventional and hybrid concepts in two scenarios: greenfield and brownfield, where the incremental net present value (NPV) and levelized cost of energy are calculated. The resultant difference in NPV for hybrid power generation compared to conventional power generation was found to be between 22% and 37%. The levelized cost of energy (LCOE) for WT is USD 165.52/MWh, which is 39% lower than for conventional, gas turbine-only operations. The LCOE for the hybrid approach is lower than for the conventional scenario by 22%. In conclusion, the hybrid micro-grid concept solution can harness wind energy from low wind regions with better economic benefits compared to conventional methods through the proper selection of the WT system, its floating substructure, and efficient micro-grid system for powering oil and gas platforms. Full article
(This article belongs to the Topic Marine Renewable Energy)
Show Figures

Figure 1

18 pages, 2905 KiB  
Article
Study on the Influence of Low-Level Jet on the Aerodynamic Characteristics of Horizontal Axis Wind Turbine Rotor Based on the Aerodynamics–Controller Interaction Method
by Pan He and Jian Xia
Energies 2022, 15(8), 2709; https://doi.org/10.3390/en15082709 - 7 Apr 2022
Cited by 2 | Viewed by 2078
Abstract
Accurate prediction of the aerodynamic characteristics of wind rotors subjected to various wind profiles is of considerable importance in the aerodynamics and structural design of wind turbines. As a very complex atmospheric phenomenon, the impact of a low-level jet (LLJ) on the aerodynamic [...] Read more.
Accurate prediction of the aerodynamic characteristics of wind rotors subjected to various wind profiles is of considerable importance in the aerodynamics and structural design of wind turbines. As a very complex atmospheric phenomenon, the impact of a low-level jet (LLJ) on the aerodynamic characteristics of wind rotors is becoming more and more significant with the increase in wind turbine height. Additionally, during calculating the aerodynamic characteristics of the wind rotor, the known wind speed, rotor speed, and blade-pitch angle are generally required. However, when the wind profile is in the LLJ condition, it is difficult to determine the blade-pitch angle and rotor speed. Therefore, in this paper, the blade-element-momentum (BEM) method is exploited by considering the coupling with the generator-torque controller and blade-pitch controller. In order to solve the problem of the unknown rotor speed and blade-pitch angle under the LLJ condition, a C++ code is developed. Then, the influence of the LLJ on the aerodynamic characteristics of the wind rotor is exclusively examined. The research results show that the calculation method can precisely evaluate the rotor speed, blade-pitch angle, and aerodynamic characteristics of the wind rotor. The influence of the LLJ on the aerodynamic loads of the wind rotor is greater than that of the wind shear. When the LLJ is placed inside the rotor swept area, the aerodynamic loads of the blade exhibit two local maximums and local minimums with the variation of the azimuth angle in a rotation period. The closer the LLJ height is to the hub height, the greater the average aerodynamic loads of the wind rotor are, and the smaller the amplitude of aerodynamic loads of the blade is relative to the average value. When the LLJ height is positioned outside the rotor swept area, the change law of the aerodynamic loads of the blade would be similar to that of the wind subjected to a very strong wind shear inflow. This study provides a crucial reference for a more rational assessment of the aerodynamic characteristics of wind turbines under the action of complex wind profiles, as well as revealing the influence of the LLJ on the aerodynamic characteristics of wind turbines. Full article
Show Figures

Figure 1

23 pages, 8817 KiB  
Article
Atmospheric Stability Effects on Offshore and Coastal Wind Resource Characteristics in South Korea for Developing Offshore Wind Farms
by Geon Hwa Ryu, Young-Gon Kim, Sung Jo Kwak, Man Soo Choi, Moon-Seon Jeong and Chae-Joo Moon
Energies 2022, 15(4), 1305; https://doi.org/10.3390/en15041305 - 11 Feb 2022
Cited by 17 | Viewed by 4188
Abstract
South Korea is surrounded by the sea on three sides. The characteristics of offshore wind resources vary from region to region due to the influence of the distribution of the coastline and differences in roughness length and atmospheric stability between the coast and [...] Read more.
South Korea is surrounded by the sea on three sides. The characteristics of offshore wind resources vary from region to region due to the influence of the distribution of the coastline and differences in roughness length and atmospheric stability between the coast and the sea. In particular, turbulent gusts and low-level wind shear occurring near the hub height of the wind turbine within the atmospheric boundary layer have a significant effect on the load of wind turbines. These severe weather phenomena are closely related to atmospheric stability. Therefore, the objective of this study is to determine differences in wind resource characteristics in the South Korean offshore and coast in relation to variations in atmospheric stability using observation data from the HeMOSU-1 meteorological tower in the West Sea and the Boseong meteorological observation tower on the southern coast. On the southern coast, changes in sea and land breezes are observed throughout diurnal and nocturnal periods, with an atmospheric stability distribution similar to that of land, which is unstable during the day and becomes more stable at night. On the other hand, the stable ratio continues to dominate in the west offshore. In the case of coastal areas, low-level wind shear occasionally occurs near the general wind turbine hub height approximately over 100 m due to the influence of winds from the sea. This study shows that when constructing an offshore wind farm, it is necessary to first analyze the characteristics of local coastal and offshore wind resources for more efficient and safe wind farm construction and operation. Full article
Show Figures

Graphical abstract

17 pages, 9177 KiB  
Article
Modeling of the Wind Potential in the Open Sea and Its Application to the Calculation of Energy
by Manuel I. Bahamonde García, José Macías Macías, César Rodríguez González, Salvador Pérez Litrán and María R. Sánchez Herrera
Energies 2022, 15(3), 1157; https://doi.org/10.3390/en15031157 - 4 Feb 2022
Viewed by 1726
Abstract
A reliable estimate of the wind potential in the marine atmospheric boundary layer (MABL) is of great importance to justify the energetic viability of new offshore wind farms. The purpose of the study is to provide an additional tool for the prediction of [...] Read more.
A reliable estimate of the wind potential in the marine atmospheric boundary layer (MABL) is of great importance to justify the energetic viability of new offshore wind farms. The purpose of the study is to provide an additional tool for the prediction of the energy that a wind turbine would produces in the open sea from the usual way of measurements at sea, that is, when they are carried out with measuring masts, where the meteorological data are obtained at levels much lower than those of a wind turbine hub. For this, the variation in the wind speed with the height in the MABL is determined, based on the Monin–Obukhov similarity theory, according to the boundary conditions of the air–sea interface, where the input data for the Validation of the results are extracted from the German FINO 3 research platform during the years 2016, 2017, and 2018. It is applied to the production of electrical energy from a 6.0 MW commercial wind turbine, with the hub at 100 m above the sea surface. As a more prominent result, the deviations from the proposed method do not exceed 2.5% in the energy calculation. Full article
Show Figures

Figure 1

18 pages, 4655 KiB  
Article
Wind Speed Forecasts of a Mesoscale Ensemble for Large-Scale Wind Farms in Northern China: Downscaling Effect of Global Model Forecasts
by Jianqiu Shi, Yubao Liu, Yang Li, Yuewei Liu, Gregory Roux, Lan Shi and Xiaowei Fan
Energies 2022, 15(3), 896; https://doi.org/10.3390/en15030896 - 26 Jan 2022
Cited by 10 | Viewed by 2913
Abstract
To facilitate wind power integration for the electric power grid operated by the Inner Mongolia Electric Power Corporation—a major electric power grid in China—a high-resolution (of 2.7 km grid intervals) mesoscale ensemble prediction system was developed that forecasts winds for 130 wind farms [...] Read more.
To facilitate wind power integration for the electric power grid operated by the Inner Mongolia Electric Power Corporation—a major electric power grid in China—a high-resolution (of 2.7 km grid intervals) mesoscale ensemble prediction system was developed that forecasts winds for 130 wind farms in the Inner Mongolia Autonomous Region. The ensemble system contains 39 forecasting members that are divided into 3 groups; each group is composed of the NCAR (National Center for Atmospheric Research) real-time four-dimensional data assimilation and forecasting model (RTFDDA) with 13 physical perturbation members, but driven by the forecasts of the GFS (Global Forecast System), GEM (Global Environmental Multiscale Model), and GEOS (Goddard Earth Observing System), respectively. The hub-height wind predictions of these three sub-ensemble groups at selected wind turbines across the region were verified against the hub-height wind measurements. The forecast performance and variations with lead time, wind regimes, and diurnal and regional changes were analyzed. The results show that the GFS group outperformed the other two groups with respect to correlation coefficient and mean absolute error. The GFS group had the most accurate forecasts in ~59% of sites, while the GEOS and GEM groups only performed the best on 34% and 2% of occasions, respectively. The wind forecasts were most accurate for wind speeds ranging from 3 to 12 m/s, but with an overestimation for low speeds and an underestimation for high speeds. The GEOS-driven members obtained the least bias error among the three groups. All members performed rather accurately in daytime, but evidently overestimated the winds during nighttime. The GFS group possessed the fewest diurnal errors, and the bias of the GEM group grew significantly during nighttime. The wind speed forecast errors of all three ensemble members increased with the forecast lead time, with the average absolute error increasing by ~0.3 m/s per day during the first 72 h of forecasts. Full article
Show Figures

Figure 1

20 pages, 9437 KiB  
Article
Combining Re-Analyzed Climate Data and Landcover Products to Assess the Temporal Complementarity of Wind and Solar Resources in Iraq
by Mourtadha Sarhan Sachit, Helmi Zulhaidi Mohd Shafri, Ahmad Fikri Abdullah and Azmin Shakrine Mohd Rafie
Sustainability 2022, 14(1), 388; https://doi.org/10.3390/su14010388 - 30 Dec 2021
Cited by 14 | Viewed by 3250
Abstract
Considering the spatial–temporal variation of renewable energy (RE) resources, assessment of their complementarity is of great significance for decision-makers to increase the stability of power output and reduce the need for storage systems. In this regard, the current paper presents a roadmap to [...] Read more.
Considering the spatial–temporal variation of renewable energy (RE) resources, assessment of their complementarity is of great significance for decision-makers to increase the stability of power output and reduce the need for storage systems. In this regard, the current paper presents a roadmap to assess the temporal complementarity patterns between wind and solar resources for the first time in Iraq. A new approach based on re-analyzed climate data, Landcover products, and geographical information system (GIS) is proposed. As such, renewable resource datasets are collected for 759 locations with a daily timescale over five years. Landcover classes are translated into wind shear coefficients (WSCs) to model wind velocity at turbine hub height. Then, the Pearson correlation coefficient (PCC) is applied to calculate the complementarity indices for each month of the year. Results of this investigation reveal that there are significant synergy patterns spanning more than six months in the southwestern regions and some eastern parts of Iraq. The highest complementarity is observed in March and December with a value of −0.70 and −0.63, respectively. Despite this promising potential, no typical temporal complementarity has been discovered that would completely eliminate the fluctuations of clean power generation. However, the synergistic properties yielded by this work could mitigate the reliance on storage systems, particularly as they cover important regions of the country. The proposed approach and tools can help improve the planning of renewable energy systems. Full article
Show Figures

Figure 1

17 pages, 6793 KiB  
Article
Novel Modelling Approach for Obtaining the Parameters of Low Ionosphere under Extreme Radiation in X-Spectral Range
by Vladimir A. Srećković, Desanka M. Šulić, Veljko Vujčić, Zoran R. Mijić and Ljubinko M. Ignjatović
Appl. Sci. 2021, 11(23), 11574; https://doi.org/10.3390/app112311574 - 6 Dec 2021
Cited by 8 | Viewed by 2791
Abstract
Strong radiation from solar X-ray flares can produce increased ionization in the terrestrial D-region and change its structure. Moreover, extreme solar radiation in X-spectral range can create sudden ionospheric disturbances and can consequently affect devices on the terrain as well as signals from [...] Read more.
Strong radiation from solar X-ray flares can produce increased ionization in the terrestrial D-region and change its structure. Moreover, extreme solar radiation in X-spectral range can create sudden ionospheric disturbances and can consequently affect devices on the terrain as well as signals from satellites and presumably cause numerous uncontrollable catastrophic events. One of the techniques for detection and analysis of solar flares is studying the variations in time of specific spectral lines. The aim of this work is to present our study of solar X-ray flare effects on D-region using very low-frequency radio signal measurements over a long path in parallel with the analysis of X-spectral radiation, and to obtain the atmospheric parameters (sharpness, reflection height, time delay). We introduce a novel modelling approach and give D-region coefficients needed for modelling this medium, as well as a simple expression for electron density of lower ionosphere plasmas. We provide the analysis and software on GitHub. Full article
Show Figures

Figure 1

13 pages, 707 KiB  
Article
Assessment of Dependency of Unsteady Onset Flow and Resultant Tidal Turbine Fatigue Loads on Measurement Position at a Tidal Site
by Hannah Mullings and Tim Stallard
Energies 2021, 14(17), 5470; https://doi.org/10.3390/en14175470 - 2 Sep 2021
Cited by 20 | Viewed by 2109
Abstract
This work determines the variation in the fatigue loading on a tidal turbine at two depth positions and two different locations within a site. Site data were obtained at the European Marine Energy Centre, EMEC, test facility in Scotland, which has been compiled [...] Read more.
This work determines the variation in the fatigue loading on a tidal turbine at two depth positions and two different locations within a site. Site data were obtained at the European Marine Energy Centre, EMEC, test facility in Scotland, which has been compiled at the University of Edinburgh. The turbine modelled is the 18m Diameter DEEP-gen 1MW horizontal axis turbine. A blade element method is combined with a synthetic turbulence inflow to determine forces along the blade over a period of five tidal cycles. The focus is on establishing the difference between the loads at one tidal site, with an emphasis on the variety of turbulent conditions, with the onset flow fluctuations as great as 17% and the average integral lengthscales varying from 11 to 14 m at hub height. Fatigue loading is assessed using damage equivalent loads, with a 30% variation between turbine positions and 32% between turbine locations within a site, for one design case. When long term loading is assessed, a 41% difference is found for aggregated loads for a near surface turbine and a 28% difference for a near bed turbine. Full article
(This article belongs to the Special Issue Tidal Turbines)
Show Figures

Figure 1

Back to TopTop