Atmospheric Stability Effects on Offshore and Coastal Wind Resource Characteristics in South Korea for Developing Offshore Wind Farms
Abstract
:1. Introduction
2. Data and Methods
2.1. Boseong Onshore Meteorological Mast
2.2. HeMOSU-1 Offshore Meteorological Mast
2.3. Atmospheric Stability Index
2.3.1. Wind Shear Coefficient
2.3.2. Richardson Number
2.3.3. Turbulence Kinetic Energy (TKE)
2.3.4. Monin–Obukhov Length
- The flow is horizontally homogeneous and quasi-stagnate;
- The momentum and turbulent flux of heat is constant with height;
- Molecular exchange is not as important as turbulent exchange;
- The Coriolis effect is neglected in the surface layer;
- Effects of surface roughness, boundary layer height, and geostrophic winds are all explained by .
2.4. Study Procedure
3. Results
3.1. Wind Resource Characteristics
3.2. Atmospheric Stability
3.2.1. Wind Shear
3.2.2. Richardson Number
3.2.3. Turbulence Kinetic Energy
3.2.4. Monin–Obukhov Length
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, J.-H.; Woo, J. Green New Deal Policy of South Korea: Policy Innovation for a Sustainability Transition. Sustainability 2020, 12, 10191. [Google Scholar] [CrossRef]
- Kim, J.-H.; Choi, K.-R.; Yoo, S.-H. Evaluating the South Korean Public Perceptions and Acceptance of Offshore Wind Farming: Evidence from a Choice Experiment Study. Appl. Econ. 2021, 53, 3889–3899. [Google Scholar] [CrossRef]
- Sumair, M.; Aized, T.; Gardezi, S.A.R.; Bhutta, M.M.A.; Ubaid ur Rehman, S.; Sohail Rehman, S.M. Weibull Parameters Estimation Using Combined Energy Pattern and Power Density Method for Wind Resource Assessment. Energy Explor. Exploit. 2021, 39, 1817–1834. [Google Scholar] [CrossRef]
- Komiyama, R.; Fujii, Y. Large-Scale Integration of Offshore Wind into the Japanese Power Grid. Sustain. Sci. 2021, 16, 429–448. [Google Scholar] [CrossRef]
- Samal, R.K. Assessment of Wind Energy Potential Using Reanalysis Data: A Comparison with Mast Measurements. J. Clean. Prod. 2021, 313, 127933. [Google Scholar] [CrossRef]
- Lee, Y.-H. Climatology of Nocturnal Low-Level Wind Maxima at a Topographically Complex Coastal Site in Boseong. Meteorol. Atmos. Phys 2021, 133, 643–653. [Google Scholar] [CrossRef]
- Qi, X.; Ye, Y.; Xiong, X.; Zhang, F.; Shen, Z. Research on the Adaptability of SRTM3 DEM Data in Wind Speed Simulation of Wind Farm in Complex Terrain. Arab. J. Geosci. 2021, 14, 76. [Google Scholar] [CrossRef]
- Plenković, I.O.; Monache, L.D.; Horvath, K.; Hrastinski, M. Deterministic Wind Speed Predictions with Analog-Based Methods over Complex Topography. J. Appl. Meteorol. Climatol. 2018, 57, 2047–2070. [Google Scholar] [CrossRef]
- Solbakken, K.; Birkelund, Y. Evaluation of the Weather Research and Forecasting (WRF) Model with Respect to Wind in Complex Terrain. J. Phys. Conf. Ser. 2018, 1102, 012011. [Google Scholar] [CrossRef]
- Jensen, D.D.; Price, T.A.; Nadeau, D.F.; Kingston, J.; Pardyjak, E.R. Coastal Wind and Turbulence Observations during the Morning and Evening Transitions over Tropical Terrain. J. Appl. Meteorol. Climatol. 2017, 56, 3167–3185. Available online: https://journals.ametsoc.org/view/journals/apme/56/12/jamc-d-17-0077.1.xml (accessed on 29 January 2022). [CrossRef]
- Yoo, J.-W.; Lee, H.-W.; Lee, S.-H.; Kim, D.-H. Characteristics of Vertical Variation of Wind Resources in Planetary Boundary Layer in Coastal Area using Tall Tower Observation. J. Korean Soc. Atmos. Environ. 2012, 28, 632–643. [Google Scholar] [CrossRef] [Green Version]
- Ryu, G.-H.; Kim, D.-H.; Lee, H.-W.; Park, S.-Y.; Kim, H.-G. A Study of Energy Production Change according to Atmospheric Stability and Equivalent Wind Speed in the Offshore Wind Farm using CFD Program. J. Environ. Sci. Int. 2016, 25, 247–257. [Google Scholar] [CrossRef]
- Kim, H.; Moon, C.-J.; Kim, Y.-G.; Chon, K.-H.; Joo, J.Y.; Ryu, G.H. Analysis of Atmospheric Stability for the Prevention of Coastal Disasters and the Development of Efficient Coastal Renewable Energy. J. Coast. Res. 2021, 114, 241–245. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Kim, Y.-H.; Kim, B.-S. Changes in Wind Turbine Power Characteristics and Annual Energy Production Due to Atmospheric Stability, Turbulence Intensity, and Wind Shear. Energy 2021, 214, 119051. [Google Scholar] [CrossRef]
- Differences in Wind Farm Energy Production Based on the Atmospheric Stability Dissipation Rate: Case Study of a 30 MW Onshore Wind Farm-ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0360544221026293 (accessed on 29 January 2022).
- Kim, D.-Y.; Suk, K.B. Effect of Atmospheric Stability and Turbulent Kinetic Energy Dependence on Wind Turbine Power and Annual Energy Production. J. Wind Energy 2020, 11, 23–31. [Google Scholar] [CrossRef]
- Vanderwende, B.J.; Lundquist, J.K. The Modification of Wind Turbine Performance by Statistically Distinct Atmospheric Regimes. Environ. Res. Lett. 2012, 7, 034035. [Google Scholar] [CrossRef]
- Sumner, J.; Masson, C. Influence of Atmospheric Stability on Wind Turbine Power Performance Curves. J. Sol. Energy Eng. 2006, 128, 531–538. [Google Scholar] [CrossRef]
- St. Martin, C.M.; Lundquist, J.K.; Clifton, A.; Poulos, G.S.; Schreck, S.J. Wind Turbine Power Production and Annual Energy Production Depend on Atmospheric Stability and Turbulence. Wind Energy Sci. 2016, 1, 221–236. [Google Scholar] [CrossRef] [Green Version]
- Argyle, P.; Watson, S.J. Assessing the Dependence of Surface Layer Atmospheric Stability on Measurement Height at Offshore Locations. J. Wind Eng. Ind. Aerodyn. 2014, 131, 88–99. [Google Scholar] [CrossRef] [Green Version]
- Moon, I.-J.; Ginis, I.; Hara, T.; Thomas, B. A Physics-Based Parameterization of Air–Sea Momentum Flux at High Wind Speeds and Its Impact on Hurricane Intensity Predictions. Mon. Weather Rev. 2007, 135, 2869–2878. [Google Scholar] [CrossRef] [Green Version]
- Spall, M.A. Effect of Sea Surface Temperature–Wind Stress Coupling on Baroclinic Instability in the Ocean. J. Phys. Oceanogr. 2007, 37, 1092–1097. [Google Scholar] [CrossRef] [Green Version]
- Grylls, T.; Suter, I.; van Reeuwijk, M. Steady-State Large-Eddy Simulations of Convective and Stable Urban Boundary Layers. Bound.-Layer Meteorol. 2020, 175, 309–341. [Google Scholar] [CrossRef] [Green Version]
- Lebedeff, S.A.; Hameed, S. Laws of Effluent Dispersion in the Steady-State Atmospheric Surface Layer in Stable and Unstable Conditions. J. Appl. Meteorol. Climatol. 1976, 15, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Bardal, L.M.; Onstad, A.E.; Sætran, L.R.; Lund, J.A. Evaluation of Methods for Estimating Atmospheric Stability at Two Coastal Sites. Wind Eng. 2018, 42, 561–575. [Google Scholar] [CrossRef]
- Wharton, S.; Lundquist, J. Atmospheric Stability Impacts on Power Curves of Tall Wind Turbines—An Analysis of a West Coast North American Wind Farm. Environ. Res. Lett. 2012, 7, 1–73. [Google Scholar] [CrossRef] [Green Version]
- Crosman, E.T.; Horel, J.D. Idealized Large-Eddy Simulations of Sea and Lake Breezes: Sensitivity to Lake Diameter, Heat Flux and Stability. Bound.-Layer Meteorol. 2012, 144, 309–328. [Google Scholar] [CrossRef]
- Barthelmie, R.J. The Effects of Atmospheric Stability on Coastal Wind Climates. Meteorol. Appl. 1999, 6, 39–47. [Google Scholar] [CrossRef]
- Zhan, L.; Letizia, S.; Valerio Iungo, G. LiDAR Measurements for an Onshore Wind Farm: Wake Variability for Different Incoming Wind Speeds and Atmospheric Stability Regimes. Wind Energy 2020, 23, 501–527. [Google Scholar] [CrossRef]
- Abkar, M.; Porté-Agel, F. Influence of Atmospheric Stability on Wind-Turbine Wakes: A Large-Eddy Simulation Study. Phys. Fluids 2015, 27, 035104. [Google Scholar] [CrossRef] [Green Version]
- Wharton, S.; Lundquist, J.K. Atmospheric Stability Affects Wind Turbine Power Collection. Environ. Res. Lett. 2012, 7, 014005. [Google Scholar] [CrossRef]
- Wharton, S.; Lundquist, J.K. Assessing Atmospheric Stability and Its Impacts on Rotor-disk Wind Characteristics at an Onshore Wind Farm. Wind Energy 2012, 15, 525–546. [Google Scholar] [CrossRef]
- Sucevic, N.; Djurisic, Z. Influence of atmospheric stability variation on uncertainties of wind farm production estimation. In Proceedings of the European Wind Energy Conference & Exhibition, Copenhagen, Denmark, 16–19 April 2012. [Google Scholar]
- Hwang, S.E.; Lee, Y.T.; Shin, S.S.; Kim, K.H. Study on the Local Weather Characteristics using Observation Data at the Boseong Tall Tower. J. Korean Earth Sci. Soc. 2020, 41, 459–468. [Google Scholar] [CrossRef]
- Lim, H.-J.; Lee, Y.-H. Characteristics of Sea Breezes at Coastal Area in Boseong. Atmosphere 2019, 29, 41–51. [Google Scholar] [CrossRef]
- Ko, D.-H.; Cho, H.-Y.; Lee, U.-J. Estimation and Analysis of the Vertical Profile Parameters using HeMOSU-1 Wind Data. J. Korean Soc. Coast. Ocean Eng. 2021, 33, 122–130. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Jeong, H.-S.; Kim, Y.-H.; Kim, B.-J. Comparative Assessment of Wind Resources Between West Offshore and Onshore Regions in Korea. Atmosphere 2018, 28, 1–13. [Google Scholar] [CrossRef]
- Chen, G.; Rong, L.; Zhang, G. Numerical Simulations on Atmospheric Stability Conditions and Urban Airflow at Five Climate Zones in China. Energy Built Environ. 2021, 2, 188–203. [Google Scholar] [CrossRef]
- Gualtieri, G. Atmospheric Stability Varying Wind Shear Coefficients to Improve Wind Resource Extrapolation: A Temporal Analysis. Renew. Energy 2016, 87, 376–390. [Google Scholar] [CrossRef]
- Ray, M.L.; Rogers, A.L.; Mcgowan, J.G. Analysis of Wind Shear Models and Trends in Different Terrains. 2006, pp. 1–14. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.574.7468&rep=rep1&type=pdf (accessed on 29 December 2021).
- Nappo, C.J. (Ed.) 6—Waves and Turbulence. In An Introduction to Atmospheric Gravity Waves; International Geophysics Series; Academic Press: Cambridge, MA, USA, 2002; Volume 85, pp. 125–154. [Google Scholar]
- Stival, L.; Oliveira de Andrade, F.; Guetter, A. The Impact of Wind Shear and Turbulence Intensity on Wind Turbine Power Performance. Espaço Energ. 2007, 27, 11–20. [Google Scholar]
- Ryu, G.-H.; Kim, D.-H.; Lee, H.-W.; Park, S.-Y.; Yoo, J.-W.; Kim, H.-G. Accounting for the Atmospheric Stability in Wind Resource Variations and Its Impacts on the Power Generation by Concentric Equivalent Wind Speed. J. Korean Sol. Energy Soc. 2016, 36, 49–61. [Google Scholar] [CrossRef]
- Reddy, T.V.R.; Mehta, S.K.; Ananthavel, A.; Ali, S.; Annamalai, V.; Rao, D.N. Seasonal Characteristics of Sea Breeze and Thermal Internal Boundary Layer over Indian East Coast Region. Meteorol. Atmos. Phys. 2021, 133, 217–232. [Google Scholar] [CrossRef]
Item | Observation Height [m] | |
---|---|---|
Boseong Met. Mast (Onshore, Coast) | Wind speed | 10, 20, 40, 60, 80, 100, 140, 180, 220, 260, 300 |
Wind direction | 10, 20, 40, 60, 80, 100, 140, 180, 220, 260, 300 | |
Air temperature | 10, 20, 40, 60, 80, 100, 140, 180, 220, 260, 300 | |
Air pressure | 60, 140, 300 | |
Relative humidity | 10, 20, 40, 60, 80, 100, 140, 180, 220, 260, 300 | |
HeMOSU-1 Met. Mast (Offshore) | Wind speed 1 | 26, 46, 56, 66, 76, 86, 95, 97 |
Wind direction 1 | 46, 56, 66, 76, 95 | |
Air temperature 1 | 13, 95 | |
Air pressure 1 | 13, 95 | |
Relative humidity 1 | 13, 95 |
Item | Description |
---|---|
Name | Boseong Global Standard Meteorological Observation Site |
Location | 34.76° N, 127.21° E |
Height [m] | 307.19 |
Level [m] | 10, 20, 40, 60, 80, 100, 140, 180, 220, 260, 300 (11 levels) |
Observation factors | Wind speed, wind direction, air temperature, radiation, relative humidity, air pressure, CO2·H2O concentration |
Calculation or external factors | Momentum flux, sensible heat flux, air density, latent heat flux, roughness length, friction velocity |
Period | 1 January 2016~31 December 2016 (10 min) |
Item | Description |
---|---|
Name | HeMOSU-1 (HErald Meteorological and Oceanographic Special Unit-1) |
Location | 35.47° N, 126.13° E |
Height [m] | 100.0 |
Level [m] | 26, 46, 56, 66, 76, 86, 95, 97 (8 levels) |
Observation factors | Wind speed, wind direction, air temperature, relative humidity, air pressure |
Period | 1 January 2016~31 December 2016 (10 min) |
Stability Class | Wind Shear | Richardson Number | TKE 1 [m2/s2] | MO 2 Length [m] | Boundary Layer Properties |
---|---|---|---|---|---|
Strongly Unstable | < 0.0 | Ri < −0.86 | TKE > 1.4 | −50 m < L ≤ 0 m | Lowest WS 3/Shear Highly TI |
Unstable | < 0.1 | −0.86 ≤ Ri < −0.1 | 1.0 < TKE < 1.4 | −600 m < L ≤ −50 m | Lower WS/Shear High TI |
Near-Neutral | < 0.2 | −0.1 ≤ Ri < 0.053 | 0.7 < TKE < 1.0 | > 600 m | Logarithmic wind profile |
Stable | < 0.3 | 0.053 ≤ Ri < 0.134 | 0.4 < TKE < 0.7 | 100 m < L ≤ 600 m | High WS/Shear Low TI |
Strongly Stable | ≥ 0.3 | Ri ≥ 0.134 | TKE < 0.4 | 0 m < L ≤ 100 m | Highest WS/Shear Lowest TI |
Met. Mast | Height [m] | Atmospheric Stability Criteria by Wind Shear | All | ||||
---|---|---|---|---|---|---|---|
Strongly Unstable (α < 0) | Unstable (0 ≤ α < 0.1) | Neutral (0.1 ≤ α < 0.2) | Stable (0.2 ≤ α < 0.3) | Strongly Stable (α ≥ 0.3) | |||
Boseong (Coast) | 10–60 | 22.19% | 9.18% | 14.61% | 15.52% | 38.50% | 100% |
60–140 | 38.25% | 18.56% | 12.69% | 7.95% | 22.55% | 100% | |
HeMOSU-1 (Offshore) | 26–66 | 4.44% | 59.07% | 24.38% | 10.04% | 2.07% | 100% |
66–95 | 26.47% | 41.71% | 20.44% | 7.79% | 3.59% | 100% |
Met. Mast | Height [m] | Atmospheric Stability Criteria by Richardson Number | All | ||||
---|---|---|---|---|---|---|---|
Strongly Unstable (Ri < −0.86) | Unstable (−0.86 ≤ Ri < −0.1) | Neutral (−0.1 ≤ Ri < 0.053) | Stable (0.053 ≤ Ri < 0.134) | Strongly Stable (Ri ≥ 0.134) | |||
Boseong (Coast) | 10–140 | 32.98% | 4.30% | 9.83% | 4.31% | 48.58% | 100% |
HeMOSU (Offshore) | 26–95 | 31.55% | 0.75% | 1.74% | 2.52% | 63.44% | 100% |
Met. Mast | Heigh [m] | Atmospheric Stability Criteria by Monin–Obukhov Length | All | ||||
---|---|---|---|---|---|---|---|
Strongly Unstable (−50 ≤ L < 0) | Unstable (−600 ≤ L < −50) | Neutral (|L| > 600) | Stable (100 < L ≤ 600) | Strongly Stable (0 < L ≤ 100) | |||
Boseong (Coast) | 10 | 20.38 | 20.03 | 3.36 | 14.72 | 41.51 | 100% |
60 | 10.41 | 23.31 | 6.86 | 17.73 | 41.69 | 100% | |
140 | 7.27 | 22.78 | 9.10 | 21.26 | 39.29 | 100% | |
300 | 7.34 | 26.08 | 14.02 | 27.39 | 25.17 | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, G.H.; Kim, Y.-G.; Kwak, S.J.; Choi, M.S.; Jeong, M.-S.; Moon, C.-J. Atmospheric Stability Effects on Offshore and Coastal Wind Resource Characteristics in South Korea for Developing Offshore Wind Farms. Energies 2022, 15, 1305. https://doi.org/10.3390/en15041305
Ryu GH, Kim Y-G, Kwak SJ, Choi MS, Jeong M-S, Moon C-J. Atmospheric Stability Effects on Offshore and Coastal Wind Resource Characteristics in South Korea for Developing Offshore Wind Farms. Energies. 2022; 15(4):1305. https://doi.org/10.3390/en15041305
Chicago/Turabian StyleRyu, Geon Hwa, Young-Gon Kim, Sung Jo Kwak, Man Soo Choi, Moon-Seon Jeong, and Chae-Joo Moon. 2022. "Atmospheric Stability Effects on Offshore and Coastal Wind Resource Characteristics in South Korea for Developing Offshore Wind Farms" Energies 15, no. 4: 1305. https://doi.org/10.3390/en15041305
APA StyleRyu, G. H., Kim, Y.-G., Kwak, S. J., Choi, M. S., Jeong, M.-S., & Moon, C.-J. (2022). Atmospheric Stability Effects on Offshore and Coastal Wind Resource Characteristics in South Korea for Developing Offshore Wind Farms. Energies, 15(4), 1305. https://doi.org/10.3390/en15041305