Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = hook defect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 3364 KB  
Proceeding Paper
Effect of Stirring Efficiency on Fatigue Behavior of Graphene Nanoplatelets-Reinforced Friction Stir Spot Welded Aluminum Sheets
by Amir Alkhafaji and Daniel Camas
Eng. Proc. 2026, 124(1), 6; https://doi.org/10.3390/engproc2026124006 - 23 Jan 2026
Viewed by 170
Abstract
Friction stir spot welding (FSSW) is a novel variant of Friction Stir welding (FSW), developed by Mazda Motors and Kawasaki Heavy Industries to join similar and dissimilar materials in a solid state. It is an economic and environmentally friendly alternative to resistance spot [...] Read more.
Friction stir spot welding (FSSW) is a novel variant of Friction Stir welding (FSW), developed by Mazda Motors and Kawasaki Heavy Industries to join similar and dissimilar materials in a solid state. It is an economic and environmentally friendly alternative to resistance spot welding (RSW). The FSSW technique, however, includes some structural defects imbedded within the weld joint, such as keyhole formation, hook crack, and bond line oxidation challenging the joint strength. The unique properties of nanomaterials in the reinforcement of metal matrices motivated researchers to enhance the FSSW joints’ strength. Previous studies successfully fabricated nano-reinforced FSSW joints. At different volumetric ratios of nano-reinforcement, nanoparticles may agglomerate due to inefficient stirring of the welding tool pin, forming stress concentration sites and brittle phases, affecting tensile and fatigue strength under static and cyclic loading conditions, respectively. This work investigated how the welding tool pin affects stirring efficiency by controlling the distribution of a nano-reinforcing material within the joint stir zone (SZ), and thus the tensile and fatigue strength of the FSSW joints. Sheets of AA6061-T6 of 1.8 mm thickness were used as a base material. In addition, graphene nanoplatelets (GNPs) with lateral sizes of 1–10 µm and thicknesses of 3–9 nm were used as nano-reinforcements. GNP-reinforced FSSW specimens were prepared and successfully fabricated. Optical microscope (OM) and field emission scanning electron microscope (FE-SEM) methods were employed to visualize the GNPs’ incorporation into the SZs of the FSSW joints. Micrographs of as-welded specimens showed lower formations of scattered, clustered GNPs achieved by the threaded pin tool compared to continuous agglomerations observed when the cylindrical pin tool was used. Tensile test results revealed a significant improvement of about 30% exhibited by the threaded pin tool compared to the cylindrical pin tool, while fatigue test showed an improvement of 46–24% for the low- and high-cycle fatigue, respectively. Full article
(This article belongs to the Proceedings of The 6th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

12 pages, 18968 KB  
Article
The Effect of Process Parameters on the Performance of the RFSSW of ZK61M-T5 Magnesium Alloy
by Di Jiang, Ling Ji, Hongfeng Wang and Xiaole Ge
Materials 2025, 18(20), 4743; https://doi.org/10.3390/ma18204743 - 16 Oct 2025
Viewed by 536
Abstract
This study investigates refill friction stir spot welding (RFSSW) of 2 mm thick ZK61M-T5 magnesium alloy. Sound joints were obtained at rotational speeds of 1000 rpm and 1500 rpm with welding speeds of 30–50 mm/min. At 1000 rpm, micro-pores appeared at the sleeve-affected [...] Read more.
This study investigates refill friction stir spot welding (RFSSW) of 2 mm thick ZK61M-T5 magnesium alloy. Sound joints were obtained at rotational speeds of 1000 rpm and 1500 rpm with welding speeds of 30–50 mm/min. At 1000 rpm, micro-pores appeared at the sleeve-affected zone bottom, exhibiting a full-fillet fracture and a maximum ultimate lap shear force (ULSF) of 8.3 kN. Increasing the speed to 1500 rpm eliminated the pores and changed the fracture mode to partial fillet, but reduced the ULSF to 7.7 kN. Higher welding speeds caused the Hook feature to shift from upward to downward. Compared with the base material, grains in the thermomechanically and sleeve-affected zones were refined, while those in the pin-affected zone coarsened with increasing rotational speed. Overall, higher rotational speed increased heat input and mitigated internal defects, but enhanced annealing and Zr segregation, leading to reduced mechanical performance. Full article
Show Figures

Figure 1

4 pages, 3132 KB  
Abstract
Nondestructive Testing of Joint by Active Infrared Thermography
by Ririka Nishifuru, Ryosuke Koda, Yuki Ogawa, Hiroyuki Akebono, Yukihiro Sugimoto and Atsushi Sugeta
Proceedings 2025, 129(1), 43; https://doi.org/10.3390/proceedings2025129043 - 12 Sep 2025
Viewed by 563
Abstract
As part of recent measures to combat global warming, automobiles are required to be electrified and their weight reduced, leading to the advancement of multi-material structures that include aluminum alloys and aluminum die castings. Conventional fusion welding methods for joining aluminum alloys and [...] Read more.
As part of recent measures to combat global warming, automobiles are required to be electrified and their weight reduced, leading to the advancement of multi-material structures that include aluminum alloys and aluminum die castings. Conventional fusion welding methods for joining aluminum alloys and steel materials have poor joining performance due to differences in thermal conductivity between the materials and the presence of oxide films. Friction stir welding (FSW) has been attracting attention in recent years because it is a solid-phase joining method and can also be used to join dissimilar materials. In this study, FSW overlay joints were fabricated: Aluminum alloy AA6111 was used for the upper plate, AA6061 was used for the lower plate. Non-destructive testing was performed on each joint to instantly inspect and visualize joint defects. In the case of FSW joints, no difference was observed in the heat transfer process when the joints were heated directly, but the location of the hooking could be identified by heating from a distance from the joints. The results of the analysis of the temperature change at the defect location showed a difference in heat propagation. Full article
Show Figures

Figure 1

13 pages, 5805 KB  
Article
Study on the Effect of the Plunging Depth of Stirring Pin on the Performance of 6061-T6 Aluminum Alloy Refill Friction Stir Spot Welded Zone
by Di Jiang, Igor Kolupaev, Hongfeng Wang and Xiaole Ge
Materials 2025, 18(16), 3921; https://doi.org/10.3390/ma18163921 - 21 Aug 2025
Cited by 1 | Viewed by 824
Abstract
In this study, under varying PDSP (plunging depths of stirring pin) and process parameters, refill friction stir spot welding tests were performed on 6061-T6 aluminum alloy, relying on a stirring tool with a 12 mm sleeve diameter and an 8 mm stirring pin [...] Read more.
In this study, under varying PDSP (plunging depths of stirring pin) and process parameters, refill friction stir spot welding tests were performed on 6061-T6 aluminum alloy, relying on a stirring tool with a 12 mm sleeve diameter and an 8 mm stirring pin diameter. The results manifested the internal defects in the weld zone when PDSP was 0, notwithstanding the alterations in process parameters. However, these flaws disappeared when PDSP was 0.5 mm and 1 mm. In the weld zone, PDSP exerted a dramatic effect on the internal metal flow state, particularly the curvature of the “Hook” shape and the width of the bonding ligament. It changed the downward bending of the ‘Hook’ into an upward one, influencing the fracture behavior of the weld zone and elevating the ULSF (ultimate lap shear force) by up to 20% (PDSP = 0.5 mm, welding speed = 30 mm/min, rotation speed is 1200 rpm). Besides, the PDSP intensified the PAZ (pin affected zone) pressure, induced more metal flowing into the SAZ (sleeve affected zone), thus reinforced the SAZ-TMAZ(thermomechanically affected zone) bonding strength, and upgraded the region’s microhardness. In summary, the PDSP is commendable for bolstering the weld zone’s performance, but excessively large PDSP values incur drastic indentations in the PAZ, which diminish the ULSF. Full article
Show Figures

Figure 1

18 pages, 1055 KB  
Article
Investigation of the Internal Structure of Hard-to-Reach Objects Using a Hybrid Algorithm on the Example of Walls
by Rafał Brociek, Józef Szczotka, Mariusz Pleszczyński, Francesca Nanni and Christian Napoli
Entropy 2025, 27(5), 534; https://doi.org/10.3390/e27050534 - 16 May 2025
Viewed by 622
Abstract
The article presents research on the application of computed tomography with an incomplete dataset to the problem of examining the internal structure of walls. The case of incomplete information in computed tomography often occurs in various applications, e.g., when examining large objects or [...] Read more.
The article presents research on the application of computed tomography with an incomplete dataset to the problem of examining the internal structure of walls. The case of incomplete information in computed tomography often occurs in various applications, e.g., when examining large objects or when examining hard-to-reach objects. Algorithms dedicated to this type of problem can be used to detect anomalies (defects, cracks) in the walls, among other artifacts. Situations of this type may occur, for example, in old buildings, where special caution should be exercised. The approach presented in the article consists of a non-standard solution to the problem of reconstructing the internal structure of the tested object. The classical approach involves constructing an appropriate system of equations based on X-rays, the solution of which describes the structure. However, this approach has a drawback: solving such systems of equations is computationally very complex, because the algorithms used, combined with incomplete information, converge very slowly. In this article, we propose a different approach that eliminates this problem. To simulate the structure of the tested object, we use a hybrid algorithm that is a combination of a metaheuristic optimization algorithm (Group Teaching Optimization Algorithm) and a numerical optimization method (Hook-Jeeves method). In order to solve the considered inverse problem, a functional measuring the fit of the model to the measurement data is created. The hybrid algorithm presented in this paper was used to find the minimum of this functional. This paper also shows computational examples illustrating the effectiveness of the algorithms. Full article
(This article belongs to the Special Issue Inverse Problems: Advanced Methods and Innovative Applications)
Show Figures

Figure 1

17 pages, 22554 KB  
Article
Static and Fatigue Strength of Graphene Nanoplatelet-Reinforced AA6061-T6 Friction Stir Spot-Welded Lap Joints
by Amir Alkhafaji, Daniel Camas and Hayder Al-Asadi
J. Manuf. Mater. Process. 2025, 9(3), 98; https://doi.org/10.3390/jmmp9030098 - 18 Mar 2025
Cited by 2 | Viewed by 1213
Abstract
Despite the significant economic and environmental advantages of friction stir spot welding (FSSW) and its amazing results in welding similar and dissimilar metals and alloys, some of which were known as unweldable, it has some structural and characteristic defects such as keyhole formation, [...] Read more.
Despite the significant economic and environmental advantages of friction stir spot welding (FSSW) and its amazing results in welding similar and dissimilar metals and alloys, some of which were known as unweldable, it has some structural and characteristic defects such as keyhole formation, hook defects, and bond line oxidation. This has prompted researchers to focus on these defects and propose and investigate techniques to treat or compensate for their deteriorating effects on microstructural and mechanical properties under different loading conditions. In this experimental study, sheets of AA6061-T6 aluminum alloy with a thickness of 1.8 mm were employed to investigate the influence of reinforcement by graphene nanoplatelets (GNPs) with lateral sizes of 1–10 µm and thicknesses of 3–9 nm on the static and fatigue behavior of FSSW lap joints. The welding process was carried out with constant, predetermined welding parameters and a constant amount of nanofiller throughout the experiment. Cross-sections of as-welded specimens were tested by optical microscope (OM) and energy-dispersive spectroscopy (EDS) to ensure the incorporation of the nanographene into the matrix of the base alloy by measuring the weight percentage (wt.%) of carbon. Microhardness and tensile tests revealed a significant improvement in both tensile shear strength and micro-Vickers hardness due to the reinforcement process. The fatigue behavior of the GNP-reinforced FSSW specimens was evaluated under low and high cycle fatigue conditions. The reinforcement process had a detrimental effect on the fatigue life of the joints under cyclic loading conditions. The microstructural analysis and examinations conducted during this study revealed that this reduction in fatigue strength is attributed to the agglomeration of GNPs at the grain boundaries of the aluminum matrix, leading to porosity in the stir zone (SZ), the formation of continuous brittle phases, and a transition in the fracture mechanism from ductile to brittle. The experimental results, including fracture modes, are presented and thoroughly discussed. Full article
Show Figures

Figure 1

21 pages, 22532 KB  
Article
Influence of Rotational Speed on the Microstructure and Mechanical Properties of Refill Friction Stir Spot Welded Pure Copper
by Xiaole Ge, I. N. Kolupaev, Di Jiang, Weiwei Song and Hongfeng Wang
Crystals 2025, 15(3), 268; https://doi.org/10.3390/cryst15030268 - 13 Mar 2025
Cited by 4 | Viewed by 1206
Abstract
Refill friction stir spot welding (RFSSW) is an effective technique for achieving high-quality joints in metallic materials, with rotational speed being a critical parameter influencing joint quality. Current research on RFSSW has primarily focused on low-melting-point materials such as aluminum alloys, while limited [...] Read more.
Refill friction stir spot welding (RFSSW) is an effective technique for achieving high-quality joints in metallic materials, with rotational speed being a critical parameter influencing joint quality. Current research on RFSSW has primarily focused on low-melting-point materials such as aluminum alloys, while limited attention has been given to pure copper, a material characterized by its high-melting-point and high-thermal-conductivity. This study aims to investigate the effects of rotational speed on the microstructure and mechanical properties of RFSSW joints in pure copper. To achieve this goal, welding experiments were conducted at five rotational speeds. The welding defects, microstructure, and hook morphology of the welded joints were analyzed, while the variations in axial force and torque during welding were studied. The influence of rotational speed on the microhardness and tensile-shear failure load of the welded joints was explored, and the fracture modes of the welded joints at different rotational speeds were discussed. The results indicated that the primary welding defects were incomplete refill and surface unevenness. Higher rotational speeds resulted in coarser microstructures in the stir zones. As the rotational speed increased, the hook height progressively rose, the peak axial force showed an increasing trend, and the peak torque continuously decreased. The high microhardness points in the welded joints were predominantly located at the top of the sleeve stir zone (S-Zone), while the low microhardness points were observed at the center of the pin stir zone (P-Zone) and in the heat-affected zone (HAZ). The tensile-shear failure load of the welded joints initially increased and then decreased on the whole with the rising rotational speed, peaking at 5229 N at a rotational speed of 1200 rpm. At lower rotational speeds, the fracture type of the welded joints was characterized as plug fracture. Within the rotational speed range of 1200 rpm to 1600 rpm, the fracture type transitioned to upper sheet fracture. The initial fractures under different rotational speeds exhibited ductile fracture. This study contributes to advancing the understanding of RFSSW characteristics in high-melting-point and high-thermal-conductivity materials. Full article
Show Figures

Figure 1

16 pages, 4993 KB  
Article
A Numerical Framework of Simulating Flow-Induced Deformation during Liquid Composite Moulding
by Hatim Alotaibi, Constantinos Soutis, Dianyun Zhang and Masoud Jabbari
J. Compos. Sci. 2024, 8(10), 401; https://doi.org/10.3390/jcs8100401 - 3 Oct 2024
Cited by 3 | Viewed by 4389
Abstract
Fibre deformation (or shearing of yarns) can develop during the liquid moulding of composites due to injection pressures or polymerisation (cross-linking) reactions (e.g., chemical shrinkage). On that premise, this may also induce potential residual stress–strain, warpage, and design defects in the composite part. [...] Read more.
Fibre deformation (or shearing of yarns) can develop during the liquid moulding of composites due to injection pressures or polymerisation (cross-linking) reactions (e.g., chemical shrinkage). On that premise, this may also induce potential residual stress–strain, warpage, and design defects in the composite part. In this paper, a developed numerical framework is customised to analyse deformations and the residual stress–strain of fibre (at a micro-scale) and yarns (at a meso-scale) during a liquid composite moulding (LCM) process cycle (fill and cure stages). This is achieved by linking flow simulations (coupled filling–curing simulation) to a transient structural model using ANSYS software. This work develops advanced User-Defined Functions (UDFs) and User-Defined Scalers (UDSs) to enhance the commercial CFD code with extra models for chemorheology, cure kinetics, heat generation, and permeability. Such models will be hooked within the conservation equations in the thermo-chemo-flow model and hence reflected by the structural model. In doing so, the knowledge of permeability, polymerisation, rheology, and mechanical response can be digitally obtained for more coherent and optimised manufacturing processes of advanced composites. Full article
Show Figures

Figure 1

16 pages, 5272 KB  
Article
Comparative Analysis of Three Different Probe Designs for Reducing Hook Defects in FSW of AA6005-T6 Aluminum Alloy
by Liuyang Qin, Hongxia Zhang, Gongbo Bian, Kewei Li and Peng Dong
Metals 2024, 14(6), 653; https://doi.org/10.3390/met14060653 - 30 May 2024
Cited by 3 | Viewed by 1370
Abstract
Hook defects are common in FSW butt–lap joints, resulting in a significant safety hazard for the parts that suffer cyclic load. In this study, a numerical simulation based on the Euler–Lagrange coupling method was conducted to investigate the formation process of hook defect [...] Read more.
Hook defects are common in FSW butt–lap joints, resulting in a significant safety hazard for the parts that suffer cyclic load. In this study, a numerical simulation based on the Euler–Lagrange coupling method was conducted to investigate the formation process of hook defect during FSW of AA6005-T6 aluminum alloy. The simulation results were validated with experimental data, showing good agreement. The formation of the hook defect is caused by the threads on the probe promoting material flow in the thickness direction. In order to further study the effect of probe morphology on hook defects, three kinds of probe models with different morphology were established and numerically simulated by the CEL method. The simulation results show that all three kinds of probes can reduce the size of the hook. The welds obtained using the left–left probe (LLP) and the three-plane probe (TPP) both exhibit void defects, while the welds obtained by a right–left probe (RLP) have no internal void defects. The experimental results show the same characteristics as the simulation results, and the size of the hook defect is reduced to 58 μm. Full article
(This article belongs to the Special Issue Recent Trends in Friction Stir-Related Manufacturing Technologies)
Show Figures

Figure 1

11 pages, 2015 KB  
Article
Effect of Heat Treatment on Hygroscopicity of Chinese Fir (Cunninghamia lanceolata [Lamb.] Hook.) Wood
by Yulei Gao, Zhu Li, Liyuan Zhao and Jianxiong Lyu
Forests 2024, 15(4), 630; https://doi.org/10.3390/f15040630 - 29 Mar 2024
Cited by 5 | Viewed by 1587
Abstract
Chinese fir (Cunninghamia lanceolata [Lamb.] Hook.) is a widely planted species of plantation forest in China, and heat treatment can improve its dimensional stability defects and improve its performance. The wood samples were heat-treated at various temperatures (160, 180, 200, and 220 [...] Read more.
Chinese fir (Cunninghamia lanceolata [Lamb.] Hook.) is a widely planted species of plantation forest in China, and heat treatment can improve its dimensional stability defects and improve its performance. The wood samples were heat-treated at various temperatures (160, 180, 200, and 220 °C) for 2 h. To clarify the effect of heat treatment on wood hygroscopicity, the equilibrium moisture content (EMC) was measured, the moisture adsorption and desorption rates were determined, the hygroscopic hysteresis was examined, and the Guggenheim, Anderson, and de Boer (GAB) model was fitted to the experimental data. The moisture absorption isotherms of all samples belonged to the Type II adsorption isotherm, but the shape of the desorption isotherm was more linear for heat-treated wood samples, especially when the heat treatment temperature was higher. According to the results analyzed with ANOVA, there were significant differences in equilibrium moisture content between the control samples and the heat-treated samples under the conditions of 30%, 60%, and 95% relative humidity (RH, p < 0.05), and the results of multiple comparisons were similar. The decrease in hygroscopicity was more pronounced in wood treated at higher temperatures. The EMC of the 160–220 °C heat-treated samples of the control samples was 14.00%, 22.37%, 28.95%, and 39.63% lower than that of the control sample at 95% RH. Under low RH conditions (30%), water is taken up mainly via monolayer sorption, and multilayer sorption gradually predominates over monolayer sorption with the increase in RH. The dynamic vapor sorption (DVS) analysis indicated that the heat-treated wood revealed an increase in isotherm hysteresis, which was due to the change in cell wall chemical components and microstructure caused by heat treatment. In addition, the effective specific surface area of wood samples decreased significantly after heat treatment, and the change trend was similar to that of equilibrium moisture content. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

16 pages, 6015 KB  
Review
Pars Interarticularis Fractures Treated with Minimally Invasive Surgery: A Literature Review
by Adrienne Minor, Benjamin R. Klein, Mareshah N. Sowah, Kayla Etienne and Allan D. Levi
J. Clin. Med. 2024, 13(2), 581; https://doi.org/10.3390/jcm13020581 - 19 Jan 2024
Cited by 5 | Viewed by 10458
Abstract
Recurrent stress on the isthmic pars interarticularis often leads to profound injury and symptom burden. When conservative and medical management fail, there are various operative interventions that can be used. The current review details the common clinical presentation and treatment of pars injury, [...] Read more.
Recurrent stress on the isthmic pars interarticularis often leads to profound injury and symptom burden. When conservative and medical management fail, there are various operative interventions that can be used. The current review details the common clinical presentation and treatment of pars injury, with a special focus on the emerging minimally invasive procedures used in isthmic pars interarticularis repair. PubMed and Google Scholar database literature reviews were conducted. The keywords and phrases that were searched include but were not limited to; “history of spondylolysis”, “pars interarticularis”, “pars defect”, “conventional surgical repair of pars”, and “minimally invasive repair of pars”. The natural history, conventional presentation, etiology, risk factors, and management of pars interarticularis injury are discussed by the authors. The surgical interventions described include the Buck’s repair, Morscher Screw-Hook repair, Scott’s Wiring technique, and additional pedicle screw-based repairs. Minimally invasive techniques are also reviewed, including the Levi technique. Surgical intervention has been proven to be safe and effective in managing pars interarticularis fractures. However, minimally invasive techniques often provide additional benefit to patients such as reducing damage of surrounding structures, decreasing postoperative pain, and limiting the time away from sports and other activities. Full article
(This article belongs to the Special Issue Advances in Minimally Invasive Spine Surgery)
Show Figures

Figure 1

11 pages, 3395 KB  
Article
Defect Detection in Solid Timber Panels Using Air-Coupled Ultrasonic Imaging Techniques
by Xiaochuan Jiang, Jun Wang, Ying Zhang and Shenxue Jiang
Appl. Sci. 2024, 14(1), 434; https://doi.org/10.3390/app14010434 - 3 Jan 2024
Cited by 7 | Viewed by 2353
Abstract
This paper reports on investigations of the air-coupled ultrasonic (ACU) method to detect common defects in solid timber panels made of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.). The ACU technology is a non-contact method for nondestructive timber testing with quicker scanning rates [...] Read more.
This paper reports on investigations of the air-coupled ultrasonic (ACU) method to detect common defects in solid timber panels made of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.). The ACU technology is a non-contact method for nondestructive timber testing with quicker scanning rates compared to contact methods. A testbed was set up consisting of commercially available piezo-ceramic ACU transducers and in-house manufactured signal processing circuits. To demonstrate the suitability of the ACU technique, through-transmission measurement results are presented for samples with defects such as knots, wormholes, and cracks. Pulse compression methods (Barker-coded method) were used to improve the power of received signals based on cross-correction algorithms. Results showed defects of timber panels made of Chinese fir can be detected with a thickness of less than 40 mm. Defects larger than 3 mm in diameter could be detected with high precision. Applying the pulse compression method showed better results than using common sine signals as excitation signals since it increased the signal-to-noise ratio, which is especially important for air-coupled measurement of high-attenuation materials like timber materials. The measurement results on reference samples demonstrated that ACU technology is a promising method for timber defect detection, especially for the quality assessment of engineered wood products. Full article
Show Figures

Figure 1

13 pages, 2775 KB  
Article
Axial Force Calculation Model for Completion String with Multiple Point Resistances in Horizontal Well
by Zhen Nie, Shuzhe Shi, Bohong Wu and Xueqin Huang
Processes 2023, 11(9), 2621; https://doi.org/10.3390/pr11092621 - 2 Sep 2023
Cited by 2 | Viewed by 2544
Abstract
Frequent accidents may happen during the string run-down and pull process due to the lack of accuracy in the prediction of string force analysis. In order to precisely predict the completion string axial force in horizontal wells, a new model is established, and [...] Read more.
Frequent accidents may happen during the string run-down and pull process due to the lack of accuracy in the prediction of string force analysis. In order to precisely predict the completion string axial force in horizontal wells, a new model is established, and an in-house software has been developed. The model aims to predict the multiple local resistances that occur at different points on the completion string, which makes up for the technical defects of the commonly used software. It can calculate resistance at different points of the string, which will lead to varying hook load amplification. This method can also predict the axial force of the completion string. By changing the hook load, location, and direction, the resistance can be determined more accurately. Based on the calculation and analysis, the relationship between local resistance, the blocking point, and the amplification factor is also obtained. Furthermore, this model is used to analyze the local resistance of a horizontal well with multiple external packers in the low-permeability Sadi Reservoir of Halfaya Oilfield, Iraq. The recorded data from in-site operations are compared with the predicted results from this model. The results show that the relative errors between the recorded data and model calculation are within the range of 10%, which indicates that the calculated values are reliable. Meanwhile, the results indicate the success of the subsequent completion design and the construction of the oilfield. Full article
Show Figures

Figure 1

11 pages, 3888 KB  
Article
Incidence of Morphological Defects in Sperm of Mice Exposed to Hospital Effluent
by Priyanka Mathur, Kusum Rani, Pradeep Bhatnagar and Swaran Jeet Singh Flora
Toxics 2023, 11(5), 418; https://doi.org/10.3390/toxics11050418 - 29 Apr 2023
Cited by 1 | Viewed by 3186
Abstract
Hospital effluents are loaded with drugs, radioactive elements, pathogens, etc. Effluents from treatment plants at source sites may get mixed up with potable water, leading to numerous detrimental/toxic effects. In this study, efforts were made to investigate the toxic effects of one such [...] Read more.
Hospital effluents are loaded with drugs, radioactive elements, pathogens, etc. Effluents from treatment plants at source sites may get mixed up with potable water, leading to numerous detrimental/toxic effects. In this study, efforts were made to investigate the toxic effects of one such effluent from a local hospital on the reproductive characteristics of mice when orally administered daily for 60 consecutive days. We primarily focused on the changes in the morphology of the sperm and its geometric morphometrics, i.e., sperm head length and width, area, and perimeter, measured using ImageJ software. The incidence of sperm defects was recorded, and variations in the morphometrics were analyzed by one-way ANOVA using Tukey’s post hoc test. A physico-chemical characterization of the water samples was also performed to assess the basic water quality. In summary, the study revealed the critical role of treated water in inducing different abnormalities in sperm, such as the absence of a head, bent necks, abnormal neck attachment, highly coiled tails, and missing tails. Significant differences (p < 0.01 **, p < 0.001 ***) in the morphometrics of spermatozoa with banana heads, hammer heads, missing heads, pin heads, and missing hooks were noted compared to corresponding controls. It could thus be concluded that treated hospital effluent is still inadequately clean and contains significant amounts of toxicants that might be detrimental to sperm quality. Full article
(This article belongs to the Special Issue Environmental Exposure and Reproductive Health)
19 pages, 13515 KB  
Article
A Study of the Essential Parameters of Friction-Stir Spot Welding That Affect the D/W Ratio of SSM6061 Aluminum Alloy
by Chaiyoot Meengam, Yongyuth Dunyakul and Siriporn Kuntongkum
Materials 2023, 16(1), 85; https://doi.org/10.3390/ma16010085 - 22 Dec 2022
Cited by 4 | Viewed by 2583
Abstract
This study aimed to investigate how the depth-to-width (D/W) ratio of the welding area affects the welding quality of the SSM6061 aluminum alloy via the friction-stir spot welding (FSSW) process. The results showed that a higher D/W ratio directly results in better mechanical [...] Read more.
This study aimed to investigate how the depth-to-width (D/W) ratio of the welding area affects the welding quality of the SSM6061 aluminum alloy via the friction-stir spot welding (FSSW) process. The results showed that a higher D/W ratio directly results in better mechanical properties. If the D/W ratio value is high (at 1.494), then this leads to higher tensile shear strength at 2.25 kN. On the other hand, if the D/W ratio values are low (at 1.144), then this reduces tensile shear strength to 1.17 kN. The fracture surface behavior on the ring zone also affects the characteristics of ductile fracture. During Vickers hardness analysis, the hardness profiles are in the shape of a W; the maximum hardness was 71.97 HV, resulting from the rotation speed of 3500 rpm and the dwell time of 28 s, where the hardness of the base metal was at 67.18 HV. Finite element (FEM) analysis indicated that the maximum temperature during simulation was 467 °C in the region near the edge shoulder tool, which is 72.96% of the melting point. According to FEM simulation, the temperature under the tool pin region was 369 °C. The generated heat was sufficient to induce changes in the microstructure. For microstructure changes, the globular grain took on a rosette-like form, and coarse grains were observed in the thermal mechanical affect zone (TMAZ) and in the nugget zone (NZ), transforming in the mix zone. Hooks, kissing bonds, voids, and porosity are the defects found in this experiment. These defects indicate a discontinuity in the NZ that leads to worse mechanical properties. During examination via SEM and energy dispersive X-ray (EDX) analysis, the recrystallization structure from β-Mg2Si IMCs to Al3Mg2 and Al12Mg17 IMCs was observed. The size was reduced to an average width of 1–2 µm and an average length of 2–17 µm. Simultaneously, the oxides from the ambient atmosphere present during welding showed dominant partial elements from SiO2, MgO, and Al2O3. Full article
(This article belongs to the Special Issue Mechanical Properties of Advanced Materials and Structures)
Show Figures

Figure 1

Back to TopTop