Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = homoploid hybrids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2386 KiB  
Article
Phytochemical Characterisation of Sorbus Species: Unveiling Flavonoid Profiles Related to Ploidy and Hybrid Origin
by Emina Korić, Violeta Milutinović, Alma Hajrudinović-Bogunić, Faruk Bogunić, Tatjana Kundaković-Vasović, Irma Gušić, Jelena Radović Selgrad, Kemal Durić and Haris Nikšić
Plants 2025, 14(1), 119; https://doi.org/10.3390/plants14010119 - 3 Jan 2025
Viewed by 1202
Abstract
The genetic, morphological and taxonomic diversity of the genus Sorbus is due to homoploid and polyploid hybridisation, autopolyploidy and apomixis, which also influence the production and diversity of secondary metabolites, especially flavonoids. The aim of this study was to investigate the relationships and [...] Read more.
The genetic, morphological and taxonomic diversity of the genus Sorbus is due to homoploid and polyploid hybridisation, autopolyploidy and apomixis, which also influence the production and diversity of secondary metabolites, especially flavonoids. The aim of this study was to investigate the relationships and variations of flavonoids in terms of hybrid origin and ploidy level between the parental species and their hybrid derivatives. The sampling design included leaf material of the following Sorbus accessions from ten natural localities: parental taxa (di-, tri- and tetraploids of S. aria; diploid S. torminalis and S. aucuparia) and their di-, tri- and tetraploid hybrid derivatives from crosses of S. aria × S. torminalis (subg. Tormaria) as well as the tetraploid S. austriaca and S. bosniaca, which originate from crosses of S. aria × S. aucuparia (subg. Soraria). We analysed the flavonoid profiles from the leaf fractions by LC-MS. A total of 23 flavonoids were identified, including apigenin and luteolin derivatives, which distinguish the hybrid groups from each other. This profiling highlights the distinctiveness of the Tormaria and Soraria accessions and emphasises the potential of the subg. Tormaria for further research on bioactive compounds in biological studies. Full article
(This article belongs to the Special Issue Phytochemistry and Pharmacological Properties of Medicinal Plants)
Show Figures

Figure 1

21 pages, 7593 KiB  
Article
Effects of Microbial Communities on Elevational Gradient Adaptation Strategies of Pinus yunnanensis Franch. and Pinus densata Mast. in a Mixed Zone
by Dejin Mu, Junrong Tang, Nianhui Cai, Shi Chen, Yingnian He, Zijun Deng, Yi Yang, Dan Yang, Yulan Xu and Lin Chen
Forests 2023, 14(4), 685; https://doi.org/10.3390/f14040685 - 27 Mar 2023
Cited by 3 | Viewed by 2187
Abstract
Pinus densata Mast. is considered a homoploid hybrid species that originated from the putative parent species Pinus tabuliformis Carr. and Pinus yunnanensis Franch., but the mechanism of the adaptive differentiation of P. densata and its parents in native habitats has not been reported. [...] Read more.
Pinus densata Mast. is considered a homoploid hybrid species that originated from the putative parent species Pinus tabuliformis Carr. and Pinus yunnanensis Franch., but the mechanism of the adaptive differentiation of P. densata and its parents in native habitats has not been reported. Therefore, the overlapping distribution areas between P. densata and P. yunnanensis in the heart of the Hengduan Mountains were chosen. The adaptive differentiation mechanism of the homoploid hybrids and their parents with respect to the elevational gradient was studied based on the morphological features and the different strategies of recruiting endophytic microbial communities from the rhizosphere soil. The results showed that (1) the height and diameter at breast height were the greatest at 2600 m and 2900 m, and from 2700 m to 2900 m, three-needle pines (P. yunnanensis-like type) transitioned into two-needle pines (P. densata-like type). (2) The recruitment of rhizosphere microbial communities was driven by the C, N, P and pH values which showed significant elevation features. (3) There was a significant difference in the recruitment strategies of endophytes between the P. yunnanensis-like type and P. densata-like type. Pinus densata mainly reduced the recruitment of Mucoromycota (fungi) and increased the recruitment of Proteobacteria (bacteria), which may be related to environmental adaptability, quorum sensing and the metabolism of auxiliary factors and vitamins at high elevations. (4) The root endophytic microbiome was enriched in the rare groups from the rhizosphere soil microbial pool. The results of this study provide new insights and new ideas for environmental adaptability and differentiation in homoploid hybrid speciation. Full article
(This article belongs to the Special Issue Microbial Community Composition and Function in Forest Soil)
Show Figures

Figure 1

25 pages, 718 KiB  
Review
Novel Approaches for Species Concepts and Delimitation in Polyploids and Hybrids
by Elvira Hörandl
Plants 2022, 11(2), 204; https://doi.org/10.3390/plants11020204 - 13 Jan 2022
Cited by 36 | Viewed by 6426
Abstract
Hybridization and polyploidization are important processes for plant evolution. However, classification of hybrid or polyploid species has been notoriously difficult because of the complexity of processes and different evolutionary scenarios that do not fit with classical species concepts. Polyploid complexes are formed via [...] Read more.
Hybridization and polyploidization are important processes for plant evolution. However, classification of hybrid or polyploid species has been notoriously difficult because of the complexity of processes and different evolutionary scenarios that do not fit with classical species concepts. Polyploid complexes are formed via combinations of allopolyploidy, autopolyploidy and homoploid hybridization with persisting sexual reproduction, resulting in many discrete lineages that have been classified as species. Polyploid complexes with facultative apomixis result in complicated net-work like clusters, or rarely in agamospecies. Various case studies illustrate the problems that apply to traditional species concepts to hybrids and polyploids. Conceptual progress can be made if lineage formation is accepted as an inevitable consequence of meiotic sex, which is established already in the first eukaryotes as a DNA restoration tool. The turnaround of the viewpoint that sex forms species as lineages helps to overcome traditional thinking of species as “units”. Lineage formation and self-sustainability is the prerequisite for speciation and can also be applied to hybrids and polyploids. Species delimitation is aided by the improved recognition of lineages via various novel -omics methods, by understanding meiosis functions, and by recognizing functional phenotypes by considering morphological-physiological-ecological adaptations. Full article
Show Figures

Figure 1

15 pages, 1889 KiB  
Article
Morphological and Genome-Wide Evidence of Homoploid Hybridisation in Urospermum (Asteraceae)
by Jaume Pellicer, Manica Balant, Pol Fernández, Roi Rodríguez González and Oriane Hidalgo
Plants 2022, 11(2), 182; https://doi.org/10.3390/plants11020182 - 11 Jan 2022
Cited by 5 | Viewed by 3128
Abstract
The genus Urospermum is distributed in the Mediterranean region and Macaronesia, and has been introduced to other extra-Mediterranean regions. Although the two species constituting the genus, U. dalechampii and U. picroides, are frequently found together, hybrids have so far only been reported [...] Read more.
The genus Urospermum is distributed in the Mediterranean region and Macaronesia, and has been introduced to other extra-Mediterranean regions. Although the two species constituting the genus, U. dalechampii and U. picroides, are frequently found together, hybrids have so far only been reported once, from Morocco. However, we found certain individuals in Catalonia, whose intermediate morphology suggested a potential hybrid origin. In this study, we applied morphological and molecular methods to investigate the origin of those individuals. Intermediate features at phenotype, karyological, cytogenetic, and genomic levels were identified in morphologically intermediate individuals, supporting their homoploid hybrid origin. Chloroplast sequence data suggest that U. dalechampii is the maternal progenitor of the hybrid. Together with the intermediate traits displayed, the lack of fertile seeds suggests that hybrids are probably F1. Future monitoring studies will be, nonetheless, needed to evaluate the extent of hybridisation and its potential impact on the biology of the genus. Full article
(This article belongs to the Special Issue Advances in Genome Size Evolution of Plants)
Show Figures

Figure 1

32 pages, 1403 KiB  
Review
Genomic and Meiotic Changes Accompanying Polyploidization
by Francesco Blasio, Pilar Prieto, Mónica Pradillo and Tomás Naranjo
Plants 2022, 11(1), 125; https://doi.org/10.3390/plants11010125 - 3 Jan 2022
Cited by 31 | Viewed by 5848
Abstract
Hybridization and polyploidy have been considered as significant evolutionary forces in adaptation and speciation, especially among plants. Interspecific gene flow generates novel genetic variants adaptable to different environments, but it is also a gene introgression mechanism in crops to increase their agronomical yield. [...] Read more.
Hybridization and polyploidy have been considered as significant evolutionary forces in adaptation and speciation, especially among plants. Interspecific gene flow generates novel genetic variants adaptable to different environments, but it is also a gene introgression mechanism in crops to increase their agronomical yield. An estimate of 9% of interspecific hybridization has been reported although the frequency varies among taxa. Homoploid hybrid speciation is rare compared to allopolyploidy. Chromosome doubling after hybridization is the result of cellular defects produced mainly during meiosis. Unreduced gametes, which are formed at an average frequency of 2.52% across species, are the result of altered spindle organization or orientation, disturbed kinetochore functioning, abnormal cytokinesis, or loss of any meiotic division. Meiotic changes and their genetic basis, leading to the cytological diploidization of allopolyploids, are just beginning to be understood especially in wheat. However, the nature and mode of action of homoeologous recombination suppressor genes are poorly understood in other allopolyploids. The merger of two independent genomes causes a deep modification of their architecture, gene expression, and molecular interactions leading to the phenotype. We provide an overview of genomic changes and transcriptomic modifications that particularly occur at the early stages of allopolyploid formation. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Figure 1

13 pages, 1928 KiB  
Article
Species Phylogeny versus Gene Trees: A Case Study of an Incongruent Data Matrix Based on Paphiopedilum Pfitz. (Orchidaceae)
by Marcin Górniak, Dariusz L. Szlachetko, Natalia Olędrzyńska, Aleksandra M. Naczk, Agata Mieszkowska, Lidia Boss and Marek S. Ziętara
Int. J. Mol. Sci. 2021, 22(21), 11393; https://doi.org/10.3390/ijms222111393 - 21 Oct 2021
Cited by 5 | Viewed by 2704
Abstract
The phylogeny of the genus Paphiopedilum based on the plastome is consistent with morphological analysis. However, to date, none of the analyzed nuclear markers has confirmed this. Topology incongruence among the trees of different nuclear markers concerns entire sections of the subgenus Paphiopedilum [...] Read more.
The phylogeny of the genus Paphiopedilum based on the plastome is consistent with morphological analysis. However, to date, none of the analyzed nuclear markers has confirmed this. Topology incongruence among the trees of different nuclear markers concerns entire sections of the subgenus Paphiopedilum. The low-copy nuclear protein-coding gene PHYC was obtained for 22 species representing all sections and subgenera of Paphiopedilum. The nuclear-based phylogeny is supported by morphological characteristics and plastid data analysis. We assumed that an incongruence in nuclear gene trees is caused by ancestral homoploid hybridization. We present a model for inferring the phylogeny of the species despite the incongruence of the different tree topologies. Our analysis, based on six low-copy nuclear genes, is congruent with plastome phylogeny and has been confirmed by phylogenetic network analysis. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 1961 KiB  
Review
The Evolutionary History, Diversity, and Ecology of Willows (Salix L.) in the European Alps
by Natascha D. Wagner, Li He and Elvira Hörandl
Diversity 2021, 13(4), 146; https://doi.org/10.3390/d13040146 - 30 Mar 2021
Cited by 27 | Viewed by 7745
Abstract
The genus Salix (willows), with 33 species, represents the most diverse genus of woody plants in the European Alps. Many species dominate subalpine and alpine types of vegetation. Despite a long history of research on willows, the evolutionary and ecological factors for this [...] Read more.
The genus Salix (willows), with 33 species, represents the most diverse genus of woody plants in the European Alps. Many species dominate subalpine and alpine types of vegetation. Despite a long history of research on willows, the evolutionary and ecological factors for this species richness are poorly known. Here we will review recent progress in research on phylogenetic relationships, evolution, ecology, and speciation in alpine willows. Phylogenomic reconstructions suggest multiple colonization of the Alps, probably from the late Miocene onward, and reject hypotheses of a single radiation. Relatives occur in the Arctic and in temperate Eurasia. Most species are widespread in the European mountain systems or in the European lowlands. Within the Alps, species differ ecologically according to different elevational zones and habitat preferences. Homoploid hybridization is a frequent process in willows and happens mostly after climatic fluctuations and secondary contact. Breakdown of the ecological crossing barriers of species is followed by introgressive hybridization. Polyploidy is an important speciation mechanism, as 40% of species are polyploid, including the four endemic species of the Alps. Phylogenomic data suggest an allopolyploid origin for all taxa analyzed so far. Further studies are needed to specifically analyze biogeographical history, character evolution, and genome evolution of polyploids. Full article
(This article belongs to the Special Issue Diversity, Ecology and Conservation of Alpine Plants)
Show Figures

Figure 1

24 pages, 995 KiB  
Opinion
Apomixis Technology: Separating the Wheat from the Chaff
by Diego Hojsgaard
Genes 2020, 11(4), 411; https://doi.org/10.3390/genes11040411 - 10 Apr 2020
Cited by 28 | Viewed by 6999
Abstract
Projections indicate that current plant breeding approaches will be unable to incorporate the global crop yields needed to deliver global food security. Apomixis is a disruptive innovation by which a plant produces clonal seeds capturing heterosis and gene combinations of elite phenotypes. Introducing [...] Read more.
Projections indicate that current plant breeding approaches will be unable to incorporate the global crop yields needed to deliver global food security. Apomixis is a disruptive innovation by which a plant produces clonal seeds capturing heterosis and gene combinations of elite phenotypes. Introducing apomixis into hybrid cultivars is a game-changing development in the current plant breeding paradigm that will accelerate the generation of high-yield cultivars. However, apomixis is a developmentally complex and genetically multifaceted trait. The central problem behind current constraints to apomixis breeding is that the genomic configuration and molecular mechanism that initiate apomixis and guide the formation of a clonal seed are still unknown. Today, not a single explanation about the origin of apomixis offer full empirical coverage, and synthesizing apomixis by manipulating individual genes has failed or produced little success. Overall evidence suggests apomixis arise from a still unknown single event molecular mechanism with multigenic effects. Disentangling the genomic basis and complex genetics behind the emergence of apomixis in plants will require the use of novel experimental approaches benefiting from Next Generation Sequencing technologies and targeting not only reproductive genes, but also the epigenetic and genomic configurations associated with reproductive phenotypes in homoploid sexual and apomictic carriers. A comprehensive picture of most regulatory changes guiding apomixis emergence will be central for successfully installing apomixis into the target species by exploiting genetic modification techniques. Full article
(This article belongs to the Special Issue Molecular Basis of Apomixis in Plants)
Show Figures

Graphical abstract

61 pages, 1691 KiB  
Review
Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes
by Jon Mark Scriber
Insects 2014, 5(1), 1-61; https://doi.org/10.3390/insects5010001 - 24 Dec 2013
Cited by 21 | Viewed by 11000
Abstract
Comprising 50%–75% of the world’s fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not [...] Read more.
Comprising 50%–75% of the world’s fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience) may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including “invasive species” in various ecosystems as they may become disrupted in different ways by rapid climate change. “Invasive genes” (into new species and populations) need to be recognized for their positive creative potential and addressed in conservation programs. “Genetic rescue” via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae) with their long-term historical data base (phylogeographical diversity changes) and recent (3-decade) climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced “reshuffling” (recombinations) of species composition, genotypes, and genomes may become increasingly ecologically and evolutionarily predictable, but future conservation management programs are more likely to remain constrained by human behavior than by lack of academic knowledge. Full article
(This article belongs to the Special Issue Insect Conservation and Diversity)
Show Figures

Graphical abstract

Back to TopTop