Phytochemical Characterisation of Sorbus Species: Unveiling Flavonoid Profiles Related to Ploidy and Hybrid Origin
Abstract
:1. Introduction
2. Results
2.1. Ploidy Level
2.2. Mass Spectrometric Identification of Flavonoid Compounds
2.2.1. Flavones
2.2.2. Flavonols
2.2.3. Methylated Flavonols
2.3. Quantitative Analysis of Flavonoids
2.4. Pattern of Flavonoid Variation and Relationships Among the Studied Sorbus Samples
3. Discussion
3.1. Novel Flavonoid Compounds in the Leaves of Sorbus Accessions
3.2. Potential Discrimination of Subgenera and Lower Taxa in Sorbus: Influence of Flavonoid Profile on Hybridisation and Ploidy Level
3.3. No Polyploid Effect on Flavonoid Profiles in S. aria Cytotypes
4. Materials and Methods
4.1. Plant Material
4.2. Determination of Ploidy Level
4.3. Sample Preparation for LC-MS Analysis
4.4. LC-MS Analysis
4.5. Chemicals and Reagents
4.6. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anunciato, T.P.; da Rocha Filho, P.A. Carotenoids and polyphenols in nutricosmetics, nutraceuticals, and cosmeceuticals. J. Cosmet Dermatol. 2012, 11, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Shukla, S. Impact of various factors responsible for fluctuation in plant secondary metabolites. J. Appl. Res. Med. Aromat. Plants. 2015, 2, 105513. [Google Scholar] [CrossRef]
- Zymone, K.; Raudone, L.; Raudonis, R.; Marksa, M.; Ivanauskas, L.; Janulis, V. Phytochemical profiling of fruit powders of twenty Sorbus L. cultivars. Molecules 2018, 23, 2593. [Google Scholar] [CrossRef]
- Robertson, A.; Rich, T.C.; Allen, A.M.; Houston, L.; Roberts, C.A.; Bridle, J.R.; Harris, S.A.; Hiscock, S.J. Hybridization and polyploidy as drivers of continuing evolution and speciation in Sorbus. Mol. Ecol. 2010, 19, 1675–1690. [Google Scholar] [CrossRef]
- Lepší, M.; Koutecký, P.; Nosková, J.; Lepší, P.; Urfus, T.; Rich, T.C. Versatility of reproductive modes and ploidy level interactions in Sorbus s.l. (Malinae, Rosaceae). Bot. J. Linn. Soc. 2019, 191, 502–522. [Google Scholar] [CrossRef]
- Kurtto, A.K.; Sennikov, A.N.; Lampinen, R.E. Distribution of vascular plants in Europe: 17. Rosaceae (Sorbus s. lato). In Atlas Florae Europaeae, 1st ed.; The Committee for Mapping the Flora of Europe & Societas Biologica Fennica Vanamo: Helsinki, Finland, 2018. [Google Scholar]
- Sennikov, A.N.; Kurtto, A. A phylogenetic checklist of Sorbus s.l. (Rosaceae) in Europe. Memo. Soc. Fauna Flora Fenn. 2017, 93, 1–78. [Google Scholar]
- Rich, T.C.G.; Houston, L.; Robertson, A.; Proctor, M.C.F. Whitebeams, rowans and service trees of Britain and Ireland: A monograph of British and Irish ’Sorbus’ L. In A monograph of British and Irish Sorbus L., 1st ed.; B.S.B.I. Handbook No. 14; Botanical Society of the British Isles: London, UK, 2010. [Google Scholar]
- Lo, E.Y.Y.; Donoghue, M.J. Expanded phylogenetic and dating analyses of the apples and their relatives (Pyreae, Rosaceae). Mol. Phylogen. Evol. 2012, 63, 230–243. [Google Scholar] [CrossRef]
- Potter, D.; Eriksson, T.; Evans, R.C.; Oh, S.; Smedmark, J.E.E.; Morgan, D.R.; Kerr, M. Phylogeny and classification of Rosaceae. Plant Syst. Evol. 2007, 266, 5–43. [Google Scholar] [CrossRef]
- Meyer, N.; Meierott, L.; Schuwerk, H.; Angerer, O. Beiträge zur Gattung Sorbus in Bayern; Sonderband der Berichte der Bayerischen Botanischen Gesellschaft: München, Germany, 2005. [Google Scholar]
- Kurtto, A. Rosaceae (pro parte majore). In Euro+Med Plantbase—The Information Resource for Euro-Mediterranean Plant Diversity. 2009. Available online: http://www.europlusmed.org (accessed on 26 December 2024).
- Hamston, T.J.; De Vere, N.; King, R.A.; Pellicer, J.; Fay, M.F.; Cresswell, J.E.; Stevens, J.R. Apomixis and hybridization drives reticulate evolution and phyletic differentiation in Sorbus L. Implications for conservation. Front. Plant. Sci. 2018, 9, 1796. [Google Scholar] [CrossRef]
- Hajrudinović, A.; Siljak-Yakovlev, S.; Brown, S.C.; Pustahija, F.; Bourge, M.; Ballian, D.; Bogunić, F. When sexual meets apomict: Genome size, ploidy level and reproductive mode variation of Sorbus aria s.l. and S. austriaca (Rosaceae) in Bosnia and Herzegovina. Ann. Bot. 2015, 116, 301–312. [Google Scholar] [CrossRef]
- Sołtys, A.; Galanty, A.; Podolak, I. Ethnopharmacologically important but underestimated genus Sorbus: A comprehensive review. Phytochem. Rev. 2020, 19, 491–526. [Google Scholar] [CrossRef]
- Kumar, S. Impact of ploidy changes on secondary metabolites productions in plants. In Evolutionary Diversity as a Source for Anticancer Molecules; Academic Press: Cambridge, MA, USA, 2021; pp. 29–46. [Google Scholar] [CrossRef]
- Cheng, D.; Vrieling, K.; Klinkhamer, P.G. The effect of hybridization on secondary metabolites and herbivore resistance: Implications for the evolution of chemical diversity in plants. Phytochem. Rev. 2011, 10, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Ćavar Zeljković, S.; Siljak-Yakovlev, S.; Tan, K.; Maksimović, M. Chemical composition and antioxidant activity of Geranium macrorrhizum in relation to ploidy level and environmental conditions. Plant Syst. Evol. 2020, 306, 18. [Google Scholar] [CrossRef]
- Raudonė, L.; Raudonis, R.; Gaivelytė, K.; Pukalskas, A.; Viškelis, P.; Venskutonis, P.R.; Janulis, V. Phytochemical and antioxidant profiles of leaves from different Sorbus L. species. Nat. Prod. Res. 2015, 29, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Raudonis, R.; Raudonė, L.; Gaivelytė, K.; Viškelis, P.; Janulis, V. Phenolic and antioxidant profiles of rowan (Sorbus L.) fruits. Nat. Prod. Res. 2014, 28, 1231–1240. [Google Scholar] [CrossRef]
- Ak, G.; Tüfekci, E.F.; Mustafa, A.M.; Caprioli, G.; Altunoglu, Y.C.; Baloglu, M.C.; Cakılcıoglu, U.; Polat, R.; Darendelioglu, E.; Zengin, G. Exploring Sorbus torminalis leaves: Unveiling a promising natural resource for diverse chemical and biological applications. Chem. Biodivers. 2024, 21, e202400233. [Google Scholar] [CrossRef]
- Tian, Y.; Liimatainen, J.; Alanne, A.L.; Lindstedt, A.; Liu, P.; Sinkkonen, J.; Kallio, H.; Yang, B. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chem. 2017, 220, 266–281. [Google Scholar] [CrossRef]
- Rutkowska, M.; Owczarek-Januszkiewicz, A.; Magiera, A.; Gieleta, M.; Olszewska, M.A. Chemometrics-driven variability evaluation of phenolic composition, antioxidant capacity, and α-glucosidase inhibition of Sorbus aucuparia L. fruits from Poland: Identification of variability markers for plant material valorization. Antioxidants 2023, 12, 1967. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, Y.; Li, H.; Zhao, Y.; Cai, E.; Zhu, H.; Li, P.; Liu, J. Triterpenoids from fruits of Sorbus pohuashanensis inhibit acetaminophen-induced acute liver injury in mice. Biomed. Pharmacother. 2019, 109, 493–502. [Google Scholar] [CrossRef]
- Sarv, V.; Venskutonis, P.R.; Bhat, R. The Sorbus spp.—Underutilized plants for foods and nutraceuticals: Review on polyphenolic phytochemicals and antioxidant potential. Antioxidants 2020, 9, 813. [Google Scholar] [CrossRef]
- Mrkonjić, Z.; Nadpal, J.D.; Beara, I.; Aleksić-Sabo, V.S.; Cetojević-Simin, D.D.; Mimica-Dukić, N.; Lesjak, M. Phenolic profiling and bioactivities of fresh fruits and jam of Sorbus species. J. Serb. Chem. Soc. 2017, 82, 651–664. [Google Scholar] [CrossRef]
- Kim, C.S.; Oh, J.; Subedi, L.; Kim, S.Y.; Choi, S.U.; Lee, K.R. Two new phenolic glycosides from Sorbus commixta. Chem. Pharm. Bull. 2018, 66, 839–842. [Google Scholar] [CrossRef] [PubMed]
- Kavak, D.D.; Akdeniz, B. Sorbus umbellata (Desf.) Fritsch var. umbellata leaves: Optimization of extraction conditions and investigation antimicrobial, cytotoxic, and β-glucuronidase inhibitory potential. Plant Foods. Human Nutr. 2019, 74, 364–369. [Google Scholar] [CrossRef]
- Forino, M.; Tenore, G.C.; Tartaglione, L.; Novellino, E.; Ciminiello, P. (1S, 3R, 4S, 5R) 5-O-Caffeoylquinic acid: Isolation, stereo-structure characterization and biological activity. Food Chem. 2015, 178, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Shang, N.; Saleem, A.; Musallam, L.; Walshe-Roussel, B.; Badawi, A.; Cuerrier, A.; Arnason, J.T.; Haddad, P.S. Novel approach to identify potential bioactive plant metabolites: Pharmacological and metabolomics analyses of ethanol and hot water extracts of several Canadian medicinal plants of the Cree of Eeyou Istchee. PLoS ONE 2015, 10, e0135721. [Google Scholar] [CrossRef]
- Kim, C.S.; Suh, W.S.; Subedi, L.; Kim, S.Y.; Choi, S.U.; Lee, K.R. Neuroprotective fatty acids from the stem bark of Sorbus commixta. Lipids 2016, 51, 989–995. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Z.; Shu, Z.; Li, Z.; Ning, Y.; Yun, K.; Bai, H.; Liu, R.; Liu, W. Effect and mechanism of Sorbus pohuashanensis (Hante) Hedl. flavonoids protect against arsenic trioxide-induced cardiotoxicity. Biomed. Pharmacother. 2017, 88, 1–10. [Google Scholar] [CrossRef]
- Marin, P.D. Biohemijska i Molekularna Sistematika Biljaka; NNK International: Toronto, ON, Canada, 2003. [Google Scholar]
- López-Caamal, A.; Tovar-Sánchez, E. Genetic, morphological, and chemical patterns of plant hybridization. Rev. Chil. Hist. Nat. 2014, 87, 16. [Google Scholar] [CrossRef]
- Radović Selgrad, J.; Milutinović, V.; Suručić, R.; Samardžić, S.; Kopanja, Đ.; Kundaković-Vasović, T. Enzyme inhibitory activities, phenolic profile, and in silico studies of Sorbus torminalis tree bark methanol extract. Chem. Biodivers. 2024, 21, e202401459. [Google Scholar] [CrossRef]
- Karakousi, C.V.; Xanthippi, B.; Theano, S.; Eugene, K. Phytochemical analysis, antioxidant and ALR2 Inhibitory activity of Sorbus torminalis (L.) fruits at different maturity stages. Fitoterapia 2024, 175, 105863. [Google Scholar] [CrossRef]
- Rutkowska, M.; Kolodziejczyk-Czepas, J.; Owczarek, A.; Zakrzewska, A.; Magiera, A.; Olszewska, M.A. Novel insight into biological activity and phytochemical composition of Sorbus aucuparia L. fruits: Fractionated extracts as inhibitors of protein glycation and oxidative/nitrative damage of human plasma components. Food Res. Int. 2021, 147, 110526. [Google Scholar] [CrossRef] [PubMed]
- Šavikin, K.P.; Zdunić, G.M.; Krstić-Milošević, D.B.; Šircelj, H.J.; Stešević, D.D. Sorbus aucuparia and Sorbus aria as a source of Antioxidant Phenolics, Tocopherols, and Pigments. Chem. Biodivers. 2017, 14, e1700329. [Google Scholar] [CrossRef] [PubMed]
- Olszewska, M.A.; Presler, A.; Michel, P. Profiling of phenolic compounds and antioxidant activity of dry extracts from the selected Sorbus species. Molecules 2012, 17, 3093–3113. [Google Scholar] [CrossRef]
- Olszewska, M.A.; Nowak, S.; Michel, P.; Banaszczak, P.; Kicel, A. Assessment of the content of phenolics and antioxidant action of inflorescences and leaves of selected species from the genus Sorbus sensu stricto. Molecules 2010, 15, 8769–8783. [Google Scholar] [CrossRef]
- Gaivelyte, K.; Jakstas, V.; Razukas, A.; Janulis, V. Variation of quantitative composition of phenolic compounds in rowan (Sorbus aucuparia L.) leaves during the growth season. Nat. Prod. Res. 2014, 28, 1018–1020. [Google Scholar] [CrossRef]
- Bujor, A.; Miron, A.; Luca, S.V.; Skalicka-Wozniak, K.; Silion, M.; Ancuceanu, R.; Dinu, M.; Girard, C.; Demougeot, C.; Totoson, P. Metabolite profiling, arginase inhibition and vasorelaxant activity of Cornus mas, Sorbus aucuparia and Viburnum opulus fruit extracts. Food Chem. Toxicol. 2019, 133, 110764. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Al-Omar, M.S.; Khan, R.A.; Mohammed, S.A.A.; Qureshi, K.A.; Abbas, M.M.; Al Rugaie, O.; Abd-Elmoniem, E.; Ahmad, A.M.; Kandil, Y.I. Chemical Profile, Antioxidant, Antimicrobial, and Anticancer Activities of the Water-Ethanol Extract of Pulicaria undulata Growing in the Oasis of Central Saudi Arabian Desert. Plants 2021, 10, 1811. [Google Scholar] [CrossRef]
- Candela, L.; Formato, M.; Crescente, G.; Piccolella, S.; Pacifico, S. Coumaroyl Flavonol Glycosides and More in Marketed Green Teas: An Intrinsic Value beyond Much-Lauded Catechins. Molecules 2020, 25, 1765. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Krska, B.; Kiprovski, B.; Veberic, R. Bioactive components and antioxidant capacity of fruits from nine Sorbus genotypes. J. Food Sci. 2017, 82, 647–658. [Google Scholar] [CrossRef]
- Kachlicki, P.; Piasecka, A.; Stobiecki, M.; Marczak, Ł. Structural characterization of flavonoid glycoconjugates and their derivatives with mass spectrometric techniques. Molecules 2016, 21, 1494. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gu, M.; Mao, J.; Liu, J.; Fan, S.; Zhang, H.; Liu, Q. Phytochemical study: Fragmentation patterns of flavonoid-C-glycosides in the enriched flavonoids from corn silk using high-efficiency ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry. Sep. Sci. Plus 2024, 7, 2300156. [Google Scholar] [CrossRef]
- Mabry, T.J.; Markham, K.R.; Thomas, M.B.; Mabry, T.J.; Markham, K.R.; Thomas, M.B. The Systematic Identification of Flavonoids; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar] [CrossRef]
- Cuyckens, F.; Claeys, M. Mass spectrometry in the structural analysis of flavonoids. J. Mass Spectrom. 2004, 39, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Olszewska, M.A.; Michel, P. Activity-guided isolation and identification of free radical-scavenging components from various leaf extracts of Sorbus aria (L.) Crantz. Nat. Prod. Res. 2012, 26, 243–254. [Google Scholar] [CrossRef]
- Chester, M.; Cowan, S.C.; Fay, M.; Rich, C.G.T. Parentage of endemic Sorbus L. (Rosaceae) species in the British Isles: Evidence from plastid DNA. Bot. Linn. Soc. 2007, 154, 291–304. [Google Scholar] [CrossRef]
- Feulner, M.; Pointner, S.; Heuss, L.; Aas, G.; Paule, J.; Dötterl, S. Floral scent and its correlation with AFLP data in Sorbus. Org. Divers. Evol. 2014, 14, 339–348. [Google Scholar] [CrossRef]
- Hajrudinović-Bogunić, A.; Frajman, B.; Schönswetter, P.; Siljak-Yakovlev, S.; Bogunić, F. Apomictic mountain whitebeam (Sorbus austriaca, Rosaceae) comprises several genetically and morphologically divergent lineages. Biology 2023, 12, 380. [Google Scholar] [CrossRef]
- Robertson, A.; Newton, A.C.; Ennos, R.A. Multiple hybrid origins, genetic diversity and population genetic structure of two endemic Sorbus taxa on the Isle of Arran, Scotland. Mol. Ecol. 2004, 13, 123–134. [Google Scholar] [CrossRef]
- Ludwig, S.; Robertson, A.; Rich, T.C.; Djordjevic, M.; Cerovic, R.; Houston, L.; Harris, S.A.; Hiscock, S.J. Breeding systems, hybridization and continuing evolution in Avon Gorge Sorbus. Ann. Bot. 2013, 111, 563–575. [Google Scholar] [CrossRef]
- Hajrudinović, A.; Frajman, B.; Schönswetter, P.; Silajdžić, E.; Siljak-Yakovlev, S.; Bogunić, F. Towards a better understanding of polyploid Sorbus (Rosaceae) from Bosnia and Herzegovina (Balkan Peninsula), including description of a novel, tetraploid apomictic species. Bot. J. Linn. 2015, 178, 670–685. [Google Scholar] [CrossRef]
- Hegarty, M.J.; Hiscock, S.J. Genomic clues to the evolutionary success of polyploid plants. Curr. Biol. 2008, 18, R435–R444. [Google Scholar] [CrossRef] [PubMed]
- Weiss-Schneeweiss, H.; Emadzade, K.; Jang, T.S.; Schneeweiss, G.M. Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenet. Genome Res. 2013, 140, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Liga, S.; Paul, C.; Peter, F. Flavonoids: Overview of Biosynthesis, Biological Activity, and Current Extraction Techniques. Plants 2023, 12, 2732. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.M.; Šamec, D.; Tomczyk, M.; Milella, L.; Russo, D.; Habtemariam, S.; Suntar, I.; Rastrelli, L.; Daglia, M.; Xiao, J.; et al. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol. Adv. 2020, 38, 107316. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, S.C.; Ge-Ling, C.; McArthur, E.D.; Stutz, H. Evolutionary loss of flavonoids and other chemical characteristic in the Chenopodiaceae. Biochem. Syst. And Ecol. 1988, 16, 143–149. [Google Scholar] [CrossRef]
- Orians, C.M. The effects of hybridization in plants on secondary chemistry: Implications for the ecology and evolution of plant-herbivore interactions. Am. J. Bot. 2000, 87, 1749–1756. [Google Scholar] [CrossRef]
- Reiseberg, L.H.; Ellstrand, N.C.; Arnold, M. What Can Molecular and Morphological Markers Tell Us About Plant Hybridization? Crit. Rev. Plant Sci. 1993, 12, 213–241. [Google Scholar] [CrossRef]
- Hallgren, P.; Ikonen, A.; Hjalten, J.; Roininen, H. Inheritance patterns of phenolics in F1, F2, and back-cross hybrids of willows: Implications for herbivore responses to hybrid plants. J. Chem. Ecol. 2003, 29, 1143–1158. [Google Scholar] [CrossRef]
- Caruso, I.; Lepore, L.; De Tommasi, N.; Piaz, F.D.; Frusciante, L.; Aversano, R.; Garramone, R.; Carputo, D. Secondary metabolite profile in induced tetraploids of wild Solanum commersonii Dun. Chem. Biodivers. 2011, 8, 2226–2237. [Google Scholar] [CrossRef]
- Gaynor, M.L.; Lim-Hing, S.; Mason, C.M. Impact of genome duplication on secondary metabolite composition in non-cultivated species: A systematic meta-analysis. Ann. Bot. 2020, 126, 363–376. [Google Scholar] [CrossRef]
- McCarthy, E.W.; Berardi, A.E.; Smith, S.D.; Litt, A. Related allopolyploids display distinct floral pigment profiles and transgressive pigments. Am. J. Bot. 2017, 104, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Qu, Y.; Wang, S.; Wang, Q.; Shang, X.; Fu, X. An integrative analysis of metabolome and transcriptome reveals the molecular regulatory mechanism of the accumulation of flavonoid glycosides in different Cyclocarya paliurus ploidies. Forests 2023, 14, 770. [Google Scholar] [CrossRef]
- De Jesus-Gonzalez, L.; Weathers, P.J. Tetraploid Artemisia annua hairy roots produce more artemisinin than diploids. Plant Cell Rep. 2003, 21, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.H.; Shi, S.K.; Huang, B.; Chen, J.T. Enhanced agronomic traits and medicinal constituents of autotetraploids in Anoectochilus formosanus Hayata, a top-grade medicinal orchid. Molecules 2017, 22, 1907. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Ouyang, K.; Luo, Y.; Xie, G.; Yang, Y.; Zhang, J. A comparative study of characteristics in diploid and tetraploid Anoectochilus roxburghii. Front. Nutr. 2022, 9, 1034751. [Google Scholar] [CrossRef]
- International Conference on Harmonisation (ICH). ICH Harmonised Tripartite Guideline. In Validation of Analytical Procedures: Text and Methodology Q2 (R1); ICH: Geneva, Switzerland, 2005. [Google Scholar]
- Chen, J.; Ning, S.; Lu, X.; Xiang, W.; Zhou, X.; Bu, Y.; Li, L.; Huang, R. Variation in flavonoid and antioxidant activities of Pyrrosa petiolosa (Christ) Ching from different geographic origins. Front. Plant Sci. 2023, 14, 1173489. [Google Scholar] [CrossRef]
- Velebil, J.; Lepší, M.; Nosková, J.; Lepši, P. Taxonomic assessment of Sorbus subgenus Aria in the Malé Karpaty Mountains. Preslia 2022, 94, 305–334. [Google Scholar] [CrossRef]
- Lavania, U.C.; Srivastava, S.; Lavania, S.; Basu, S.; Misra, N.K.; Mukai, Y. Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation. Plant J. 2012, 71, 539–549. [Google Scholar] [CrossRef]
- Parida, B.P.; Misra, B.B. Is a plant’s ploidy status reflected in its metabolome? J. Postdr. Res. 2015, 1, 11. [Google Scholar] [CrossRef]
- Ranney, T.G. Polyploidy: From evolution to new plant development. Comb. Proc. Int. Plant Propagators’ Soc. 2006, 56, 137–142. [Google Scholar]
- Májovský, J.; Bernátová, D. Nové hybridogénne podrody rodu Sorbus L. emend. Crantz. Acta Horticulturae et Regiotecturae 2001, 4, 20–21. [Google Scholar]
- Marie, D.; Brown, S.C. A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biol. Cell. 1993, 78, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Bourge, M.; Brown, S.C.; Siljak-Yakovlev, S. Flow cytometry as tool in plant sciences, with emphasis on genome size and ploidy level assessment. Genet. Appl. 2018, 2, 1–2. [Google Scholar] [CrossRef]
- Suda, J.; Krahulcová, A.; Trávníek, P.; Krahulec, F. Ploidy level versus DNA ploidy level: An appeal for consistent terminology. Taxon 2006, 55, 447–450. [Google Scholar] [CrossRef]
- Siljak-Yakovlev, S.; Pustahija, F.; Šolić, E.M.; Bogunić, F.; Muratović, E.; Bašić, N.; Catrice, O.; Brown, S.C. Towards a genome size and chromosome number database of Balkan flora: C-values in 343 taxa with novel values for 242. Adv. Sci. Lett. 2010, 3, 190–213. [Google Scholar] [CrossRef]
- Turumtay, H.; Midilli, A.; Turumtay, E.A.; Demir, A.; Selvi, E.K.; Budak, E.E.; Er, H.; Kocaimamoglu, F.; Baykal, H.; Belduz, A.O.; et al. Gram (−) microorganisms DNA polymerase inhibition, antibacterial and chemical properties of fruit and leaf extracts of Sorbus aucuparia and Sorbus caucasica var. yaltirikii. Biomed. Chromatogr. 2017, 31, e3901. [Google Scholar] [CrossRef]
- Elferjane, M.R.; Milutinović, V.; Jovanović Krivokuća, M.; Taherzadeh, M.J.; Pietrzak, W.; Marinković, A.; Jovanović, A.A. Vaccinium myrtillus L. leaf waste as a source of biologically potent compounds: Optimization of polyphenol extractions, chemical profile, and biological properties of the extracts. Pharmaceutics 2024, 16, 740. [Google Scholar] [CrossRef]
- EDQM. European Pharmacopoeia 11.0; European Directorate for the Quality of Medicine & Health Care of the Council of Europe (EDQM): Strasbourg, France, 2023. [Google Scholar]
- Milutinović, V.; Niketić, M.; Krunić, A.; Nikolić, D.; Petković, M.; Ušjak, L.; Petrović, S. Sesquiterpene lactones from the methanol extracts of twenty-eight Hieracium species from the Balkan Peninsula and their chemosystematic significance. Phytochem 2018, 154, 19–30. [Google Scholar] [CrossRef]
- Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967, 27, 209–220. [Google Scholar]
- Hammer, Ø.; Harper, D.A. Past: Paleontological statistics software package for educaton and data analysis. Palaeontol. Electron. 2001, 4, 1–9. Available online: https://www.researchgate.net/publication/259640226 (accessed on 26 December 2024).
No | Rt (min) | λmax (nm) | MW | m/z [M–H]− | Product Ions | Compound |
---|---|---|---|---|---|---|
Flavones | ||||||
2 * | 15.07–15.94 | 270, 338 | 594 | 593 | 226; 473 | Apigenin 6,8-di-C-glucoside (Vicenin) st ** |
4 | 18.76–19.12 | 270, 338 | 564 | 563 | 473 | Apigenin-6-C-glucoside-8-C-arabinoside (Schaftoside) st |
21 | 25.44–25.64 | 268, 338 | 446 | 445 | 269 | Apigenin 7-O-glucuronide st |
10 | 22.22–22.48 | 254, 266sh, 350 | 448 | 447 | 285 | Luteolin 7-O-glucoside (Cynaroside) st |
11 | 22.47–22.74 | 254, 266sh, 350 | 462 | 461 | 285 | Luteolin 7-O-glucuronide st |
20 | 24.78–25.08 | 248, 268sh, 340 | 448 | 447 | 285 | Luteolin hexoside [44] |
Flavanols | ||||||
1 * | 14.99–15.12 | 252, 266sh, 372 | 626 | 625 | 317 | Hydroxyquercetin deoxyhexosyl hexoside [45] |
3 | 17.36–17.76 | 256, 264sh, 354 | 626 | 625 | 301 | Quercetin dihexoside [23] |
5 | 19.97–20.19 | 256, 264sh, 354 | 740 | 739 | 447; 593 | Quercetin trideoxyhexoside |
6 | 20.15–20.69 | 256, 264sh, 354 | 610 | 609 | 301 | Quercetin deoxyhexosyl hexoside [45] |
7 | 20.40–20.73 | 256, 264sh, 354 | 610 | 609 | 301 | Quercetin 3-O-rutinoside (Rutin) st |
8 | 21.28–21.57 | 256, 264sh, 354 | 464 | 463 | 269; 301 | Quercetin 3-O-galactoside (Hyperoside) st |
9 | 21.50–21.96 | 256, 264sh, 354 | 464 | 463 | 269; 301 | Quercetin-3-O-glucoside (Isoquercitrin) st |
12 | 22.67–23.10 | 266, 348 | 594 | 593 | 285 | Kaempferol deoxyhexosylhexoside [45] |
13 | 22.61–22.96 | 256, 264sh, 354 | 596 | 595 | 301; 433 | Quercetin hexosylpentoside [46] |
14 | 22.51–23.38 | 256, 268sh, 356 | 506 | 505 | 301; 463 | Quercetin acetylhexoside [22,46] |
15 | 23.88–24.08 | 256, 264sh, 354 | 434 | 433 | 301 | Quercetin pentoside [22] |
16 | 24.00–24.23 | 266, 348 | 448 | 447 | 285 | Kaempferol 3-O-glucoside (Astragalin) st |
17 | 23.98–24.30 | 256, 264sh, 354 | 448 | 447 | 301 | Quercetin 3-O-rhamnoide (Quercitrin) st |
22 | 25.80–26.27 | 266, 348 | 490 | 489 | 285; 447 | Kaempferol acetylhexoside [46] |
Methylflavonols | ||||||
18 | 23.85–24.17 | 256, 268sh, 356 | 478 | 477 | 271; 301; 315 | Methylquercetin hexoside isomer 1 [46] |
19 | 24.26–24.80 | 256, 268sh, 356 | 478 | 477 | 271; 285; 301; 315 | Methylquercetin hexoside isomer 2 [46] |
23 | 25.98–26.30 | 256, 268sh, 356 | 520 | 519 | 285; 301; 316; 447 | Methylquercetin acethylhexoside [46] |
Taxon | Subgenus | Location | DNA Ploidy Level | Flavones | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Xsr (%) | STD | Xsr (%) | STD | Xsr (%) | STD | Xsr (%) | STD | Xsr (%) | STD | Xsr (%) | STD | ||||||
2 | 4 | 21 | 10 | 11 | 20 | ||||||||||||
S. aria | Aria | Grkarica, Mt. Igman | 2x | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||||||
Bijela gora, Mt. Orjen | 2x | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||||||||
Gradac, Posušje | 2x | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||||||||
Grkarica, Mt. Igman | 3x | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||||||||
Umoljani, Mt. Bjelašnica | 3x | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||||||||
Bijela gora, Mt. Orjen | 3x | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||||||||
Grkarica, Mt. Igman | 4x | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||||||||
Umoljani, Mt. Bjelašnica | 4x | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||||||||
Bijela gora, Mt. Orjen | 4x | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||||||||
S. aucuparia | Sorbus | Veliko polje, Mt. Igman | 2x | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||||||
S. austriaca | Soraria (Sorbus × Aria) | Grkarica, Mt. Igman | 4x | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||||||
Umoljani, Mt. Bjelašnica | 4x | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||||||||
S. bosniaca | Mt. Krug planina | 4x | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |||||||||
S. torminalis × aria | Tormaria (Torminalis × Aria) | Pratača, Lokve | 2x | 0.226 * | 0.015 | trace * | / | 2.414 * | 0.013 | 0.107 * | 0.013 | 0.464 * | 0.005 | 0.161 * | 0.01 | ||
Koznik | 3x | 0.059 * | 0.014 | n.d. | 0.617 * | 0.092 | 0.148 * | 0.012 | 0.348 * | 0.006 | 0.007 * | 0.001 | |||||
Crne lokve, Posušje | 4x | 0.167 * | 0.015 | trace * | / | n.d. | 0.206 * | 0.014 | 0.347 * | 0.005 | 1.224 * | 0.02 | |||||
S. torminalis | Torminaria | Tihovići | 2x | n.d. | trace * | / | 8.913 | 0.124 | 0.186 * | 0.013 | 1.159 * | 0.020 | 0.506 * | 0.007 | |||
Taxon | Subgenus | Location | DNA Ploidy Level | Flavonols | |||||||||||||
Xsr (%) | STD | Xsr (%) | STD | Xsr (%) | STD | Xsr (%) | STD | Xsr (%) | STD | Xsr (%) | STD | Xsr (%) | STD | ||||
1 | 3 | 5 | 6 | 7 | 8 | 9 | |||||||||||
S. aria | Aria | Grkarica, Mt. Igman | 2x | n.d. | n.d. | n.d. | n.d. | 4.738 | 0.022 | n.d. | 1.779 | 0.011 | |||||
Mt. Bijela gora | 2x | n.d. | n.d. | n.d. | n.d. | 0.577 | 0.012 | n.d. | 2.847 | 0.005 | |||||||
Gradac, Posušje | 2x | n.d. | n.d. | n.d. | trace * | / | 1.127 | 0.012 | 0.568 | 0.006 | 3.738 | 0.005 | |||||
Grkarica, Mt. Igman | 3x | n.d. | n.d. | n.d. | n.d. | 7.504 | 0.019 | n.d. | 1.791 | 0.007 | |||||||
Umoljani, Mt. Bjelašnica | 3x | n.d. | n.d. | 0.878 * | 0.003 | trace * | / | 3.555 | 0.008 | 0.249 | 0.007 | 1.586 | 0.003 | ||||
Mt. Bijela gora | 3x | 0.083 * | 0.005 | n.d. | n.d. | n.d. | 3.715 | 0.027 | 0.305 | 0.008 | 1.266 | 0.014 | |||||
Grkarica, Mt. Igman | 4x | n.d. | n.d. | n.d. | n.d. | 4.115 | 0.044 | 0.138 | 0.005 | 1.898 | 0.016 | ||||||
Umoljani, Mt. Bjelašnica | 4x | n.d. | n.d. | n.d. | n.d. | 4.115 | 0.044 | 0.138 | 0.005 | 1.898 | 0.016 | ||||||
Mt. Bijela gora | 4x | n.d. | n.d. | n.d. | n.d. | 5.330 | 0.010 | n.d. | 2.004 | 0.007 | |||||||
S. aucuparia | Sorbus | Veliko polje, Mt. Igman | 2x | n.d. | 0.346 | 0.004 | n.d. | n.d. | 0.196 | 0.013 | 0.460 | 0.014 | 0.641 | 0.004 | |||
S. austriaca | Soraria (Sorbus × Aria) | Grkarica, Mt. Igman | 4x | 0.377 * | 0.009 | n.d. | n.d. | trace * | / | 3.175 | 0.023 | 0.469 | 0.015 | 1.043 | 0.008 | ||
Umoljani, Mt. Bjelašnica | 4x | n.d. | trace | trace * | / | n.d. | 1.960 | 0.029 | 0.223 | 0.011 | 1.345 | 0.017 | |||||
S. bosniaca | Mt. Krug planina | 4x | n.d. | n.d. | n.d. | 0.179 * | 0.036 | 3.695 * | 0.020 | 2.658 * | 0.012 | 3.102 * | 0.018 | ||||
S. torminalis × aria | Tormaria (Torminalis × Aria) | Pratača,Mt. Igman | 2x | n.d. | n.d. | n.d. | 0.223 | 0.010 | 0.267 | 0.021 | 1.896 | 0.014 | 1.883 | 0.011 | |||
Koznik | 3x | n.d. | n.d. | trace | / | 0.098 | 0.003 | 1.594 | 0.020 | 1.592 | 0.014 | 0.939 | 0.009 | ||||
Crne lokve, Posušje | 4x | n.d. | n.d. | n.d. | 0.265 | 0.008 | 2.520 | 0.009 | 1.613 | 0.009 | 2.063 | 0.003 | |||||
S. torminalis | Torminaria | Tihovići | 2x | n.d. | n.d. | n.d. | n.d. | 0.236 | 0.010 | 1.284 | 0.009 | 0.642 | 0.01 | ||||
12 | 13 | 14 | 15 | 16 | 17 | 22 | |||||||||||
S. aria | Aria | Grkarica, Mt. Igman | 2x | 0.886 * | 0.005 | n.d. | 2.582 | 0.015 | n.d. | 0.698 | 0.005 | n.d. | 0.366 * | 0.003 | |||
Mt. Bijela gora | 2x | n.d. | 0.167 * | 0.01 | n.d. | n.d. | n.d. | 2.736 | 0.010 | 0.108 * | 0.003 | ||||||
Gradac, Posušje | 2x | n.d. | 0.131 * | 0.007 | 0.650 | 0.003 | n.d. | 0.308 | 0.016 | n.d. | n.d. | ||||||
Grkarica, Mt. Igman | 3x | 0.459 * | 0.002 | n.d. | 2.380 | 0.010 | n.d. | 0.263 | 0.003 | n.d. | 0.244 * | 0.005 | |||||
Umoljani, Mt. Bjelašnica | 3x | n.d. | 0.435 * | 0.010 | 0.783 | 0.004 | n.d. | n.d. | 1.853 | 0.003 | trace * | / | |||||
Mt. Bijela gora | 3x | 0.330 * | 0.048 | 0.500 * | 0.012 | 1.047 | 0.132 | n.d. | n.d. | 1.651 | 0.000 | n.d. | |||||
Grkarica, Mt. Igman | 4x | 0.958 * | 0.012 | n.d. | 1.323 | 0.031 | n.d. | 1.056 | 0.015 | n.d. | 0.231 * | 0.009 | |||||
Umoljani, Mt. Bjelašnica | 4x | 0.209 * | 0.007 | n.d. | 0.774 | 0.013 | n.d. | 0.136 | 0.006 | n.d. | trace * | / | |||||
Mt. Bijela gora | 4x | 1.033 * | 0.015 | n.d. | 0.668 | 0.009 | n.d. | 0.624 | 0.008 | n.d. | trace * | / | |||||
S. aucuparia | Sorbus | Veliko polje, Mt. Igman | 2x | 0.288 | 0.022 | n.d. | 0.331 | 0.005 | n.d. | n.d. | n.d. | trace | / | ||||
S. austriaca | Soraria (Sorbus × Aria) | Grkarica, Mt. Igman | 4x | n.d. | 0.281 * | 0.006 | 2.103 | 0.021 | 0.384 * | 0.003 | n.d. | n.d. | 0.153 * | 0.009 | |||
Umoljani, Mt. Bjelašnica | 4x | n.d. | 0.128 * | 0.003 | 1.609 | 0.012 | 0.222 * | 0.015 | n.d. | n.d. | 0.082 * | 0.001 | |||||
S. bosniaca | Mt. Krug planina | 4x | n.d. | 0.590 * | 0.01 | n.d. | n.d. | n.d. | n.d. | 0.152 * | 0.000 | ||||||
S. torminalis × aria | Tormaria (Torminalis × Aria) | Pratača, Mt. Igman | 2x | n.d. | n.d. | 0.367 | 0.006 | n.d. | n.d. | n.d. | 0.198 | 0.001 | |||||
Koznik | 3x | n.d. | 0.353 | 0.013 | 0.780 | 0.010 | n.d. | n.d. | n.d. | n.d. | |||||||
Crne lokve, Posušje | 4x | 0.346 | 0.039 | n.d. | 0.431 | 0.004 | n.d. | n.d. | n.d. | n.d. | |||||||
S. torminalis | Torminaria | Tihovići | 2x | n.d. | n.d. | n.d. | n.d. | 0.339 | 0.008 | n.d. | n.d. | ||||||
Taxon | Subgenus | Location | DNA Ploidy Level | Methylflavonols | |||||||||||||
Xsr (%) | STD | Xsr (%) | STD | Xsr (%) | STD | ||||||||||||
18 | 19 | 23 | |||||||||||||||
S. aria | Aria | Grkarica, Mt. Igman | 2x | n.d. | 1.016 * | 0.006 | 0.444 * | 0.005 | |||||||||
Mt. Bijela gora | 2x | n.d. | n.d. | 0.134 * | 0.002 | ||||||||||||
Gradac, Posušje | 2x | n.d. | 0.476 * | 0.009 | n.d. | ||||||||||||
Grkarica, Mt. Igman | 3x | n.d. | 0.724 * | 0.003 | 0.205 * | 0.007 | |||||||||||
Umoljani, Mt. Bjelašnica | 3x | n.d. | n.d. | n.d. | |||||||||||||
Mt. Bijela gora | 3x | n.d. | n.d. | n.d. | |||||||||||||
Grkarica, Mt. Igman | 4x | n.d. | 0.496 * | 0.021 | 0.087 * | 0.008 | |||||||||||
Umoljani, Mt. Bjelašnica | 4x | n.d. | 0.172 * | 0.002 | n.d. | ||||||||||||
Mt. Bijela gora | 4x | n.d. | 0.173 * | 0.003 | n.d. | ||||||||||||
S. aucuparia | Sorbus | Veliko polje, Mt. Igman | 2x | n.d. | n.d. | n.d. | |||||||||||
S. austriaca | Soraria (Sorbus × Aria) | Grkarica, Mt. Igman | 4x | n.d. | n.d. | n.d. | |||||||||||
Umoljani, Mt. Bjelašnica | 4x | n.d. | n.d. | trace * | / | ||||||||||||
S. bosniaca | Mt. Krug planina | 4x | 0.881 * | 0.007 | 0.186 * | 0.003 | n.d. | ||||||||||
S. torminalis × aria | Tormaria (Torminalis × Aria) | Pratača, Mt. Igman | 2x | 0.833 | 0.014 | 0.738 | 0.014 | n.d. | |||||||||
Koznik | 3x | 0.710 | 0.008 | 0.525 | 0.021 | n.d. | |||||||||||
Crne lokve, Posušje | 4x | 0.427 | 0.008 | 0.386 | 0.007 | n.d. | |||||||||||
S. torminalis | Torminaria | Tihovići | 2x | n.d. | 1.669 | 0.015 | n.d. |
Taxon | Subgenus | Genome Size (2C pg) | DNA Ploidy Level | Location | Voucher Number | North | East | Altitude (m) |
---|---|---|---|---|---|---|---|---|
S. aria | Aria | 1.47 | 2x | Grkarica, Mt. Igman | SARA (54276) | 43.739167 | 18.291389 | 1350 |
1.41 | 2x | Mt. Bijela gora | SARA (54280) | 42.677778 | 18.475833 | 730 | ||
1.41 | 2x | Gradac, Posušje | SARA (54278) | 42.425 | 17.3925 | 720 | ||
2.12 | 3x | Grkarica, Mt. Igman | SARA (51415) | 43.739167 | 18.291389 | 1350 | ||
2.11 | 3x | Umoljani, Mt. Bjelašnica | SARA (51412) | 43.664167 | 18.226111 | 1300 | ||
2.11 | 3x | Mt. Bijela gora | SARA (54277) | 42.677778 | 18.475833 | 730 | ||
2.82 | 4x | Grkarica, Mt. Igman | SARA (51416) | 43.739167 | 18.291389 | 1350 | ||
2.80 | 4x | Umoljani, Mt. Bjelašnica | SARA (51413) | 43.664167 | 18.226111 | 1300 | ||
2.78 | 4x | Mt. Bijela gora | SARA (54279) | 42.677778 | 18.475833 | 730 | ||
S. aucuparia | Sorbus | 1.43 | 2x | Veliko polje, Mt. Igman | SARA (51417) | 43.745278 | 18.275 | 1210 |
S. austriaca | Soraria (Sorbus × Aria) | 2.81 | 4x | Grkarica, Mt. Igman | SARA (51418) | 43.739167 | 18.291389 | 1350 |
2.77 | 4x | Umoljani, Mt. Bjelašnica | SARA (51414) | 43.664167 | 18.226111 | 1300 | ||
S. bosniaca | 2.80 | 4x | Mt. Krug planina | WU (080424) | 43.842222 | 17.199722 | 1300 | |
S. torminalis × aria | Tormaria (Torminalis × Aria) | 1.40 | 2x | Pratača, Mt. Igman | SARA (54281) | 43.763611 | 18.19138 | 915 |
2.18 | 3x | Koznik | SARA (54282) | 43.7125 | 17.9675 | 900 | ||
2.74 | 4x | Crne lokve, Posušje | SARA (54283) | 43.4425 | 17.464444 | 700 | ||
S. torminalis | Torminaria | 1.44 | 2x | Tihovići | SARA (54284) | 43.923889 | 18.377778 | 910 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korić, E.; Milutinović, V.; Hajrudinović-Bogunić, A.; Bogunić, F.; Kundaković-Vasović, T.; Gušić, I.; Radović Selgrad, J.; Durić, K.; Nikšić, H. Phytochemical Characterisation of Sorbus Species: Unveiling Flavonoid Profiles Related to Ploidy and Hybrid Origin. Plants 2025, 14, 119. https://doi.org/10.3390/plants14010119
Korić E, Milutinović V, Hajrudinović-Bogunić A, Bogunić F, Kundaković-Vasović T, Gušić I, Radović Selgrad J, Durić K, Nikšić H. Phytochemical Characterisation of Sorbus Species: Unveiling Flavonoid Profiles Related to Ploidy and Hybrid Origin. Plants. 2025; 14(1):119. https://doi.org/10.3390/plants14010119
Chicago/Turabian StyleKorić, Emina, Violeta Milutinović, Alma Hajrudinović-Bogunić, Faruk Bogunić, Tatjana Kundaković-Vasović, Irma Gušić, Jelena Radović Selgrad, Kemal Durić, and Haris Nikšić. 2025. "Phytochemical Characterisation of Sorbus Species: Unveiling Flavonoid Profiles Related to Ploidy and Hybrid Origin" Plants 14, no. 1: 119. https://doi.org/10.3390/plants14010119
APA StyleKorić, E., Milutinović, V., Hajrudinović-Bogunić, A., Bogunić, F., Kundaković-Vasović, T., Gušić, I., Radović Selgrad, J., Durić, K., & Nikšić, H. (2025). Phytochemical Characterisation of Sorbus Species: Unveiling Flavonoid Profiles Related to Ploidy and Hybrid Origin. Plants, 14(1), 119. https://doi.org/10.3390/plants14010119