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Abstract: Comprising 50% ent part of 
biodiversity in communities and ecosystems globally. Biodiversity across all levels of 
biological classifications is fundamentally based on genetic diversity. However, the 
integration of genomics and phylogenetics into conservation management may not be as 
rapid as climate change. The genetics of hybrid introgression as a source of novel variation 
for ecological divergence and evolutionary speciation (and resilience) may generate adaptive 
potential and diversity fast enough to respond to locally-altered environmental conditions. 
Major plant and herbivore hybrid zones with associated communities deserve conservation 
consideration. This review addresses functional genetics across multi-trophic-level interactions 

ous ecosystems as they may become disrupted in 
 

need to be recognized for their positive creative potential and addressed in conservation 
via hybrid translocations may provide needed adaptive 

flexibility for rapid adaptation to environmental change. While concerns persist for some 
conservationists, this review emphasizes the positive aspects of hybrids and hybridization. 
Specific implications of natural genetic introgression are addressed with a few examples 
from butterflies, including transgressive phenotypes and climate-driven homoploid 
recombinant hybrid speciation. Some specific examples illustrate these points using  
the swallowtail butterflies (Papilionidae) with their long-term historical data base 
(phylogeographical diversity changes) and recent (3-decade) climate-driven temporal and 
genetic divergence in recombinant homoploid hybrids and relatively recent hybrid 
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speciation of Papilio appalachiensis in North America. Climate-
(recombinations) of species composition, genotypes, and genomes may become increasingly 
ecologically and evolutionarily predictable, but future conservation management programs 
are more likely to remain constrained by human behavior than by lack of academic knowledge. 

Keywords: climate change; biodiversity; translocation conservation; hybrid conservation; 
genetic introgression; hybrid speciation; hybrid extinction 

 

1. Introduction  

Today, conservation is about managing biodiversity at many levels (genomics of individuals, 
population genetics, community interactions and ecosystem/landscape genetics) in the face of rapid 
environmental change, rather than always trying to stabilize things into the future as they have been 
historically. Given the rapid rate of recent climate change [1], the future of conservation strategies may 
center upon enhancement of genetic diversity via community level hybridization (e.g., translocations of 
local endemics) and recognition, protection, and use of intra-specific and inter-specific hybridization 
(genetic introgression) to maintain and increase genetic variance within populations. This review will 
briefly address climate-induced changes in biodiversity patterns and compositional reshuffling at 
different structural levels of organization from ecosystems to genomes ([2 5]; Figure 1). Changing 
biotic interactions of species and differential competition and dispersal abilities in communities may 
affect the realization of range shift potentials as much as the abiotic changes, and these too need to be 
included with modelling of climate change impacts [6 12]. While many of the ecological responses of 
plants and animals to climatic change have been increasingly recognized, the associated  
genetically-based adaptive mechanisms remain largely understudied [13 15]. 

The examples used here will mostly deal with ectothermic insects and their abiotic and biotic 
environment, which is likely to be significantly altered by continuing rapid climate change during both 
the summer and winter seasons. It is important to realize that locally-adapted genotypes and other 

servation as endemic species [16]. For 
example, the use of morpho-species greatly underestimates the true genetic biodiversity losses due to 
climate change [17]. Intraspecific patterns of genetic diversity need to become a fundamental part of 
studies in biodiversity and biodiversity losses [16]. Reasons for addressing functional genetics across 
all structural classification levels from genotypes to ecosystems for conservation ecology and 
management are discussed below (Figure 1). The swallowtail butterflies (family Papilionidae) have 
provided an nexception group for studying responses to long term and short term climate changes 
across a broad geographic area, with multiple trait analyses, and one of the very first cases of animal 
hybrid speciation (see below). 
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Figure 1. Some structural and functional aspects of insect conservation and diversity. 
Unsettled academic issues about bio-systematics persist (e.g., what is a species?), yet we 
know a tremendous amount about biodiversity genomes and genotypes to interspecific 
hybrid zones and community-level trophic interactions that determine distribution limits, 
abundance, and latitudinal diversity across global ecosystems. This review addresses some 
biological issues and impacts of climate-
composition, genotypes, and genomes. However, future conservation management programs 
will not be constrained by our capacity for ecological/evolutionary predictions, but rather 
by our own human behavior. Ecologists and conservation managers need to work more 
closely with sociologists, economists, politicians and religious groups if we want a more 
sustainable world. 

 

historical adaptive radiations [18]. Adaptive introgression also has potential use under new 

past inbreeding or genetic drift [19 23]. Natural hybridization with adaptive radiation, with 
evolutionary divergence, incipient speciation, and hybrid speciation across the 1,500 km length of a 
major North American ecotone from the Great Lakes to New England will also be highlighted here 
(Figure 2). Rapid climate warming suggests that multiple parapatric origins of incipient (hybrid) 
species may occur on the cool side (Figure 3) of the historical (and thermally-defined) hybrid zone, 
while multiple and extensive extinctions of certain recombinant hybrids, and hybrid species may occur 
on the warm side of the hybrid zone, especially in Appalachian high mountain refuges [24]. A dynamic 
balance in creation of new genotypes (and incipient hybrid species) and their extinctions appears to be 
driven or mediated by recent climate changes, especially during the past 15 years [24], but possibly 
longer [25 27]. Among all swallowtail butterflies (>550 species), the number of species of 
conservation concern are more than 70 on islands, more than 50 in tropical dry and wet forests, and 
more than 20 in highlands [28]. Perhaps hybrid species and recombinant hybrid genotypes should also 
be considered. However, whether hybrids should be eligible for legal protection remains a heavily 
debated and heated issue, even today [29].  
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Figure 2. The historical tension zone of hybrid interactions across the North American 
Great Lakes region and down the Appalachian Mountains [326,329]. The dotted line 
delineates the geographic locations of the type specimens for the hybrid species,  
P. appalachiensis [26,99]. A purported subspecies (P. g. maynardi) occurs south of 

order, with some unique adaptations [201,345,487]. 

 

Figure 3. The thermal landscape of eastern North America showing the center of the 
historical hybrid zone (dotted line) between Papilio glaucus and P. canadensis as a 
function of the mean annual Degree-day accumulations above a base of 50 °F (=10 °C) for 
the decade from 1980 1989 (1960 1979 was very similar). The center of this zone (and 
northern limits of bivoltine potential in P. glaucus) is at approximately 2600 D-days F (or 
1444 C D-days). The P. appalachiensis populations are shown on the warm side of the 
hybrid zone (in the mountains of Pennsylvania and West Virginia), while the recombinant 

-
State, on the cool side of this thermally-

enlargement (Figure 4). 
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Figure 4. Enlargement of the thermal landscape in a warm Michigan summer (2005), 
showing D-days that are 500 600 °F, or more, greater than the 1980 1989 mean shown in 

counties. 
The cold pocket has actually shown greater relative warming than these surrounding areas 
over the recent 2 decades (see Figure 7). Note that South Manitou Island in northern Lake 
Michigan has experienced greater warming than Beaver Island (and also Isle Royale island 
in Lake Superior), and introgressive traits from P. glaucus have been seen here (see text). 
The Degree-day values of color codes (Celsius) are shown in Figure 3 for comparison.  

 

2. Biosystematic Levels (Bottom-Up Processes; Figure 1)  

d 
population genetics, and represents a unit of biological organization that has been widely considered 
and used in conservation biology [30]. However, the geno-dynamics of populations need to become 
more broadly recognized, understood, and practiced across community [31,32] and landscape levels 
(e.g., 33 35

 
divergence, reproductive isolating mechanisms, and hybrid speciation (and hybrid extinction). 

translocations or restorations [16,17,36]. Perhaps, in the near future, specific genes conferring 
adaptation to specific climates, hosts, or environments [37] may be used rather than natural and 
human-induced hybrids. Nevertheless, such hybridization for genetic enrichment has been shown to be 
successful in fish [38] and endangered plants [39]. 

3. Ecosystems and Biodiversity Hotspots (Top Down Interpretations) 

Global ecosystems have been mapped, showing heterogeneous species richness across the Earth, 
onservation value [40,41]. 

Understanding the historical climate [42,43] greatly helps in predicting genetic diversity of some 
hotspots [44,45]. Global warming has become a major concern for these hotspots because of ecological 
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and genetic reshuffling at all levels (Figure 1; [4,11,12]). Interactions at the community level, population 
level, and individual level of ecological variation are fundamental to the maintenance of ecosystem 
hotspots of biodiversity worldwide. The underlying genetic diversity provides the building blocks of 
all biodiversity and this has become better recognized at each level (see Figure 1; [16,17,31,46]). 
However, in addition to the genetic, ecological, and biosystematics categories of life, effective conservation 
management programs must incorporate social, political, economic, and even religious factors at each 
location (Figure 1 [47,48]).  

It has become apparent that future lack of global sustainability will not likely be due to a lack of 
academic knowledge, but instead, due to unsustainable human behavior and socio-economic 
disincentives [49]. More ecologists need to expand their roles beyond their detached, objective 
technical skills and help integrate science into management, policy, and advocacy aspects [50]. This 
review recognizes the academic complexity of biosystematics categories and the arbitrary nature of 
socio-economic and/or political drivers [51,52], upon which many conservation management decisions 
are based. It will focus on insects (especially Lepidoptera), dealing with evolutionary diversity in nature 
conservation throughout current communities and the phylogenetic (historical) tree-of-life [53,54], 
with some additional emphasis on hybrid introgression and the enhanced genetic diversity it can 
generate for local adaptations, evolutionary divergence, and speciation.  

A switch in the units of conservation from the species level focus to intraspecific and interspecific 
diversity is beginning to take root scientifically with new genetic/genomic tools [33,55 57]. For 
example, higher levels of genetic diversity in a key species such as seagrass can enable ecosystem 
survival even under extreme climate stress [58,59
reduce genetic variance in populations and species and preclude adaptation to environmental  
stresses [60 62
loss of habitat diversity [63 65]. Hybrid introgression can serve as a useful source of genetic  
variation [21,66], especially when hybrids exhibit higher fitness than the parental species as in some 
novel or extreme environments [27,67 69]. Also, the preservation of phylogenetic diversity (evolutionary 
information) could enhance maintenance of rarity, species richness, functional diversity, and evolutionary 
potential [70,71], even in environmental specialists [72]. 

Most recent studies of environmental impacts on insect communities have been aimed at land use 
changes such as urbanization, agricultural intensification, habitat disruption and/or fragmentation, and 
only recently on impacts of rapid climate change [73 80]. A meta-analysis of 134 point source 
chemical pollution studies showed less effect on herbivores than their natural enemies, which may 
actually favor herbivores with the resulting enemy-free-space [81]. Insect pollinator, predator, and 
parasite communities provide fundamental services to forest and agricultural ecosystems, worth  
$8 billion per year to USA agriculture, and enhancing native flowering plants increases restoration of 
local biodiversity [82]. Climate change impacts on natural and agro-ecosystems have been reviewed 
recently [83 88] and the importance of all trophic levels (not a single species or crop alone) emerges 
as a central theme for future management [88]. While plant-pollinator interactions (=networks)  
have remained flexible even with some bee extinctions and pollinator quality decline over the past  
120 years [89], landscape heterogeneity (physical/biological structure, including wild flower strips) as 
well as biotic composition will continue to be important for the climate-induced reshuffling of genes, 
genotypes, and species among multi-trophic-level ecosystem biodiversity ([73,82,90,91]; Figure 1). 
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While evolutionary concepts have been fundamental to the science of conservation and biological 
invasions for decades, they have yet to be incorporated appropriately into management programs and 
policy [92 94]. Five major selection pressures on biodiversity (climate change, landscape disturbances, 
intensified agriculture, non-
addressed when considered separately. Any one pressure can synergize, amplify, or buffer effects of 
another pressure, as described for pollinators [95]. 

Since many of the concepts discussed in this review deal with complex environmental impacts at 
many different levels of biodiversity (from genomes to current ecosystems and ancient phylogenies), 
the swallowtail butterflies provide an extensive geographical and historical data base, and will be used 

excursions into these different issues in the next pages. The desired integration of behavioral, 
physiological, genetic and ecological aspects of recent climate-driven hybridization in both lab and 
field studies [96] has been possible with these Papilio [24,97]. With recently evolved sister species 
(Papilio canadensis and P. glaucus), their geographically extensive (and long-studied) hybrid zone, 

P. appalachiensis [26,27,99 101], we have a 
102,103] with well-characterized natural and 

biogeographic histories. 
The complexity of ecosystem responses, the lack of equilibrium conditions in communities and 

populations, combined with the recent rapid changes in environmental conditions (e.g., climate and 
pollution, and habitat destruction or fragmentation) are ultimately influenced by the underlying 
genetics (Figure 1). 
races, or population [104], need to be integrated at all levels with ecological and evolutionary 
processes and conservation management considerations [34,35,105 108]. Understanding how climate 
change and landscape heterogeneity constrains or facilitates gene flow will certainly become a more 
important central focus for biodiversity conservation research in the future [109]. 

Landscape genetics may focus upon evolutionary questions about genetic isolation by distance or 
introgressive hybridization (i.e., both physical and biotic landscapes [24,110 112]. It must also address 
ecological questions about landscapes, climates, different kinds of gene flow, local adaptations, and 
evolutionary divergence or convergence through time [64,114 117]. As discussed above, introgressive 
hybridization with gene flow between subspecies and between species can generate positive and 
negative results for conservation goals, and these need to be considered in designs of biological 
reserves and corridors [112,118]. Interspecific biotic interactions may significantly limit the range of 

7]. 
Hybrid speciation [18,21,66,68,100,119 122] and speciation reversals [64,123,124] may both be 

generated by hybridization. With sexual selection, the hybridization may be unidirectional, with only 
one type of mtDNA usually of maternal origins [125], but see [126]. Ecological/behavioral 
reproductive isolating mechanisms may evolve faster on sex chromosomes than autosomes [127] with 
extensive implications for speciation. However, all of the genetic divergence and hybridization will 
have ripples of direct importance at other trophic levels in the ecosystem [31,128]. Complex 
interactions among population size, genetic variation, strength of selection, and gene flow for each 
population warrant individualized conservation management consideration [129]. 
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4. What Should Be Conserved in Conservation? 

A nicely summarized description of recent conservation activity is provided by Gillson et al. [93] 
conservation in a changing climate has been on expanding protected area 

networks to accommodate future climate space, based on range shifts predicted by bioclimatic species 
distribution models, together with the establishment and strengthening of habitat corridors and 
stepping stones to facil see also [130]). However, a number of dynamic 
scenarios [80,87,88,131] and other ecological surprises have been encountered and must be dealt  
with [84,131,132]. For example, in addition to unequal phenological responses across trophic  
levels [132,133], different guilds of insects have different feeding adaptations and will exhibit different 
responses to environmental stress [134]. Warming may actually reduce the number of generations of 
some insect ectotherms [135,136], rather than increase the number of generations as generally 
expected [137 139]. Despite abundant examples of species range shifts upward in latitude and altitude 
with warming [79,131], there are some that lag or do the opposite [139]. 

- -  
will need both resilience in their ecosystems [33] and flexibility in their institutions [93,140] with 
limited budgets, abundant administrative rigidity, and momentum that is often in wrong directions. 

140] suggests that nonnative invasions may both 
hinder and help [141] management goals, and managed co-existence, rather than massive (and expensive) 
eradication attempts, might be the best solution. It is also noted that species ranges are very dynamic 
(rarely, if ever at equilibrium with climate) because of natural variance in abiotic factors, dispersal, 
disturbance, and various biotic selection forces. Therefore predicted climate shifts should not be the 

under current conditions is about managing change: retaining and restoring past community composition 
142]. 

Species richness and diversity are a dynamic balance between extinctions and creations. However, 
it has been estimated that of all the species that have ever lived on Earth, 99% are now extinct [143].The 
causes of and constraints upon novel genetic material [144] and genetic recombinations that facilitate 
evolutionary divergence may contribute in significant ways to the adaptability, resilience, and diversity 
enhancement of communities and populations that we wish to manage. The biological continuum has 
been observed to contain mosaic genomes [25,27,145], mosaic hybrid zones [104,146], across mosaic 
landscapes [31,73,147] that change via mosaic coevolutionary interactions [148]. The adaptive radiations 
of herbivorous insects and flowering plants have received considerable attention over the past  
half-century with their interactions suspected to be responsible for the high biodiversity they  
represent [149 154 ralists) varies 
across individuals, populations, communities, and through time/phylogenies [97,155], the role of 
specialists and generalists in the evolution and extinction of species seems fundamental [156 160]. 

5. Latitudinal Gradients in Global Biodiversity (Macroecological Patterns) 

Perhaps the best known of ecological macro-patterns of diversity in nature are the 
latitudinal/altitudinal clines in species richness which usually decrease poleward and upward. 
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Although some exceptions exist, this latitudinal diversity gradient (LDG) pattern (and altitudinal 
gradients [161,162]) has been observed in many plants, animals and invertebrates [163 165]. Many 
interacting hypotheses to explain this general pattern at a global level have been advanced in the past  
5 decades, without a satisfying explanation [166 168]. Understanding latitudinal gradients requires 
knowledge on latitudinal range limits of species [169 171]. However, while major problems facing 
conservation of large vertebrates are habitat loss and genetic bottlenecks, we do not even know how 
many species of invertebrates and insects exist, let alone their distribution limits and sources of 
environmental stress [172,173]. 

In the face of climate warming, it has been suggested that the impacts for ectotherms will be more 
severe in the tropical (low-latitude) rather than temperate regions, because the magnitude of 
temperature increase is expected to push more tropical than temperate species outside their narrow 

174 180]. Also it has been pointed out that levels of genetic variation in some 
tolerance traits are also lower for the tropics than in temperate regions [181] which may constrain 
adaptive potential to respond to climate changes [182]. Terrestrial ectotherms in the tropics are more 
limited than those in temperate regions in potential movement to escape climate change [183], and 
communities there are more vulnerable to disruption than those in temperate communities [184 186]. 

A recent review supports the view that biotic interactions in the tropics are basically much more 
dominant and important than at higher latitudes [187], but no single explanation of latitudinal gradients 
in global biodiversity suffices [188,189]. The high diversity of tropical plants [190] and host plant 
phytochemical specialization (narrow niches) and adaptive radiations of associated phytophagous 

149,151,158], 
however other factors such as historical climates and evolutionary phylogeny (historical host 
affiliations) [191] can play significant (but not independent) roles, as recently shown for the 
Papilionidae [192,193]. 

The original compilations of contemporary geographical distribution data and latitudinal clines in 
species richness for the swallowtail butterflies (Papilioinidae) supported the global LDG [194,195].  
In addition, the role of feeding specialization (potential species packing and narrowed niches) was 
evaluated for all known (reported) host plants of these Papilionidae, and more host family specialists 
are currently found in tropical latitudes [97,196] with similar results seen for other Lepidoptera [197]. 
These data on latitudinal patterns of species richness and feeding specialization in Papilionidae have 
been subsequently used to examine phylogenetic patterns [198], raise conservation concerns [199], and 
develop historical biogeographic scenarios regarding recent glaciations [97,200,201] as well as 
evolutionary origins (phylogenetics) and ancient movement (phylogeogeography) of the swallowtails 
[193,202]. This historically-sensitive phylogenetic approach with the Papilionidae has provided the 
first analysis of multiple hypotheses shaping large-scale geographic patterns of species richness and 
diversification through time, from their origins more than 55 million years ago through major 
continental drifting and host plant shifting to the present [193]. One surprising result of these  
analyses [193] is that the warmer climate during the Eocene (56 36 mya) likely gave rise to a  
warm-adapted clade of the Papilionidae with highest species richness at high latitudes, which 
subsequently shifted to lower latitudes with cooling (36 24 mya), resulting in species richness that 
today is greatest at lower latitudes [195,196], possibly because of their current predominantly tropical 
host plant affiliations/distribution [97]. This latitudinal diversity gradient (LDG) scenario for the 
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-of-the- 189] (tropical origins and some recent 
shifts to higher latitudes, while also remaining tropical). 

149] is not incompatable with the 
- 192,203] of Papilionidae, and 

host shifts from generalists to specialists [204] certainly provide opportunities for subsequent 
specialization and evolutionary divergence [158]. However, the concept that feeding specialization 

- -of-all-trades-master-of-none concept) [97,155,207] 
56]. It 

is pointed out that host plant range is dynamic between specialists and generalists [205], and new  
host-plants ad -  
speciation [156,203]. Temperature-driven changes in host use [206] and genetic introgression [100] 
can create geographic range expansions for existing species (see [208]). 

6. An Experimental Evaluation: Do Specialists Retain the Capacity for Generalization (Host Shifts)? 

To evaluate whether the long-recognized feeding specialization and purported close coevolution [149] 
of selected Papilionid species on Rutaceae, Monimiaceae, Lauraceae, Magnoliaceae, and Annonaceae 
was an evolutionary dead-end, Scriber et al. [204] bioassayed larval feeding and survival abilities on a 
range of ancient Australian Angiosperms. The Lauraceae specialists Papilio troilus and P. palamedes 
were unable to feed on plants from any other family, and in fact had specialized on particular species 
within the Lauraceae to such an extent that abilities to use any other plant species were lacking were 
evident [97,209,210]. In contrast, all other specialist species assayed (P. aegeus on Rutaceae;  
Graphium macleayanus moggona on Monimiaceae; and G. eurypylus on Annonaceae; and the 
Magnoliaceae-specialized P. glaucus australis from southern Florida) were able to feed and grow on 
other plant families than their own, despite millions of years of host family specialization [204]. These 
findings illustrate the potential for long-recognized specialists to give rise to generalized feeding or 

 such family-specialized 
insects to feed on these related ancient plant families may be due to a pleiotrophic cytochrome P-450 
detoxification enzyme system for handing furanocoumarins in plants of the Rutaceae [151,211] that 
may be shared by P. glaucus, P. aegeus, and the two Graphium species (but not found in the P. troilus 
or P. palamedes; [212]). In North America, the host-specialized P. palamedes is experiencing serious 
threat to survival in the southeastern U.S. due to a geographically extensive plant pathogen infection 
that is destroying its primary (or only) host, red bay (Persea: Lauraceae) host plants [97,98]. 

7. Other Latitudinal Considerations 

Latitudinal gradients in temperature certainly explain range limits of some species of insects, but 
unlike temperatures, the latitudinal gradient of seasonal changes in photoperiod is stable, and does not 
change with local or regional climate [213]. Asynchronous phenologies of different trophic levels 
(well-known from agricultural host-parasitoid interactions) can severely disrupt community interactions, 
as seen when insect post-diapause emergences track temperature but bud-break of their host plants 
depends on photoperiod photoperiod [214,215]. Invasive species predictions should include 
photoperiod as a consideration as well as other environmental factors because of differential impacts of 
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photoperiods on diapause success from higher latitude European insect populations compared to lower 
latitude North American populations [213,216]. However, rapid genetic responses (evolutionary 
adaptations) in insects using photoperiod cues (daylengths [213]) have been reported as a result of 
earlier springs, later falls, longer summer growing seasons [217,218]. 

In summary, macro-ecological latitudinal patterns of global diversity (and hotspots) may be caused 
by diverse biotic and abiotic factors that interact with environmental changes [117,150,219,220].  
It is important to remember that local community interactions (multiple trophic levels, abiotic 
stressors, and genetic variability) shape the local responses and capabilities for change that comprise 
the ecosystem [221,222]. Management of one species cannot be done without consideration of the 
whole system [105,106 to always include 
underlying genetics (at all levels) as well as the overarching conservation issues of habitat destruction, 
disturbance, fragmentation, or pollution that may be more easily recognized. Historical climates and 
evolutionary phylogenies may also need to be included when planning for current or future 
management options. 

For example, the entire ecosystem of communities can be impacted by invasive species [223]  
and the direct and indirect effects on ecological processes throughout the communities can be  
extensive [224 227]. Success of biological control agents (parasites, predators, and pathogens) depend 
on their synchrony host plants and herbivores [88,228 231]. At the community level, the success of 
invasive species in establishment depends on the potential enemy-free space (e.g., lack of  
pathogens [231] as well as herbivore genetic variation, and that of the natives [94,232 234]. Native  
insect herbivores will feed on non-native plant introductions in ways that have become largely 
predictable [235], but ecological reshuffling of community composition (Figure 1) may constrain the 
realized geographic distribution from its climate-predicted potential [230]. However, in Australia near 
Brisbane, the toxic introduced Aristolochia elegans from Brazil stimulates the endangered native 
Birdwing butterfly females to oviposit on its leaves (even though this plant species is lethal to its 
larvae). Nevertheless, recently, some of these butterfly populations showed signs of leaf detoxification, 
and larval consumption and growth and may be in the process of adapting to this plant [488]. 

Of more than 400 alien phytophagous insect species that have invaded North American  
forests [216,236], one of the most significant defoliating forest invaders in North America was the 
gypsy moth (GM), Lymantria dispar L. [52]. The devastation was not just from extensive defoliations, 
pesticide contamination, and (without pesticides) the resulting fecal and microbial contamination of 
some human water supplies. It was also was in part due to the various management programs which 
have caused significant non-target impacts throughout the ecosystem (including release 100 years ago 
of generalist parasitic biological control agents such as the Compsilura concinnata tachinid fly, which 
has been a major factor in the decline of native Lepidopterans such as the Hyalophora cecropia and 
the Callosamia promethea Saturniidae silkmoths [237,238]). The use of bacterial sprays (Bacillus 
thuriengiensis kurstaki) specific to Lepidoptera were safer for other insects such as pollinating bees, 
but under normal field conditions the pesticide (Btk residues) killed non-target Lepidoptera (Papilio) 
for 30 40 days post-spray [239]. Populations of endemic moths and butterflies were also impacted 
negatively in West Virginia and Virginia [240,241]. In addition, Redman and Scriber [242] found that 
gypsy moth defoliation significantly decreased growth and survival of native swallowtail butterflies, 
Papilio canadensis R & J near gypsy moth populations by reducing the host plant quality, and 
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enhancing the parasitism rates in their larvae [225]. Similar results with various ecological ripples 
(top-down and bottom-up) have been seen in other forests and herbivores and illustrate that multiple 
biological levels will be involved [243 e.g., from delayed impacts 
of habitat fragmentation or degradation [244]) can surface years later, making the ecologfical impact 
predictability of such habitat disturbances difficult [10]. In addition, management decisions are often 

-  and 
economics [52,245], rather than made for sound ecological reasons. 

8. Plant Genetics and Phenotypic Induction of Resistance 

Hybrid poplars, experimentally grown for biomass production (at the NSF-LTER site) were in the 
path of expanding gypsy moth populations at the Kellogg Biological Station in southwest Michigan. 
Experiment supplementation of GM populations with egg masses added was conducted for several 
years to determine the differential roles that biotic (defoliation) and abiotic (fertilization) would have 
on the induced resistance (carbon-based phenolic glycosides; [246,247]) of these trees to herbivores. 
While hybrid poplars responded with phytochemical induction as predicted after defoliation [247], 
several different species of Salicaceae-adapted herbivores (including gypsy moths, Lymantria dispar; 
fall webworm, Hyphantria cunea; big poplar sphinx, Pachyspsphinx modesta) did not show growth 
and survival response differences among treatments (fertilizer+, defoliation+/ +, 
defol /or fert  defol  [489]),but bioassays detecting subtle differences in levels of induced carbon-based 
defenses after defoliation with and without fertilization were possible using a lab-generated genetic 
continuum of hybrid and backcrossed species of swallowtail butterflies [248,249].  

As with the other poplar-feeding insects, the Papilio canadensis larvae were naturally adapted to 
Salicaceae [246] and showed little difference in treatment responses; however, the southern sister 
species, P. glaucus, that prefers Magnoliaceae, all died on the hybrid Poplar (Populus) leaves of all 
treatments (again not permitting bioassay evaluation of treatment induction effects). We were able to 
hand pair the Papilio species and get hybrids and backcrosses with differing concentrations of 
detoxication enzymes [248] that consequently were differentially susceptible to the subtle induced 
phytochemical changes from defoliation and fertilization ameliorization [225,249]. This emphasizes 
how the genetic continuum from hybrids and backcrosse insects can extend into community 
interactions [250] and how the evolution of community structure and composition depends on 
evolutionary phylogenetics as well as phytochemical composition [251 253]. The ability of 
Salicaceae-specialists to switch to novel host plants with little or no phenolic glycosides [254] can help 
them to escape from various natural enemies that cue in on these allelochemicals [255], facilitating 
potential adaptive radiation. The continued ability to detoxify phenolic glycosides in Florida populations 
of Papilio glaucus [201] may represent ancient genetic polymorphisms (e.g., arising during the period 
when Florida was mostly under ocean water except for a few central ridge islands [201]) or 
pleiotrophic plasticity rather than a novel biochemical detoxification capacity from recent introgressive 
hybridization from older P. canadensis populations (harbored in the cooler refuges in the southern 
Appalachian mountains). While such introgression is recently increasing in the Great Lakes hybrid 
zone [24,150], it has not been seen in the northern Florida Papilio subspecies hybrid zone (Figure 2). 
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9. Genetic Variation across Species Ranges (Central-Marginal Hypotheses) 

The diversity of species across latitudes will depend upon the range boundaries of individual 
species [24,131,172,256]. However, determining where these borders occur geographically for even a 
single is difficult because of the dynamic nature of its populations and abundance. Levels of speciation 
and adaptation often differ within a single species [117,254,257]. The determination of where species 
boundaries occur biologically is even more difficult to determine because of hybrid introgression, 
genetic porosity, and the blurring of taxonomic categories that include subspecies [30,258], host  
races [259 261], polymorphisms [262,263], cryptic species [101,264,265] 
[26,27,68,69,100,101,120,121,266,267]. 

invertebrates [25,30,268 271], and these classifications appear to be spread along as a continuum 
[104,272 274] in butterflies [24,26,274,275] and moths [276,277]. Although cryptic biodiversity may 
be lost with climate change [16], the evolutionary generation of genotypic novelties (or hybrids or new 
species) in the face of gene flow continues to enrich biodiversity in many taxa [21,55,56,103,278 280]. 
Rapid divergence of sex-linked genes contributes to reproductive isolation in tiger swallowtail 
butterflies [281]. Speciation often involves evolution of sex-linked genes as the driving force  
(as in mosquitos [282], which seems especially important when the female is the heterogenic  
sex [127,283,284], including hybrid speciation in butterflies [24,26] and birds [285]. 

As with biodiversity hotspots in ecosystems, so too genetic hotspots (e.g., some small subpopulations) 
may contain a disproportionate fraction of the genetic diversity [142,286]. Additional genetic hotspots 
include areas of interspecific [24] and inter-subspecific hybridization [30

131,142,287 290]. Genetic diversity does not always 
decline with outward distance from central range locations toward range margins in butterflies [291], 
and butterfly hybrid zones may have the highest diversity [24]. Even thermally-flexible species may be 
constrained in range movements with climate change, depending on constraints in their host plant 
switching potential [97,150,292]. Regarding range shifts in butterflies, it has been shown that ecological 
specialization often results in distribution declines, and also, poor dispersal abilities and large body 
size predisposes species to distributional decline [293]. Thus in the future butterfly communities may 
become more characterized by highly dispersive generalists [294]. 

Understanding the impacts of global climate change on genetic diversity within a species and within 
populations is essential to fully understand the global climate change (GCC) impact on biodiversity at 
all levels [16,17,33,169,295,296]. The parts of the geographic range to be targeted for conservation 
efforts in the face of climate change depends on the scale of species distributions [24,131,135], and the 
adaptations to marginal habitats [142,288], variation in central-marginal distribution of population 
densities [287], and their ecological dynamics [297]. The call for macroecology studies across the 
entire geographic range of a species can now be combined with genomic analyses of individuals and 
populations from the center and margins of the distribution [297 299] as well as across hybrid zones 
which may be mosaics themselves [104,146]. In this way, the benefits and risks of conservation 
decisions such as translocations can be assessed from a genetic perspective [15,300]. The  
historical component of genetic diversity within an evolving taxa can also now be assessed using 
phylogeography [193,301,302]. 
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10. Climatic (Thermal) Extremes and Variability may Be More Important for Range Shifts than 
Mean Temperature Increases, (both in Winter and Summer) 

Climate specialists with narrow tolerances for conditions associated with latitude and altitude,  
(e.g., humidity, mean temperatures, extreme temperatures, diurnal variation, rainfall, etc.) may arise 
due to ecological/evolutionary trade-offs (antagonistic plieotrophy [303]) or to DNA decay 
(accumulations of deleterious genes [304
components requires too many adaptation adjustments, or gets swamped by gene flow [305]. Thermal 
tolerances differ between marine and terrestrial ectotherms and potential ranges of terrestrial 
organisms are not realized in the tropical (equatorial) end of latitude ranges, perhaps due to increased 
biotic exclusion factors [187] or other differences with temperature variability on land [306,307]. The 
extremes of heat in summer can differentially impact insects such as hybridizing tiger swallowtail 
butterflies [308] and variability in summer/fall temperatures can have differential impacts on various 
traits, survival, or size as well [309 314]. Winter cold extremes and variability [315 318] can also 
exert strong selection on species range limits [319 321]. Mountain refuges may, however, be 
eliminated for some cold-adapted species with continued warming [163,322 325]. 

In addition to winter extremes and variability, another factor that can be important is the duration of 
these extreme winter cold stresses. For example, while we have seen that the geographic distribution 
limits of two hybridizing Papilio in North America has been relatively consistent for several  
decades [24,326], with their narrow zone of parapartry essentially delineated by voltinism constraints 
using thermal unit accumulations (Degree-days = 2,500 2,700 °F [326]) above their base 
developmental threshold of 10 °C (50 °F), the winter temperatures may also play an important role in 
permitting the northern P. canadensis and Late-flight recombinant hybrid genotypes to survive where 
the multivoltine P. glaucus cannot [327]. In addition to inability of the P. glaucus to complete a second 
generation north of the historical hybrid zone, even on the best host plants [328], the duration of winter 
cold extremes (18 °C, =0 °F; see below) may also be important in determining northern range limits 
for these P. glaucus (Figure 2).  

11. Background on Tiger Swallowtail Sister Species and Their Hybrids 

In North America, there is an extensive plant transition zone (ecotone) from the Great Lakes region 
to the Appalachian Mountains and New England in North America that separates boreal and temperate 
deciduous forest biomes which also corresponds closely to the zone of hybrid interaction for many 
animals including insects (Figure 2 [328 331]). In the hybrid zone between recently evolved sister 
species P. canadensis and P. glaucus [332] the historical boundaries (1960 1997) of this North 
American hybrid zone are closely delineated by mean annual summer thermal accumulations (above a 
developmental base 50 °F, or 10 °C [328,333]). To the North, where it is cooler (<2,300 °F = 1,278 °C 
degree days; Figures 2 and 3), P. canadensis is univoltine with a Z (=X)-linked obligate diapause and 
several other adaptations to allow it to successfully complete a full generation and survive all the way 
north to central Alaska [219,334 336]. To the south where it is warmer than 2,800 °F (=1,556 °C) 
degree days, P. glaucus is basically bivoltine (or trivoltine further south), with a facultative 
(photoperiodically induced) diapause [337,338]. However, recent warming has been extensive across 
the whole North American Great Lakes region from 1998 2012 (Figure 4). 
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In Michigan and Wisconsin, seasonal isoclines with 15 (or more) total days annually of extreme 
cold stress in mid-  °F, or less) closely correspond 
geographically to the northern limits of the historical range of P. glaucus. In contrast, P. canadensis 
exists where an average of 20 50 days with such temperatures occur (Figure 5). Short durations (4 days) 
of extreme warm and cold mid-winter stresses have been recently shown [327] to differentially impact 
diapausing pupae of these sister species of Papilio 
recombinant hybrid (LF) populations [100,101]. The historical northern limits to the geographic range 
of P. glaucus in Michigan and Wisconsin is in fact correlated with the mean number of days with 
annual cold stress of minus 18 °C (0 °F), or colder (cf. Figures 2, 3 and 5). Pupae of P. canadensis in 

319,334]. In 
the absence of snow, the temperatures experienced in Michigan at ground level would also reach  

339]. During the 1950 1980 decades, some parts of northern Michigan 

rthern Michigan and its upper peninsula, where P. canadensis occurs; Figure 5). In 
contrast, southern Michigan generally experiences an average of only 5 to 10 days at this temperature 
where P. glaucus occurs. 

Figure 5. Climatic cold pockets during winter, showing the seasonal average number  
of days that were minus 18 °C or less (1950 1980) are indicated for Michigan and 
Wisconsin [339]. The historical hybrid zone between P. canadensis to the north and  
P. glaucus to the south is indicated by the dotted line. The P. glaucus have generally been 
found where fewer than 15 days with average temperatures at or lower than minus 18 °C 
occurred [326,346]. These cold pockets have shown winter warming trends during the past 
two decades (see Figure 9). 
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12. Durations of Severe Mid-Winter Cold Stress 

To evaluate ecological impacts of increased durations of cold stress exposure, we used split brood 
studies and simulated various mid-winter long term cold stress exposures times without snow cover 
(10-day, 20-day, 40-day, 60-day, and 70 days at continuous 18 °C) on diapausing pupae of larger, 
facultatively bivoltine Papilio glaucus (from Pennsylvania populations at 39° N latitude) and smaller, 
univoltine P. canadensis (from 43° N, in Vermont). We also included some P. glaucus pupae collected 
and reared at more subtropical latitudes in Georgia (at 34° N lat.) and a subset of interspecific LF 
hybrids (recombinant hybrid genotypes found on the cooler side of the thermally-defined hybrid zone 
at 43° North latitude in Vermont between P. canadensis and P. glaucus [100,340]. After mid-winter 

 °C, 
until spring emergence at 22 °C and 18:6  photoperiod. 

The experimental mid-winter cold stress simulations (at 18 °C) of no snow cover were begun after 
two months of diapause under normal winter conditions (4 °C; of simulated conditions below snow 
cover). After various durations of mid-winter cold stress at 18 °C, pupae were returned to their 
normal winter storage conditions until spring emergences. In addition, groups of P. canadensis and  
P. glaucus pupae were exposed to 10 days and 20 days of cold stress, but at the end of their 6-month 
winter (instead of mid-winter at 3 months), simulating a late Spring freeze. Initial numbers of pupae 
available to distribute across treatments were: (n = 264 P. canadensis; n = 264 P. glaucus (PA);  
n = 87 P. glaucus (GA); and n = -year average cold duration map of 
Michigan ( 18 °C; during 1950 1980; Figure 5) was derived from the Climatic Atlas of Michigan [339]. A 
close correspondence of the northern limits for P. glaucus was noted where areas had fewer than  
20 days annually reaching 18 °C.  

Negative impacts of mid-winter cold stress durations (at 18 °C) were evident as lower pupal 
survival for P. glaucus (PA) after 20, 40, 60, and 70 days (Figure 6). For example, after 40 days the 
survival of P. glaucus (PA) was only 3% and P. canadensis was 27.5%. At 60 days, survival was 
12.5% compared to 35%, and after 70 days of cold stress, survival was 4.6% and 15% respectively 
(Figure 6). A normal winter (control conditions of 4 °C, for 6 months) for the late flight recombinant 
hybrid swarm individuals resulted in 17% mortality. However, LF survival after 20 days of cold stress 
was 79% and after 40 days was 29.1%, both of which were very similar to P. canadensis (Figure 6). 
Perhaps most unexpectedly, the P. glaucus pupae from Georgia had exceptionally high survival in 
spring emergences whether they had 20 or 40 days of cold stress (85% after 20 days, and 73.4% after 
40 days at 18 °C; Figure 6). When 20-days exposure to the 4-day stress was at the end of winter, just 
before spring emergence, large negative impacts were seen in P. canadensis pupae compared to  
20-days exposure in mid-winter (36.8% survival compared to 73.2% survival when stress was  
mid-winter), but not in P. glaucus (Figure 
diapause [287]. Such differences might reflect the higher metabolic costs seen in these early-emerging 
obligately-diapausing northern P. canadensis and late-flight recombinant hybrid individuals [327].  
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Figure 6. The pupal survival to adult emergences of P. canadensis, P. glaucus and  
Late-flight (LF) hybrids exposed at 18 °C for 10, 20, 40, 60, or 70 days in mid-winter. 
The normal winter control treatment (0 days at 18 °C) was at +4 °C in darkness. The 
number of survivors for each treatment shown here includes males and females together. 
Also, for comparison, a subset of these P. g. and P. c. were exposed to the cold stress just 
10 or 20 days before being brought out of diapause in the late Spring (instead of  
mid-winter). Note that P. canadensis survival was better than P. glaucus at all durations 
greater than 20 days. 

 

In another comparative study, P. glaucus and P. troilus (Papilionidae) were less severely impacted 
by winter warming conditions than another butterfly, Erynnis propertius (Hesperiidae; [314]. Although 
all 3 species lost biomass during the winter diapause warmer winter simulations caused greater 
depletion of energy reserves in E. propertius than either Papilio species [314], (see also [292,311]). 
Unlike biomass loss in the hesperid, E. propertius, the biomass loss in P. glaucus and P. canadensis 
was not from desiccation, but instead by metabolism of dry weight biomass (not water loss, which 
appears tightly conserved in Papilio pupae; [327]). Of course the diapausing life stage of the insect 
may create different results, and the depth (or intensity) of diapause varies geographically, as do 
thermal performances of other insect populations [33,101,135,175]. 

The assumption that high latitude insect species generally have broader tolerances to thermal 
variation than more tropical species [174,175,305] has not been thoroughly evaluated. Alternation of 
thermal regimes (repeated chilling and warming) may help break (or alter the depth/intensity of) the 
prolonged diapause of some insect species [341]. Our work with the North American high latitude, 
univoltine Papilio canadensis R and J and the lower latitude, bivoltine P. glaucus L. tiger swallowtail 
butterflies has recently shown the opposite; when the thermal variance was imposed during mid-winter, 
the diapausing pupae of northern P. canadensis were more susceptible and experienced increased 
metabolic costs compared to P. glaucus [327]. However, as we show here, when the extreme cold 
stress ( 18 °C) durations are constant, the high latitude P. canadensis does survive better than the 
lower latitude P. glaucus (from PA) at all durations of 20 days or more under cold stress (Figure 6). 
The diapause depth is deeper for P. glaucus than P. canadensis (and also for LF hybrids; [492]), and 
Georgia pupae apparently have even deeper diapause than those P. glaucus from Pennsylvania near the 
hybrid zone (Figure 2), presumably preventing extra metabolic costs required for early emergence 
under seasonal thermal constraints. Latitudinal differences in depth (or intensity) of diapause are 
known for insects [342 344].  
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13. How Fast Do Insects Respond with Size Increases to Local Warming? 

Severe summer degree-day constraints on development of P. canadensis has resulted in smaller 

larger [219,335,336  trends for  
males [345]. However, during the past 15 years of steady and rapid regional warming in North 
America around the Great Lakes, there has been significant summer warming, reflected by annual 
summer Degree-day accumulations especially in these Michigan cold pockets (Figure 7), with a 
correspondingly significant increase in female size (as indicated by forewing lengths; Figure 8). This 
timing corresponds with known hybridization [346] and extensive introgression of many P. glaucus 
traits northward across the historical hybrid zone in Michigan (reviewed by Scriber [24]). 

Figure 7. The mean Degree-day accumulations (F° = 9/5 C° for temperature conversion 
factor) for the Otsego cold pocket during the 4-decade period from 1971 2012. Note the 

 [463], and the exceptionally warm 2011 and 2012 summers. 
Regression is significant at p = 0.01 level (R² = 0.293).  

 

Figure 8. The annual mean forewing lengths of female P. canadensis (n = 125 in 13 years) 
captured in Otsego County, Michigan cold pocket. Note that the 1993 and 1994 small sizes 
follow the cold 1992 summer (Figure 7). (Regression is significant at 0.01 level; R² = 0.568). 
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However, rather than genetic introgression from the larger southern sister species (or a 
microevolutionary adaptation), these female size increases may simply represent a phenotypically 
plastic response to the release from summer developmental constraints in this hybrid zone [328]. It is 
also noteworthy that the period of extreme cold stress (number of days at 18 °C or less) in the Otsego 
cold pocket has declined steadily over these three decades (Figure 9). The increase in size of females 

diapausing P. canadensis pupae during the warmer winters and springs. However, our studies in 
controlled environment chambers showed significant reduction in forewing lengths of P. glaucus, but 
not P. canadensis (Figure 10a,b), thus suggesting phenotypic flexibility or genetic introgression as 
most likely explanations. 

Figure 9. The number of winter days reaching °C (or lower) in the climatic cold 
pocket [383]. (R² = 0.266, p = 0.01). 

 

Figure 10. The forewing lengths and relative hindwing black band widths of the anal cell 
in; (left) P. glaucus; and (right) P. canadensis as a function of Spring emergence 
temperatures (under 18:6 h photoperiod). Males are on the left (blue, solid black), females 
on the right (red, grey stripes). Significant differences between treatment means are 
indicated by different letters, by sex. 
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A key point is that insects have many possible ways (genetic adaptations and phenotypic plasticity) 
to adjust to extremes and variation in temperature stress during both summer and winter, but 
adaptations across all life stages [334] should be considered (and across different seasons) to understand 
the relative contributions from genetic and phenotypically-based adaptations. Changing environments 
will be met with genetic and non-genetic responses in organisms [347 349], and impacts on diversification 
and speciation may be considerable [182,350]. Temperature stresses can also affect courtship genes, 
cytonuclear interactions impacting fertility and mortality in insects, as well as speciation genes [351].  

14. Species l (Genetic Introgression) 

management of conservation programs as much as invasive species into communities. Hybrid 
introgression may represent an invasion of genomes [274
transgressive phenotypes beyond those of parents (with sterile and/or inviable phenotypes [123]). On 

greater than either parent [122,353], and which may even be useful in conservation management as a 
354]. Climate-related traits can evolve rapidly in plants and animals [355,356]. 

Hybridization of two endangered (but very closely related) manzanita plant species localized near San 
Francisco (Arctostphhylos montana, and A. franciscana) 
species status and the protection under the law. Recovery efforts (and endangered species status) began 
in 1979 for Ravens manzanita, and yet no natural seedling establishment is known, and recovery 
sufficient to justify delisting may not be possible without natural wildfires, prevented in San Francisco 
[357,358]. The rare Franciscan manzanita may be a hybrid with similar difficulties as the Ravcens. 

Whether adaptations can be fast enough to adjust to rapid change depends on several factors [359 361]. 
Hybridization might allow exchange of adaptive genetic biodiversity between existing species as well 
as potentially generating hybrid species [21]. In order for this approach to work best, it has been 
suggested that assortative mating in the field should be intermediate to allow hybridization, but to also 
enough maintain separate species [354]. If hybrid inferiorities (outbreeding depression) do not result, 
this introgressive hybridization (as between sister species) provides one method that may be rapid 
enough in its generation of novel genetic diversity to keep up with rapid shifts in environmental factors 
such as climate change [66,119,129]. The management capacity to drive transgenes into natural 
populations of pests or disease vectoring insects for genetically modified attenuation of pest damage or 
danger, may also be a feasible genetic management tactic [362]. 

The swallowtail butterflies show extensive natural hybridization [272,332,363], genetic introgression 
[25], evolutionary divergence with gene flow inside the hybrid zone [24] and illustrate temporal 
reproductive isolation and hybrid speciation [26,100,101]. The use of this species group [272,364,365] 
as a model species is facilitated by the capability of these species to be hand-paired in the lab to 
produce interspecific hybrids and backcrosses for bioassays of oviposition preferences, larval survival 
and growth rates, and pupal diapause genetics [219,265,309 311,366,367]. Interspecific matings in the 
field show an asymmetrical preference where wild males of P. canadensis as well as wild males of  
P. glaucus both prefer size-matched females of P. glaucus when tethered next to each other [368,369]. 
Also, because P. glaucus and P. canadensis females and males are multiple maters (polygynous and 
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polyandrous [370]) the possibility exists for the production of 
 and interspecific hybrids from a single female [371]. Divergence and hybrid speciation with 

gene flow has been possible to observe in these sister species because they are closely enough related 
to produce the entire spectrum of recombinant genotypes to hybrid species (P. appalachiensis 
[26,99,332]) to regular species, such as P. glaucus and P. canadensis [332]. Globally, this appears to be 
the case for many Papilionidae species [367,372] 

15. Are pt 

Inbreeding-stress interactions have been shown in meta-analyses to reduce fitness relative to 
60,373]). 

Complications involved in understanding inbreeding stress interactions and impacts on local 
populations and biodiversity at other levels await additional studies, which should include natural 
populations in the field [62]. Genetically impoverished populations have reduced fitness, diminished 
disease resistance, and lower evolutionary potential [374,375], and individuals that are inbred show 
accelerated frequency of extinctions [376 378]. However, outbreeding depression can also occur [379]. 

 
and dispersal, but dispersal is dynamic and hard to estimate accurately [380,381]. Some maintain that 
hybrids and/or hybrid introgression are ecologically unhealthy and evolutionarily mal-adapted, 

-
species [29,33,62,64,65,120,123,124,382 387]. Invasive species may lead to extensive introgression of 
neutral genes [388]. Introgression usually occurs more from local to invading species [388], as is the 
case of range expansions [389]. However, it can also go from the native into the invading species. 
Hybrid zones themselves can be maintained by abiotic (exogenous) selection factors and have 
sometimes been assumed to be constrained by environmental boundaries and unlikely to move much. 
However, moving hybrid zones have become much more evident lately [380,388] with some 
movement recently driven by regional climate warming as seen with Papilio sister species [24]. 

species [123] have also been disproven recently with several examples of introgression, evolutionary 
divergence, and homoploid hybrid speciation [21,26,66] (see also section below). In addition, natural 
hybridization can lead to greater gene dispersal, higher genetic diversity in populations, and, in some 
cases, improved fitness locally [67,355,390].  

16. Plant Hybrids, Hybrid Zones, and Their Communities Should Be Protected  
(Community Genetics) 

Plant hybridization is extremely important for plant evolution [391] and for dependent arthropods 
species [392]. The natural hybridization in North American Salicaceae (poplars, Populus spp.; and 
willows, Salix spp.) and Tasmanian Eucalyptus spp. has been shown to have valuable and extensive 
roles in maintaining diversity (taxonomic, genetic, and phytochemical) in plants and the animals on 
these hybrids or even in their aquatic and terrestrial communities (including, fungi, understory  
plants, vertebrates as well as arthropods: [31,393 407]. Similar community differences in plant 
hybrids in Quercus [408] and may be due to the plant phytochemistry and/or previous defoliation 
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status (Populus; [249]). It has been shown [409
(see also [396  plants [395]. However, it is also known that 
hybrid plants may be more resistant than either parental species, as shaped by genotype/environmental 
interactions [397,410 414] and all plants show seasonal declines or increases of key allelochemicals, 
nutrients, and minerals [415,416]. Recombinant hybrids (in Populus spp.) retain heterozygosity at 
many loci, with implications for reproductive isolation [417]. Hybridization in peripheral populations 
of rare ploant speciues can provide novel diversity and adaptive potential, and such sites/hybrid 
populations should be conserved [288 290]. 

17. Global Change Impacts on Immune Functions and Disease Resistance (Are Animal Hybrids 
More Resistant to Disease?) 

Climate change has resulted in large-scale infectious diseases in plants, animals, and humans [418]. 
Pollutants (chemical contaminants, including pesticides) can impact ecosystems directly and indirectly, 
via altered host-parasite or pathogen interactions, and invasive species may impose stress on native 
species or enable transmission of parasites [419 421]. Global temperature variation can also stress 
organisms and alter immune functions which contribute to some species extirpations [422].  
As mentioned above, such stress can be catalyzed by a narrow genetic base in some (inbred) 
individuals [62,378]. Allozyme heterozygosity-fitness (growth, fecundity, survival, etc.) correlations 
show an overall increase in fitness with increased genetic heterozygosis [423] for various  
species [424,425]. However, the generality of these patterns has not been elucidated clearly and 
heterozygosity at microsatellite loci is not correlated with fitness as were allozymes [426]. Although 

 
species [414], virtually nothing is known about hybrid insects (relative to parental species) with regard 
to resistance to parasites and pathogens [353,398,413,427]. Nonetheless, the role of disease ecology in 
conservation may become more prominent as a driver of community responses with climate  
change [77,428], especially with the loss of biodiversity [418]. Migrating insects (and possibly other 
animals) have lower protrozoan parasite loads than the non-migrating populations (such as monarch 
butterflies that stay north during the milder winters, rather than fly to Mexico [418,420]). In addition to 
escaping infected habitats (migratory escape), some culling of diseased individuals may occur during 
long migrations (migratory culling [421]). 

Problems identifying introgression and hybrids classes (e.g., F-1, F-2, backcrosses, etc.) makes 
353,413]. Hybrid mice have been shown to have more 

parasites than parents [429]. Hybrid pocket gophers may be resistant to chewing lice that track parental 
genotypes [430], and hybrid (Africanized) honey bees may show differential resistance to some 
parasites such as Varroa mites [431]. In our 3-decades of hand-paired hybridization of swallowtail 
butterflies, we have reared many thousands of larvae on various host plant species [206,330,367,432]. 
In some thermal regimes and on many host plant species we consistently found clear evidence of 
hybrid vigor with more eggs produced, more neonate larvae, faster growth rates and durations from 
neonate larvae to the pupal stage, and larger pupae (see Table 1). In addition, our F-1 hybrids (and 
most backcross larvae) reared in controlled environment chambers appear to be clearly more resistant 
to the unknown pathogens that have largely wiped-out the contemporary parental species of Papilio for 
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the past 2 decades. The 2-year average of neonate to pupal survival was 60% 65% for both of the 
reciprocal hybrid genotypes, while greater mortality (disease) reduced overall survival to 15% to 38% 
for the parental species for two hostplants. On the other hand, the preferred host for both parental 
species P. glaucus. and P. canadensis) is black cherry, Prunus serotina Ehrh., showed significantly 
more mortality (sick and dying in the 4th and 5th instar larvae) for the parental species than either of 
the reciprocal hybrids (Table 1). Similar results were seen for both parental species on tulip tree 
(Liriodendron tulipifera; Magnoliaceae) at 15, 23, and 30 °C [433]. The fact that any survival occurred for 
the P. canadensis on tulip tree may be due to subtle genetic introgression into some of the populations 
sampled by Donovan and Scriber in 1999 2000 [346], which was when extensive autosomal Salicaceae 
detoxification abilities were seen moving northward across most of Michigan [150]. Similar concern 

Rhagoletis (fruitfly) species in Europe include potential phenology 
and host shifts that could result in new hybrid pests with new host preferences as seen in other 
Rhagoletis species [434]. 

Table 1. Hybrid vigor in swallowtail butterfly sister species. Data from Scriber lab  
1982 2003. Significant differences indicated by different letters at the p = 0.05 level 

23 °C and 16:8 h photoperiod.  

Species/genotypes Mothers 
Mean total 

Eggs 

Mean Viable 

Eggs,% 

Total Duration  

neonate-pupal stage (days) 

Mean Pupal Fresh 

Weight (mg) 

Growth Rate 

Mg/day 

Papilio glaucus  246 110.5 b 65.3 ab 32.5 bc 927 b 28.5 c 

P. c. × P. g. 17 77.1 c 68.0 a 26.2 a 1009 a 38.5 a 

P. g. × P. c. 73 167.1 a 62.3 b 30.6 b 1089 a 35.6 b 

Papilio canadensis  305 53.5 d 58.9 c 34.1 c 752 c 22.0 d 

The vigorous growth of hybrids apparently reflects enhanced resistance to these unknown 
laboratory pathogens, but we were unable to confirm either bacterial, viral, fungal, or microsporidians 
as primary causes [490]. It would be beneficial to study the differential susceptibility to these various 
natural pathogens (Serratia, Nosema, Entomophaga, etc.) of herbivore hybrids and parental species. It 
would also be informative to add backcrosses at different temperatures and on selectively stressful 
marginal and favorite hostplants could provide a valuable base for predictions of insect/plant/microbe 
interactions under climate change.  

Our Papilio glaucus and P. canadensis appear to be Wolbachia- free [491], however, Wolbachia 
infections (a maternally-inherited endosymbiont bacteria) have been reported in as much as 65% of 
invertebrates tested so far with detrimental effects on the populations [435,436]. The introgressive 
hybridization associated with Wolbachia parasites and hitch-hiking mitochondrial DNA may result in 
widespread selective sweeps with infections crossing species boundaries [436]. The potential 
implications for Lepidoptera are serious.  

Small changes in the thermal environment (e.g., 
temperatures in both ectotherms and endotherms) can have significant impacts on the resistance and 
recovery of diseased or parasitized hosts as well as pathogen virulence, but more studies are  
needed [437,438]. The dynamics of disease and parasite interactions with insects under climate change 
and also for human health issues, looms as critically important area for research [418,419]. The costs 
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of immune response to parasitism can reduce resistance of insects to starvation, desiccation, and other 
stresses [439] and the immune responses of specialist and generalist insect herbivores may differ with 
host plant chemistry [440]. While elevated temperatures (fever) help some insects, some parasites 
actually alter the insects  behavioral responses such as thermal preferences that favor the parasite not 
the host insect [441]. Some diseases may actually be facilitated by hybridization of the pathogens 
themselves [442,443]. All of these once again highlight the need for comprehensive integration across 
all levels of biological organization (Figure 1). 

18. Translocations (and Assisted Migration) in Changing Environments for Maintaining 
Evolutionary Potential Genetic Rescue   

rare, restricted, and genetically-impoverished species a conservation tool to consider more seriously [300]. 
Ecological restoration (wi
functionality, while conservation translocations (genetic capture, genetic rescue, genetic restoration 
and genetic adaptation) are aimed at populations of a single species. Success enhancing abundance, 
resilience, and persistence, depends on the community interactions as well as the genetic diversity, 
plasticity and local adaptations [300,444,445]. While translocations may provide a type of insurance 
against future climate or other environmental changes, cases need to have risks evaluated individually 
[300,446 448], and cooperation of resource-managers and scientists works best [448]. 

For example, moving some individuals from warm-adapted populations to colder locations  
(assisted colonization) may facilitate adaptations of cold-adapted populations for future warming 
climates with minimal ecological risks [33,449]. Experimental translocations [292,450] and lab  
studies [142,308,327,334] can help clarify some factors that constrain local adaptation and shape range 
limits. Migration is another form of adaptive movement or annual translocation that depends on 
coordination of seasonal growth, physiology, and reproductive synchrony, as is the case with  
diapause [451,452]. Different habitats for feeding and breeding of monarch butterflies are threatened 
by forest and farm habitat destruction and possibility of severe weather [453]. Photoperiod changes 
provide a more stable environmental cue over latitude than changes in local or regional climates, and 
are involved in shaping the ranges of many native and invasive species [213]. 

19. Are Locally- (or Local Endemics) More Vulnerable to Climate Change 
or Conservation Translocations (Assisted Colonization) Generalists  

While host plant shifts to exotic plants can lead to speciation [454], rapid morphological  
adaptations [455,456], and escape from natural enemies [457], they can also play an important role in 

97,156]. Geographically widespread insect 
herbivore generalists show a greater propensity for use of novel, exotic hosts than geographically 
constrained specialists [458,459], and their chances of extinction are less. Local host specialists [150,257] 
in part
as with the red-pine shoot moth, Diaryctria resinosella [460] and with the Tasmanian butterfly 
Graphium macleayanum moggana, a specialist on a single plant species, southern sassafras, 
Antherosperma moshatum (Family: Monimiaceae [461]). 
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Local endemics may be the groups in greatest need for translocation management decisions in the 
face of continuing rapid climate changes [261]. Islands often provide such evolutionary hangouts for 
unique local genotypes and species, but the biotic and abiotic forces may disrupt the stability of these 
small isolated populations and render them vulnerable [92,169]. This is perhaps why the greatest 
number of Papilionidae species currently under threat are on islands [199]. In northern Lake Superior 
(Isle Royale) and Lake Michigan, the P. canadensis 
from P. glaucus. Despite its high latitude at 45° N relative to the historical hybrid zone in Michigan 
(Figures 2 and 3), South Manitou Island has been shown to be a consistent refuge for recombinant 
hybrid genotypes since at least 1991 [335,462]. This island population has hybrid-like diagnostic traits 
for morphology (e.g., hindwing black bandwidth; see below) and Z-linked introgression [24]. Again, 
thermal accumulations in warm years (as in 2005; Figure 4) might explain this introgression from the 
southern P. glaucus, but the island may also provide a northern 
recombinant genotypes during cool years. 

20. Rapid Genetic Changes (Evolution)  

Rapid phenotypic responses to environmental change have been reported [217,218,355,356,456], 
but it is not always clear how much of these are genetically-controlled or phenotypically plastic. One 
example is body size, which has many ecological fitness implications (see review [345]). Many 
responses attributed to adaptations under changing environmental conditions may simply be 
environmentally-induced plastic responses rather than micro-evolutionary adaptations [182].  

The forewing lengths of female Papilio 
increases during the past 15 years, which correlate with more summer degree-days accumulated 
(Figure 7). Such rapid phenotypic responses may be due to size constraints on voltinism interacting 
with host plant nutritional quality [328,336] For example, smaller females continued for 2 years after 
the cold 1992 summer (Figures 7 and 8; [463]). However, it is not clear if this may be due to longer 
time for summer growth after being released from seasonal constraints on size [334,335], or due to 
milder winters which require less metabolic expenditure for overwintering pupae (Figure 9, with 18 °C 
days declining over the 15 years), or both. Northward introgression of P. glaucus traits [346] could 
also be contributing to larger sizes locally [24]. While rapid evolution is possible with introgression, 

genetic differentiation and speciation [464]. 

21. How Fast Can Animal Speciation Be? 

 is 
usually thought of as being relatively slow (millions of years). The origins of the Papilionidae family 
of swallowtail butterflies was 52 milion years ago in the Eocene, and the Pterourus clade (containg the 
P. glaucus group) was 24 mya in the Miocene [465]. Even when speciation is relatively rapid as with 
P. glaucus and P. canadensis (Kunte et al. [26] estimated divergence times of 600, 000 years ago), 
such divergence and speciation is clearly not rapid enough to be part of any contemporary management 
plans. However, homoploid hybrid speciation can be much faster, possibly only a few dozen 
generations [267,340,466,467], sometimes with multiple independent origins, as seen in butterflies in 
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extreme environments [69,468]. Can such rapid homoploid hybrid speciation rates be enhanced? There 
are genetic complexities involving reproductive isolation and several ecological explanations for why 
divergent natural selection initiates the speciation process but does not finish it [468,469]. For 
example, much evidence exists for thermally-driven divergence in adaptations, but little evidence 
exists that these lead to speciation [179,278]. 

Taxonomic insect groups such as Papilio have traditionally been identified using morphological 
criteria [470], and unlike the case in some groups, the tiger swallowtail butterflies of the P. glaucus 
group also show concordant phylogenetic trees for allozymes [363,364], mt DNA [272,283]  
and AFLPs [26]. 
[471]), mt- 472,473], 
and because of these difficulties delineating species (physiological, theoretical, empirical, and 
definitional [104,274,275,473 478]), it is recommended that conservation biologists use more 
quantitative descriptions of variation within and among clusters of organisms that the traditional 

[473,475]. Studies of speciation could best be framed as studies of divergence in 
genotypes and phenotypes and the origin of reproductive isolation over time [70,104,476,478 480]. 
However, common focus and recurring emphasis on the reticulate nature of speciation, often fails to 
give attention to the increasingly important recombinant homoploid hybrid speciation in  
animals [69,120,121,266,267,467]. The time frame for such speciation events may be much shorter 
than traditionally presumed. 

22. Rapid Hybrid Speciation in Recombinant Papilio Hybrids Seems Feasible with Post-Diapause 
Developmental Delays and Temporal Reproductive Isolation 

While our estimates of divergence of the hybrid species mountain swallowtail [Pterourus (=Papilio) 
appalachiensis] hybrid species from both parental species, the northern P. canadensis and the southern 
P. glaucus, was only 100,000 years ago [26]. In only 3 generations with a lab hybridization  
and a backcross, we are able to produce all three morphospecies (P. glaucus, P. canadensis, and  
P. appalachiensis; Figure 11) in siblings. Furthermore, the P. glaucus morphotypes directly developed 
in the lab under long day photoperiods, while the univoltine P. canadensis-like and P. appalachiensis-like 
individuals diapaused under the same long-day (18:6 h) photoperiod conditions, apparently having the 
Z-linked obligate diapause gene (od+) [24]. With post-diapause delays, the P. appalachiensis-like 
morphospecies would also immediately be reproductively isolated (temporally) from the flights of both 
parent type species. We have seen similar morphological and physiological divergence with the  
late-flying incipient species (natural homoploid hybrids) under field conditions inside the  
hybrid zone in Vermont [101]. In laboratory backcrosses, the species diagnostic morphological 
features consistently segregate out in these hybrid offspring uniquely with direct developers versus 
diapausers [481] (Figure 12). 
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Figure 11. The basic morphospecies of P. glaucus (multivoltine), P. appalachiensis 
(univoltine delayed emergence), and P. canadensis (inivoltine) showing species-diagnostic 
traits (FW length, HW band width, and ventral submarginal spots/band [99,330]). These 3 
individual phenotypes are genetically distinct siblings that were produced by  
hand-pairings in the lab (a backcross of a P. canadensis mother with a hybrid male). In 
addition to morphometric segregation with diapause regulation [481] (Figure 12), additional 
backcrosses of hybrid P. glaucus and P. canadensis to a parental species also resulted in 
high levels of recombination [10] and recombinant genetic segregation of key  
Z (=X)-linked ecological traits [24,482]. 

 

Figure 12. Typical wing patterns of backcross sons (siblings) showing segregation of  
P. canadensis-like traits (e.g., relatively wider hindwing band widths in the anal cell) with 
diapause and P. glaucus-like traits with direct development. The z-linked P. glaucus-like 
Ldh-100 allozyme is closely linked with the od- gene for facultative diapause (95% of 
females that directly developed), while the P. canadensis-like Ldh-80 and Ldh-40 alleles 
were linked with the obligate diapause gene (od+) [24,482]). 
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The hindwing band width serves as a useful diagnostic trait for P. canadensis (10% 40% width of 
anal cell), P. glaucus (55% 90%) and their hybrids (40% 55%; Figures 11 14, [24,150,330]). 
Multiple hybrid zone transects and multiple-trait analyses will help us better understand the mosaic 
trait selection across the Z-chromosomes and genomes of these parental and hybrid Papilio [24,26,27]. 
However, the summer thermal landscape does provide an excellent predictor of the geographical 
distribution of hybrids and parental species in this group. This is especially true for some high latitude 
islands such as South Manitou Island in Lake Michigan (Figure 15) and also for the eastern mountains 
of North America, including Vermont (Figure 14; Table 2). Although not as evident as in the late flight 
hybrids of the -
Z-linked species-diagnostic allozymes (Pgd-100/50, and Ldh-100) and the diagnostic autosomal 
allozyme HK (hexo-kinase) show differential introgression during the past 2 decades, reflecting strong 
divergent natural selection within the hybrid zone of Wisconsin and Michigan (cf. Figure 16a,b). The 
lack of movement for Ldh-100 suggests that its linkage with the direct development trait (od-) on the 
Z-chromosome, leads to mortality in all areas with insufficient D-days to support two generations.  
In contrast, survival is permitted by recombinant hybrid late-flight genotypes as well as P. canadensis, 
which have the obligate diapause (od+) trait [24,100]. 

Figure 13. The mean annual male hindwing band widths of selected Papilio populations of 
P. glaucus (blue, 10% 44%), P. canadensis (yellow, 40% 55%), and their hybrids (green, 
40% 55%, showing the historical hybrid zone (dark line), which basically has been 
delineated by the 2,600 Degree-days on the thermal landscape (see Figures 2 and 3). The 
putatively univoltine P. appalachiensis (the hybrid species) is indicated in West Virginia 
(Pendleton Co., West Virginia, USA) as is the second generation males of P. glaucus 
(found just 1,000 m lower in elevation below Spruce Knob, where more D-days 
accumulate annually) flying in August, 2 4 weeks later. Mean HW bands of the Vermont 

2011 
years (see also Table 2). 
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Figure 14. The mean annual male hindwing bands of P. glaucus, P. canadensis, and likely 
hybrids as a function of summer D-day (F) totals from Alaska (left, at 65° N latitude) to 

ploid recombinant 
hybrids, in July) and the EF (early flight of P. canadensis in mid-May to June) are 
basically sympatric, but separated temporally by 3 5 weeks [24,100]. The hybrid species,  
P. appalachiensis is indicated by squares at 2,800 D-days, with the nearly sympatric  
P. glaucus of lower elevations at 3,500 D-days in Pendleton Co. The correlation is 
significant (R² = 0.6669, n = 277 population means). 

Univoltine
(< 2700 D-days F)

VT

40-55 %

> 55 %

 

Figure 15. South Manitou Island in Lake Michigan appears to serve as a refuge for 
recombinant hybrid genotypes of Papilio despite being at high latitudes (45° N). Hindwing 

- % and 55%; see also Figures 13 
and 14), though they have increased slightly in 2006 2008 (57.7%, n = 131; 55.6%,  
n = 95; and 58.1%, n = 82, respectively). The 10-year average Degree-day accumulations 
across Wisconsin and Michigan reflect climate warming during 1998 to 2008, and the 
warmer western coast if Michigan. This island population also supported other hybrid-like 
traits, including glaucus-like tulip tree detoxification abilities, Z-linked allozymes  
(Pgd-100), and the enabler gene (b+) for female melanism [24,150,281,363] (see also 
Figure 16a,b). Such evidence of introgression was not found in other island populations on 
Beaver Island to the North, or the Isle Royale in Lake Superior ([462]). 
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Table 2. Mean hindwing band widths and forewing lengths of Papilio males collected in 
the Battenkill River area of western Vermont (Bennington County) and adjacent 
(Cambridge, New York, in Washington Co.). 

Year/Date n 

Early Flight 
[May June] 

 
n 

Late Flight 
[Mid July] 

 

HindWing Band 
(%) 

Forewing 
Length (mm) 

HindWing 
Band (%) 

Forewing 
Length (mm) 

1984 52 72.0 44.9 na   
1999 23 56.9 46.0 1 30 50 
2000 125 54.7 47.1 35 39.4 50.6 
2001 0 x x 51 37.6 49.3 
2002 154 56.1 48.9 13 34.3 50.6 
2003 29 55.9 44.9 14 38.9 51.0 
2004 205 63.3 47.0 12 48.8 51.4 
2005 252 63.6 45.8 0 X X 
2006 116 64.3 46.6 75 46.3 50.1 
2007 111 65.8 47.7 44 46.0 48.3 
2008       

May25 June 2 138 63.9 46.7    
June 26 June 29 67 67.0 46.7    

1 6 July    77 45.3 47.6 
9 16 July    159 40.3 47.7 
16 23 July    51 42.4 48.3 
27 31 July    23 40.2 48.2 

2009 142 64.4 47.0 36 45.7 47.3 
2010 222 61.3 45.9 6 47.2 49.2 
2011 241 65.3 46.1 179 44.4 49.5 

The P. glaucus diagnostic lactate dehydrogenase allozyme Ldh-100 is often linked closely with the 
non-obligate-diapause gene (od-) on the Z (=X) chromosome, while the genes for obligate diapause 
(od+) and Pgd-0125 or Pgd-80 are shared by canadensis-like and appalachiensis-like siblings [24,482]. 
Inside the hybrid zone (with thermal Degree-days constraints on development), all recombinant  
Z-chromosome traits occurring with od- would be eliminated immediately that year since none of the 
second generation would reach the pupal stage before leaves abscised and winter arrived [24,328]. 
This strong climate-driven ecological selection [100] inside the hybrid zone leaves only those 
univoltine recombinant hybrid backcross-like offspring that are linked with the canadensis-type 
obligate diapause (od+) gene. As shown in the hybrid populations at the Battenkill River area in 
Vermont, the hybrid species, P. appalachiensis is also presumed to be comprised of univoltine (late 
flight recombinants) with hybrid like traits (e.g., Hindwing bands at 40% 55%; Figures 12 14). Of 
these univoltine recombinant hybrids with od+, some have a delayed post-diapause development and 
respond by having adult emergence from diapausing pupae delayed by 3 5 weeks. This effectively and 
immediately isolates them from both parental species that emerge 3 5 weeks earlier at those sites, or 
nearby [101]. Such late-emerging genotypes may be the result of a Z-chromosome factor causing a delay 
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in the developmental 
recently shown for the European corn borer moths [483]. 

Figure 16. (a) Species diagnostic Z-linked frequencies of allozyme alleles (Pgd-100,  
or 50) in Michigan Papilio populations before 1991, shown with the 10-year average 
thermal landscape in degree-days (°F). A warmer year is shown in the upper right. During 
this period, the Z-linked Ldh allozyme frequencies were similar to the Pgd allozymes 
shown here [332,365]; (b) Species diagnostic Z-linked frequencies of allozyme alleles 
(Pgd-100, or 50) in Michigan Papilio populations post-1991, shown with the 10-year 
average thermal landscape in degree-days (°F). A warmer year is shown in the upper right. 

-like allozyme 
alleles of HK-100 (hexokinase), which were also at zero frequency north of the historical  
hybrid zone (dotted line) before 1991 (also see [332]). During the years after 1991,  

- -100 or Ldh-50 alleles were found north of this line (similar to that 
), reflecting strong divergent 

selection on the different parts of the Z-chromosomes of hybrid zone populations [24,101,340]. 

 
(a) 

But no Ldh-100
north of dotted line

(b) 
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We are in the process of determining the sequences on the Z-chromosomes to determine if 
independent evolutionary origins of Late-Flight genotypes and hybrid species at different transects of 
the extensive Papilio hybrid zone might be occurring, as seen in Lycaeides butterflies [69]. Also, while 
extinctions of the univoltine P. appalachiensis and recombinant hybrid late flight incipient species 

 (in 
the southern Appalachian Mountains in GA, NC, and SC) or outcompeted (or genetically swamped) by 
ascending populations of the multivoltine P. glaucus with climate warming [24], we still have potential 
on the cooler side for continuing origins of these recombinant hybrid genotypes with post-diapause 
emergence delays along multiple hybrid zone transects. If so, then natural local extinctions of southern 
refugial mountaintop populations may not be a total loss from a North American continental 
perspective of this butterfly hybrid species diversity.  

Morphospecies evolution, introgressive recombinant hybridization and reproductive isolation in 
these Papilio can apparently arise within only a few generations in nature under severe thermal 
constraints and the associated strong divergent natural selection as seen across the hybrid zone [24]. At 

an important concept for evolueionbary ecology as well as conservation. The elegant long-term work 
on European corn borer moths (Ostrinia nubilalis) also suggests a significant role in evolutionary 
divergence due to a Z-linked post-diapause development delay in hybrids [276,277,483]. This  
Z-linked post-diapause delay gene may turn out to be more widespread in Lepidoptera and it could in 

. 

23. Conclusions 

In the future, insect conservation and diversity must actively address genetic aspects of biodiversity 
(cryptic biodiversity), including genomics of individuals, population genetics, cryptic species, 
community interactions with genetically 

r understanding the context of 
taxonomic classifications regarding the capacity for ecological resilience and evolutionary flexibility 
across future landscape [484
may not be as temporall
has emerged more commonly than ever previously thought possible. Hybrid speciation in polyploid 
plants and homoploid (recombinant) hybrid speciation in animals can be quite rapid, as seen here with 
several Lepidoptera groups. Furthermore, hybrid introgression may enhance adaptation rates for 
translocations and genetic rescues, and may provide a logical way to speed up needed management 
responses to rapid environmental changes. Genetic novelty and hybrid speciation in insects can be 
catalyzed in natural hybrid zones by climate changes, as is shown here. Management challenges 
involving genetic diversity may become increasingly feasible as we continue to develop new genomic 
assessment tools [485,486]. Integration of genetics across all levels from individual genomes to 
ecosystem and landscape genetics will increasingly characterize the future management of biodiversity 
and cryptic biodiversity in general. 
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