Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (651)

Search Parameters:
Keywords = homogeneous assay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 635 KiB  
Communication
Evaluation of Spleen Swabs for Sensitive and High-Throughput Detection of Classical Swine Fever Virus
by Orie Hochman, Kalhari Goonewardene, Chungwon J. Chung and Aruna Ambagala
Pathogens 2025, 14(8), 767; https://doi.org/10.3390/pathogens14080767 - 3 Aug 2025
Viewed by 153
Abstract
Despite intensive eradication efforts, classical swine fever (CSF) remains endemic across South America, Europe, Asia, and the Caribbean, highlighting the need for more effective surveillance and detection methods. Reverse-transcription real-time polymerase chain reaction (RRT-PCR) is the fastest, and most sensitive assay for detecting [...] Read more.
Despite intensive eradication efforts, classical swine fever (CSF) remains endemic across South America, Europe, Asia, and the Caribbean, highlighting the need for more effective surveillance and detection methods. Reverse-transcription real-time polymerase chain reaction (RRT-PCR) is the fastest, and most sensitive assay for detecting CSF virus (CSFV) genomic material. Previously, we demonstrated that spleen swabs outperformed spleen homogenates for the detection of ASFV genomic material by RRT-PCR. In this study, we compared CSFV genome detection in paired spleen homogenates and spleen swabs generated using 49 frozen and 33 fresh spleen samples collected from experimentally inoculated pigs with acute infection. The results show that the CSFV genome detection in spleen swabs is comparable to that in spleen homogenates. The study also demonstrated that the CSFV genomic material can be detected in spleen swabs during early CSFV infections, and the viruses can be successfully isolated from the swabs. The use of spleen swabs instead of spleen tissue homogenates for CSF detection will reduce labor, decrease costs associated with reporting, and increase the diagnostic throughput. Full article
Show Figures

Figure 1

12 pages, 757 KiB  
Brief Report
DNA-Programmable Oligonucleotide Insecticide Eriola-11 Targets Mitochondrial 16S rRNA and Exhibits Strong Insecticidal Activity Against Woolly Apple Aphid (Eriosoma lanigerum) Hausmann
by Vol Oberemok, Kate Laikova, Oksana Andreeva, Anastasia Dmitrienko, Tatiana Rybareva, Jamin Ali and Nikita Gal’chinsky
Int. J. Mol. Sci. 2025, 26(15), 7486; https://doi.org/10.3390/ijms26157486 - 2 Aug 2025
Viewed by 190
Abstract
The potent and selective ‘genetic zipper’ method for insect pest control consists of three essential components: an antisense DNA (the finder), its complementary mature rRNA or pre-rRNA of the pest (the target), and the host’s endogenous DNA-guided rRNase (the degrader). Although this approach [...] Read more.
The potent and selective ‘genetic zipper’ method for insect pest control consists of three essential components: an antisense DNA (the finder), its complementary mature rRNA or pre-rRNA of the pest (the target), and the host’s endogenous DNA-guided rRNase (the degrader). Although this approach has been validated, the spectrum of effective rRNA targets remains insufficiently explored. In this study, we report for the first time the insecticidal efficacy of a novel oligonucleotide insecticide, Eriola-11, which targets the mitochondrial 16S rRNA of the woolly apple aphid Eriosoma lanigerum Hausmann. We hypothesized that the antisense-mediated silencing of mitochondrial rRNA would impair aphid viability and lead to physiological disruptions associated with mitochondrial energy metabolism. Eriola-11 was applied either once or twice (with a 24 h interval) to aphid-infested plants, and aphid mortality was recorded over 14 days. Mitochondrial 16S rRNA expression levels were quantified using molecular assays, and the degradation kinetics of Eriola-11 were assessed in aphid tissue homogenates. Results showed significant insecticidal activity, with 67.55% mortality after a single treatment and 83.35% after two treatments. Treated aphids exhibited the loss of their characteristic white woolly wax covering, and mitochondrial 16S rRNA expression was reduced 0.66-fold relative to the control. Additionally, Eriola-11 was fully degraded by aphid DNases from tissue homogenates within 3 h, highlighting its rapid biodegradability. These findings establish mitochondrial 16S rRNA as a viable target for antisense insecticides and expand the catalogue of potential rRNA-based targets, offering a promising avenue for environmentally sustainable pest control strategies. Full article
(This article belongs to the Special Issue Antisense Oligonucleotides: Versatile Tools with Broad Applications)
Show Figures

Figure 1

22 pages, 5231 KiB  
Article
Exploring Ibuprofen–Menthol Eutectic Systems: Physicochemical Properties and Cytotoxicity for Pharmaceutical Applications
by Álvaro Werner, Estefanía Zuriaga, Marina Sanz, Fernando Bergua, Beatriz Giner, Carlos Lafuente and Laura Lomba
Pharmaceutics 2025, 17(8), 979; https://doi.org/10.3390/pharmaceutics17080979 - 29 Jul 2025
Viewed by 277
Abstract
Backgroun/Objectives: Recent pharmaceutical research has increasingly focused on eutectic systems to improve the formulation and delivery of active pharmaceutical ingredients (APIs). This study presents the preparation and characterization of three therapeutic eutectic systems (THEESs) based on ibuprofen and menthol at various molar ratios. [...] Read more.
Backgroun/Objectives: Recent pharmaceutical research has increasingly focused on eutectic systems to improve the formulation and delivery of active pharmaceutical ingredients (APIs). This study presents the preparation and characterization of three therapeutic eutectic systems (THEESs) based on ibuprofen and menthol at various molar ratios. Methods: The THEESs were prepared and analyzed by assessing their physicochemical properties and rheological properties were evaluated to determine flow behavior. Cytotoxicity assays were conducted on HaCaT and HepG2 cell lines to assess biocompatibility. Results: All systems formed monophasic, homogeneous, clear and viscous liquids. Key physicochemical properties, including density, refractive index, surface tension, speed of sound and isobaric heat capacity, showed a temperature-dependent, inverse proportional trend. Viscosity followed the Vogel–Fulcher–Tammann equation, and rheological analysis revealed non-Newtonian behavior, which is important for pharmaceutical processing. Notably, cytotoxicity assays revealed that Ibu-M3 and Ibu-M4 showed lower toxicity than pure compounds in HaCaT cells, while Ibu-M5 was more toxic; in HepG2 cells, only Ibu-M3 was less toxic, whereas Ibu-M4 and Ibu-M5 were more cytotoxic than the pure compounds. Conclusions: These findings highlight the potential of ibuprofen–menthol eutectic systems for safer and more effective pharmaceutical formulations. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

16 pages, 1865 KiB  
Article
pH-Controlled Yeast Protein Precipitation from Saccharomyces cerevisiae: Acid-Induced Denaturation for Improved Emulsion Stability
by Laura Riedel, Nico Leister and Ulrike S. van der Schaaf
Foods 2025, 14(15), 2643; https://doi.org/10.3390/foods14152643 - 28 Jul 2025
Viewed by 213
Abstract
In the search for alternative protein sources, single cell proteins have gained increasing attention in recent years. Among them, proteins derived from yeast represent a promising but still underexplored option. To enable their application in food product design, their techno-functional properties must be [...] Read more.
In the search for alternative protein sources, single cell proteins have gained increasing attention in recent years. Among them, proteins derived from yeast represent a promising but still underexplored option. To enable their application in food product design, their techno-functional properties must be understood. In order to investigate the impact of precipitation pH on their emulsion-stabilizing properties, yeast proteins from Saccharomyces cerevisiae were isolated via precipitation at different pH (pH 3.5 to 5) after cell disruption in the high-pressure homogenizer. Emulsions containing 5 wt% oil and ~1 wt% protein were analyzed for stability based on their droplet size distribution. Proteins precipitated at pH 3.5 stabilized the smallest oil droplets and prevented partitioning of the emulsion, outperforming proteins precipitated at higher pH values. It is hypothesized that precipitation under acidic conditions induces protein denaturation and thereby exposes hydrophobic regions that enhance adsorption at the oil–water interface and the stabilization of the dispersed oil phase. To investigate the stabilization mechanism, the molecular weight of the proteins was determined using SDS-PAGE, their solubility using Bradford assay, and their aggregation behavior using static laser scattering. Proteins precipitated at pH 3.5 possessed larger molecular weights, lower solubility, and a strong tendency to aggregate. Overall, the findings highlight the potential of yeast-derived proteins as bio-surfactants and suggest that pH-controlled precipitation can tailor their functionality in food formulations. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

22 pages, 1793 KiB  
Article
Formulation and Functional Characterization of a Cannabidiol-Loaded Nanoemulsion in Canine Mammary Carcinoma Cells
by Francisca J. Medina, Guillermo Velasco, María G. Villamizar-Sarmiento, Cristian G. Torres and Felipe A. Oyarzun-Ampuero
Pharmaceutics 2025, 17(8), 970; https://doi.org/10.3390/pharmaceutics17080970 - 26 Jul 2025
Viewed by 766
Abstract
Background/Objectives: Mammary carcinoma is a common disease in female dogs. Cannabidiol (CBD) can inhibit cell proliferation and induce apoptosis in human cancer cells. However, its low solubility in aqueous media requires solvents such as ethanol or dimethylsulfoxide that limit their dosage. Incorporating [...] Read more.
Background/Objectives: Mammary carcinoma is a common disease in female dogs. Cannabidiol (CBD) can inhibit cell proliferation and induce apoptosis in human cancer cells. However, its low solubility in aqueous media requires solvents such as ethanol or dimethylsulfoxide that limit their dosage. Incorporating CBD into oil-in-water nanoemulsions (Nem) can improve its aqueous dispersibility. This study aimed to develop a CBD-Nem formulation and evaluate its effects on canine mammary cancer cell lines (CF41.Mg and IPC366) and non-cancer cells (MDCK). Methods: CBD-Nem was prepared with Miglyol 812 oil and Epikuron 145 V as the surfactant, and was characterized by analyzing size, morphology, zeta potential, release profile, and uptake/internalization. Moreover, the antitumor effects of CBD-Nem were evaluated in cancer cells through viability, proliferation, cell cycle, and migration–invasion assays. Results: CBD-Nem exhibited a monodisperse nanometric population (~150 nm), spherical shape, and negative zeta potential (~−50 mV). The in vitro release kinetics showed slow and sustained delivery at both pH 5.5 and pH 7.4. Rhodamine-Nem, as a fluorescent model of CBD-Nem, was taken up and homogenously internalized in CF41.Mg cells. CBD-Nem decreased the viability of cancer cells with a maximum effect at 50 µM and showed a lower toxicity in MDCK cells. Long-term efficacy (20 days) was evidenced by CBD-Nem at inhibiting colony formation in cancer cells. Furthermore, CBD-Nem reduced the proportion of cells in the G2-M phase, induced apoptosis, and inhibited the migration and invasion of CF41.Mg cells. Conclusions: CBD-Nem exhibited an in vitro antitumor effect, which supports its study in dogs with mammary carcinoma. Full article
(This article belongs to the Topic Cannabis, Cannabinoids and Its Derivatives)
Show Figures

Graphical abstract

25 pages, 7428 KiB  
Article
Sialic Acid-Loaded Nanoliposomes with Enhanced Stability and Transdermal Delivery for Synergistic Anti-Aging, Skin Brightening, and Barrier Repair
by Fan Yang, Hua Wang, Dan Luo, Jun Deng, Yawen Hu, Zhi Liu and Wei Liu
Pharmaceutics 2025, 17(8), 956; https://doi.org/10.3390/pharmaceutics17080956 - 24 Jul 2025
Viewed by 315
Abstract
Objectives: Sialic acid (SA), a naturally occurring compound abundantly found in birds’ nests, holds immense promise for skincare applications owing to its remarkable biological properties. However, its low bioavailability, poor stability, and limited skin permeability have constrained its widespread application. Methods: [...] Read more.
Objectives: Sialic acid (SA), a naturally occurring compound abundantly found in birds’ nests, holds immense promise for skincare applications owing to its remarkable biological properties. However, its low bioavailability, poor stability, and limited skin permeability have constrained its widespread application. Methods: To overcome these challenges, SA was encapsulated within nanoliposomes (NLPs) by the high-pressure homogenization technique to develop an advanced and efficient transdermal drug delivery system. The skincare capabilities of this novel system were comprehensively evaluated across multiple experimental platforms, including in vitro cell assays, 3D skin models, in vivo zebrafish studies, and clinical human trials. Results: The SA-loaded NLPs (SA-NLPs) substantially improved the transdermal penetration and retention of SA, facilitating enhanced cellular uptake and cell proliferation. Compared to free SA, SA-NLPs demonstrated a 246.98% increase in skin retention and 1.8-fold greater cellular uptake in HDF cells. Moreover, SA-NLPs protected cells from oxidative stress-induced damage, stimulated collagen synthesis, and effectively suppressed the secretion of matrix metalloproteinases, tyrosinase activity, and melanin production. Additionally, zebrafish-based assays provided in vivo evidence of the skincare efficacy of SA-NLPs. Notably, clinical evaluations demonstrated that a 56-day application of the SA-NLPs-containing cream resulted in a 4.20% increase in L*, 7.87% decrease in b*, 8.45% decrease in TEWL, and 4.01% reduction in wrinkle length, indicating its superior brightening, barrier-repair, and anti-aging effects. Conclusions: This multi-level, systematic investigation strongly suggests that SA-NLPs represent a highly promising transdermal delivery strategy, capable of significantly enhancing the anti-aging, barrier-repair, and skin-brightening properties of SA, thus opening new avenues for its application in the fields of dermatology and cosmeceuticals. Full article
(This article belongs to the Special Issue Lipid/Polymer-Based Drug Delivery Systems)
Show Figures

Figure 1

24 pages, 4295 KiB  
Article
Acrocomia aculeata Oil-Loaded Nanoemulsion: A Promising Candidate for Cancer and Diabetes Management
by Ariadna Lafourcade Prada, Jesus Rafael Rodríguez Amado, Renata Trentin Perdomo, Giovanna Bicudo Gomes, Danielle Ayr Tavares de Almeida, Leandro Fontoura Cavalheiro, Arquimedes Gasparotto Junior, Serafim Florentino Neto and Marco Antonio Utrera Martines
Pharmaceuticals 2025, 18(8), 1094; https://doi.org/10.3390/ph18081094 - 24 Jul 2025
Viewed by 331
Abstract
Background: Diabetes and cancer are two of the most life-threatening disorders affecting individuals of all ages worldwide. This study aimed to develop a novel Acrocomia aculeata (bocaiuva) fruit pulp oil-loaded nanoemulsion and evaluate its inhibitory effects on α-glucosidase and pancreatic lipase, as well [...] Read more.
Background: Diabetes and cancer are two of the most life-threatening disorders affecting individuals of all ages worldwide. This study aimed to develop a novel Acrocomia aculeata (bocaiuva) fruit pulp oil-loaded nanoemulsion and evaluate its inhibitory effects on α-glucosidase and pancreatic lipase, as well as its antiglycant activity and cytotoxicity against cancer cells. Additionally, this study assessed the impact of both the oil and the nanoemulsion on blood cells. Methods: The pulp oil was extracted by cold pressing. The oil’s physicochemical properties were determined according to the AOAC and the Brazilian Pharmacopeia. The lipid profile was performed by GC-MS. The nanoemulsion was prepared by the phase inversion method using ultrasonic stirring for particle size reduction and for homogenization. Response Surface Methodology was used for optimizing nanoemulsion preparation. Enzyme inhibition tests were conducted using assay kits. Cytotoxicity in cancer cells was evaluated using the Sulforhodamine B assay. Results: Comprehensive physicochemical and chemical characterization of bocaiuva oil was performed, identifying oleic acid (71.25%) as the main component. The oil contains 23.04% saturated fatty acids, 73.79% monounsaturated acids, and 3.0% polyunsaturated fatty acids. The nanoemulsion (particle size 173.6 nm; zeta potential −14.10 mV) inhibited α-glucosidase (IC50: 43.21 µg/mL) and pancreatic lipase (IC50: 41.99 µg/mL), and revealed a potent antiglycation effect (oxidative IC50: 18.36 µg/mL; non-oxidative pathway IC50: 16.33 µg/mL). The nanoemulsion demonstrated good cytotoxicity and selectivity against prostate cancer cells (IC50: 19.13 µg/mL) and breast cancer cells (IC50: 27.22 µg/mL), without inducing hemolysis, platelet aggregation, or anticoagulant effects. Conclusions: In this study, a comprehensive physical and chemical characterization of bocaiuva fruit pulp oil was conducted for the first time as a preliminary step toward its future standardization as an active ingredient in cosmetic and pharmaceutical formulations. The resulting nanoemulsion represents a novel alternative for managing diabetes and cancer. Although the nanoemulsion exhibited lower cytotoxicity compared to doxorubicin, it remains promising due to its composition of essential fatty acids, phenols, and carotenoids, which offer multiple health benefits. Further studies are needed to validate its efficacy and safety in clinical applications. Full article
(This article belongs to the Special Issue Nanotechnology in Biomedical Applications)
Show Figures

Graphical abstract

16 pages, 1988 KiB  
Article
The Impact of Uranium-Induced Pulmonary Fibrosis on Gut Microbiota and Related Metabolites in Rats
by Ruifeng Dong, Xiaona Gu, Lixia Su, Qingdong Wu, Yufu Tang, Hongying Liang, Xiangming Xue, Teng Zhang and Jingming Zhan
Metabolites 2025, 15(8), 492; https://doi.org/10.3390/metabo15080492 - 22 Jul 2025
Viewed by 360
Abstract
Background/Objectives: This study aimed to evaluate the effects of lung injury induced by insoluble uranium oxide particles on gut microbiota and related metabolites in rats. Methods: The rats were randomly divided into six UO2 dose groups. A rat lung injury [...] Read more.
Background/Objectives: This study aimed to evaluate the effects of lung injury induced by insoluble uranium oxide particles on gut microbiota and related metabolites in rats. Methods: The rats were randomly divided into six UO2 dose groups. A rat lung injury model was established through UO2 aerosol. The levels of uranium in lung tissues were detected by ICP-MS. The expression levels of the inflammatory factors and fibrosis indexes were measured by enzyme-linked immunosorbent assay. Paraffin embedding-based hematoxylin & eosin staining for the lung tissue was performed to observe the histopathological imaging features. Metagenomic sequencing technology and HM700-targeted metabolomics were conducted in lung tissues. Results: Uranium levels in the lung tissues increased with dose increase. The expression levels of Tumor Necrosis Factor-α (TNF-α), Interleukin-1β (IL-1β), Collagen I, and Hydroxyproline (Hyp) in rat lung homogenate increased with dose increase. Inflammatory cell infiltration and the deposition of extracellular matrix were observed in rat lung tissue post-exposure. Compared to the control group, the ratio of Firmicutes and Bacteroides in the gut microbiota decreased, the relative abundance of Akkermansia_mucinphila decreased, and the relative abundance of Bacteroides increased. The important differential metabolites mainly include αlpha-linolenic acid, gamma-linolenic acid, 2-Hydroxybutyric acid, Beta-Alanine, Maleic acid, Hyocholic acid, L-Lysine, L-Methionine, L-Leucine, which were mainly concentrated in unsaturated fatty acid biosynthesis, propionic acid metabolism, aminoacyl-tRNA biosynthesis, phenylalanine metabolism, and other pathways in the UO2 group compared to the control group. Conclusions: These findings suggest that uranium-induced lung injury can cause the disturbance of gut microbiota and its metabolites in rats, and these changes are mainly caused by Akkermansia_mucinphila and Bacteroides, focusing on unsaturated fatty acid biosynthesis and the propionic acid metabolism pathway. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Figure 1

19 pages, 13952 KiB  
Article
Antioxidant and Anti-Inflammatory Effects of Crude Gastrodia elata Polysaccharides in UVB-Induced Acute Skin Damage
by Jiajia Liu, Xiaoqi Yang, Xing Huang, Yuan Luo, Qilin Zhang, Feng Wang, Yicen Lin and Lianbing Lin
Antioxidants 2025, 14(7), 894; https://doi.org/10.3390/antiox14070894 - 21 Jul 2025
Viewed by 507
Abstract
Ultraviolet B (UVB) irradiation drives skin photodamage, prompting exploration of natural therapeutics. This study investigated the reparative effects and mechanisms of crude Gastrodia elata polysaccharides (GP) on UVB-induced acute skin damage. GP was extracted from fresh G. elata via water extraction and alcohol [...] Read more.
Ultraviolet B (UVB) irradiation drives skin photodamage, prompting exploration of natural therapeutics. This study investigated the reparative effects and mechanisms of crude Gastrodia elata polysaccharides (GP) on UVB-induced acute skin damage. GP was extracted from fresh G. elata via water extraction and alcohol precipitation. It is a homogeneous polysaccharide with a weight-average molecular weight of 808.863 kDa, comprising Ara, Glc, Fru, and GalA. Histopathological analysis revealed that topical application of GP on the dorsal skin of mice effectively restored normal physiological structure, suppressing epidermal hyperplasia and collagen degradation. Biochemical assays showed that GP significantly reduced the activities of MPO and MDA following UVB exposure while restoring the enzymatic activities of SOD and GSH, thereby mitigating oxidative stress. Moreover, GP treatment markedly upregulated the anti-inflammatory cytokines TGF-β and IL-10 and downregulated the pro-inflammatory mediators IL-6, IL-1β, and TNF-α, suggesting robust anti-inflammatory effects. Transcriptomics revealed dual-phase mechanisms: Early repair (day 5) involved GP-mediated suppression of hyper inflammation and accelerated necrotic tissue clearance via pathway network modulation. Late phase (day 18) featured enhanced anti-inflammatory, antioxidant, and tissue regeneration processes through energy-sufficient, low-inflammatory pathway networks. Through a synergistic response involving antioxidation, anti-inflammation, promotion of collagen synthesis, and acceleration of skin barrier repair, GP achieves comprehensive repair of UVB-induced acute skin damage. Our findings not only establish GP as a potent natural alternative to synthetic photoprotective agents but also reveal novel pathway network interactions governing polysaccharide-mediated skin regeneration. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

21 pages, 5279 KiB  
Article
The Influence of Zn and Ca Addition on the Microstructure, Mechanical Properties, Cytocompatibility, and Electrochemical Behavior of WE43 Alloy Intended for Orthopedic Applications
by Mircea Cătălin Ivănescu, Corneliu Munteanu, Ramona Cimpoeșu, Maria Daniela Vlad, Bogdan Istrate, Fabian Cezar Lupu, Eusebiu Viorel Șindilar, Alexandru Vlasa, Cristinel Ionel Stan, Maria Larisa Ivănescu and Georgeta Zegan
Medicina 2025, 61(7), 1271; https://doi.org/10.3390/medicina61071271 - 14 Jul 2025
Viewed by 350
Abstract
Background and Objectives: Magnesium (Mg)-based materials, such as the WE43 alloy, show potential in biomedical applications owing to their advantageous mechanical properties and biodegradability; however, their quick corrosion rate and hydrogen release restrict their general clinical utilization. This study aimed to develop [...] Read more.
Background and Objectives: Magnesium (Mg)-based materials, such as the WE43 alloy, show potential in biomedical applications owing to their advantageous mechanical properties and biodegradability; however, their quick corrosion rate and hydrogen release restrict their general clinical utilization. This study aimed to develop a novel Mg-Zn-Ca alloy system based on WE43 alloy, evaluating the influence of Zn and Ca additions on microstructure, mechanical properties, cytocompatibility, and electrochemical behavior for potential use in biodegradable orthopedic applications. Materials and Methods: The WE43-Zn-Ca alloy system was developed by alloying standard WE43 (Mg–Y–Zr–RE) with 1.5% Zn and Ca concentrations of 0.2% (WE43_0.2Ca alloy) and 0.3% (WE43_0.3Ca alloy). Microstructural analysis was performed utilizing scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDS), while the chemical composition was validated through optical emission spectroscopy and X-ray diffraction (XRD). Mechanical properties were assessed through tribological tests. Electrochemical corrosion behavior was evaluated using potentiodynamic polarization in a 3.5% NaCl solution. Cytocompatibility was assessed in vitro on MG63 cells using cell viability assays (MTT). Results: Alloys WE43_0.2Ca and WE43_0.3Ca exhibited refined, homogeneous microstructures with grain sizes between 70 and 100 µm, without significant structural defects. Mechanical testing indicated reduced stiffness and an elastic modulus similar to human bone (19.2–20.3 GPa), lowering the risk of stress shielding. Cytocompatibility tests confirmed non-cytotoxic behavior for alloys WE43_0.2Ca and WE43_0.3Ca, with increased cell viability and unaffected cellular morphology. Conclusions: The study validates the potential of Mg-Zn-Ca alloys (especially WE43_0.3Ca) as biodegradable biomaterials for orthopedic implants due to their favorable combination of mechanical properties, corrosion resistance, and cytocompatibility. The optimization of these alloys contributed to obtaining an improved microstructure with a reduced degradation rate and a non-cytotoxic in vitro outcome, which supports efficient bone tissue regeneration and its integration into the body for complex biomedical applications. Full article
Show Figures

Figure 1

17 pages, 2498 KiB  
Article
Lemongrass Alleviates Primary Dysmenorrhea Symptoms by Reducing Oxidative Stress and Inflammation and Relaxing the Uterine Muscles
by Sheikh Safeena Sidiq, Qaiser Jabeen, QurratUlAin Jamil, Muhammad Saeed Jan, Iram Iqbal, Fatima Saqib, Mohammed Aufy and Shahid Muhammad Iqbal
Antioxidants 2025, 14(7), 838; https://doi.org/10.3390/antiox14070838 - 8 Jul 2025
Viewed by 450
Abstract
Primary dysmenorrhea (PD) is characterized by lower abdominal spasms and painful cramps during menstruation in females with a normal pelvic anatomy. Cymbopogon citratus (DC.) Stapf, commonly known as lemongrass, is consumed in the form of herbal tea around the world. It has been [...] Read more.
Primary dysmenorrhea (PD) is characterized by lower abdominal spasms and painful cramps during menstruation in females with a normal pelvic anatomy. Cymbopogon citratus (DC.) Stapf, commonly known as lemongrass, is consumed in the form of herbal tea around the world. It has been traditionally used for menstrual disorders in several communities. This study aims to evaluate the traditional use of C. citratus for its efficacy in alleviating the symptoms of PD. C. citratus extract (CcE) was chemically characterized using HPLC and GCMS, which indicated the presence of several phenolic compounds and long-chain fatty acids. The anti-inflammatory activity of CcE was assessed by COX-I, COX-II, and 5-LOX enzyme inhibition with IC50 values of 143.7, 91.7, and 61.5 µg/mL, respectively, and showed good total antioxidant capacity and free radical scavenging activity. PD was induced in female Wistar rats by administering estradiol valerate followed by oxytocin to induce PD symptoms. CcE efficacy was assessed at 30, 100, and 300 mg/kg concentrations and compared with ibuprofen. CcE 300 mg/kg reduced abdominal contortions and inflammation in the rat uterus. The inflammatory (COX-II, TNFα and IL-10) and oxidative stress (TAC, TOS, MDA and SOD) markers in uterine tissue homogenate were also improved. An in vivo analgesic assessment through hot-plate, tail-flick, and acetic acid-induced writhing assays showed good analgesic activity by CcE, while ex vivo experiments described tocolytic effects in rat uterine muscles. CcE alleviates PD by its antioxidant, anti-inflammatory, analgesic, and tocolytic effects. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

16 pages, 2915 KiB  
Article
Extrusion-Based 3D Printing of Rutin Using Aqueous Polyethylene Oxide Gel Inks
by Oleh Koshovyi, Jyrki Heinämäki, Alina Shpychak, Andres Meos, Niklas Sandler Topelius and Ain Raal
Pharmaceutics 2025, 17(7), 878; https://doi.org/10.3390/pharmaceutics17070878 - 3 Jul 2025
Viewed by 418
Abstract
Background/Objectives. Flavonoids are a vast class of phenolic substances. To date, approximately 6000 plant-origin flavonoids have been discovered, with many of them being used in drug therapy. Therapeutic flavonoids are commonly formulated to conventional “one-size-fits-all” dosage forms, such as conventional tablets or hard [...] Read more.
Background/Objectives. Flavonoids are a vast class of phenolic substances. To date, approximately 6000 plant-origin flavonoids have been discovered, with many of them being used in drug therapy. Therapeutic flavonoids are commonly formulated to conventional “one-size-fits-all” dosage forms, such as conventional tablets or hard capsules. However, the current trends in pharmacy and medicine are centred on personalised drug therapy and drug delivery systems (DDSs). Therefore, 3D printing is an interesting technique for designing and preparing novel personalised pharmaceuticals for flavonoids. The aim of the present study was to develop aqueous polyethylene oxide (PEO) gel inks loaded with rutin for semisolid extrusion (SSE) 3D printing. Methods. Rutin (a model substance for therapeutic flavonoids), Tween 80, PEO (MW approx. 900,000), ethanol, and purified water were used in PEO gels at different proportions. The viscosity and homogeneity of the gels were determined. The rutin–PEO gels were printed with a bench-top Hyrel 3D printer into lattices and discs, and their weight and effective surface area were investigated. Results. The key SSE 3D-printing process parameters were established and verified. The results showed the compatibility of rutin as a model flavonoid and PEO as a carrier polymer. The rutin content (%) and content uniformity of the 3D-printed preparations were assayed by UV spectrophotometry and high-performance liquid chromatography (HPLC). Conclusions. The most feasible aqueous PEO gel ink formulation for SSE 3D printing contained rutin 100 mg/mL and Tween 80 50 mg/mL in a 12% aqueous PEO gel. The 3D-printed dosage forms are intended for the oral administration of flavonoids. Full article
(This article belongs to the Special Issue 3D Printing of Drug Delivery Systems)
Show Figures

Graphical abstract

19 pages, 2844 KiB  
Article
Chitosan Nanoparticles Enhance the Antiproliferative Effect of Lapachol in Urothelial Carcinoma Cell Lines
by Tatiane Roquete Amparo, Kamila de Fátima da Anunciação, Tamires Cunha Almeida, Lucas Resende Dutra Sousa, Viviane Flores Xavier, Janaína Brandão Seibert, Ana Paula Moreira Barboza, Paula Melo de Abreu Vieira, Orlando David Henrique dos Santos, Glenda Nicioli da Silva and Geraldo Célio Brandão
Pharmaceutics 2025, 17(7), 868; https://doi.org/10.3390/pharmaceutics17070868 - 2 Jul 2025
Viewed by 394
Abstract
Backgroud/Objectives: Lapachol is a naturally occurring prenylated naphthoquinone with antiproliferative effects. However, its clinical application remains limited due to several factors, including poor water solubility, low bioavailability, and adverse effects. The development of chitosan-based nanoparticles holds promise in overcoming these challenges and has [...] Read more.
Backgroud/Objectives: Lapachol is a naturally occurring prenylated naphthoquinone with antiproliferative effects. However, its clinical application remains limited due to several factors, including poor water solubility, low bioavailability, and adverse effects. The development of chitosan-based nanoparticles holds promise in overcoming these challenges and has emerged as a potential nanocarrier for cancer therapy, including bladder cancer. The objective of this study was to develop and evaluate the effects of chitosan nanoparticles on bladder tumor cell lines. Methods: The nanoemulsion was prepared using the hot homogenization method, while the chitosan nanoparticles were obtained through the ionic gelation technique. The nanoformulations were characterized in terms of particle size and polydispersity index (PDI) using photon correlation spectroscopy, and zeta potential by electrophoretic mobility. Encapsulation efficiency was determined by ultracentrifugation, and the drug release was analyzed using the dialysis method. The antineoplastic potential was assessed using the MTT assay, and the safety profile was assessed through ex vivo analysis. Cellular uptake was determined by fluorescence microscopy. Results: The study demonstrated that both the chitosan-based nanoemulsion and nanospheres encapsulating lapachol exhibited appropriate particle sizes (around 160 nm), high encapsulation efficiency (>90%), and a controlled release profile (Korsmeyer–Peppas model). These nanoemulsion systems enhanced the antiproliferative activity of lapachol in bladder tumor cells, with the nanospheres showing superior cellular uptake. Histopathological analysis indicated the safety of the formulations when administered intravesically. Conclusions: The results suggest that chitosan nanoparticles may represent a promising alternative for bladder cancer treatment. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

13 pages, 3452 KiB  
Article
Silk Fibroin Microparticle/Carboxymethyl Cellulose Composite Gel for Wound Healing Applications
by Alexander Pashutin, Ekaterina Podbolotova, Luidmila Kirsanova, Onur Dosi, Anton E. Efimov, Olga Agapova and Igor Agapov
Biomimetics 2025, 10(7), 434; https://doi.org/10.3390/biomimetics10070434 - 2 Jul 2025
Viewed by 483
Abstract
Silk fibroin has recently gained considerable attention as a promising biomaterial for use in medical and bioengineering technologies due to its biocompatibility and favorable mechanical properties. In this study, composite gel based on silk fibroin microparticles and carboxymethyl cellulose was developed, characterized by [...] Read more.
Silk fibroin has recently gained considerable attention as a promising biomaterial for use in medical and bioengineering technologies due to its biocompatibility and favorable mechanical properties. In this study, composite gel based on silk fibroin microparticles and carboxymethyl cellulose was developed, characterized by a viscous, homogeneous white mass containing uniformly distributed fibroin microparticles ranging from 1 to 20 μm in size. The gel exhibited a kinematic viscosity of 36.5 × 10−6 St, allowing for convenient application to wounds using a syringe or spatula while preventing uncontrolled spreading. The cytocompatibility of the gel was confirmed using the methylthiazol tetrazolium (MTT) assay, which showed no cytotoxic effects on 3T3 fibroblast cells. Furthermore, the gel remained stable for over one year when stored at 10 °C, in contrast to conventional fibroin solutions, which typically lose stability within a month under similar conditions. In a full-thickness skin wound model in rats, the application of the gel significantly accelerated skin regeneration, with complete wound closure observed by day 15, compared with 30 days in the control group. Histological analysis confirmed the restoration of all skin layers. These findings demonstrate the high potential of the gel for applications in regenerative medicine and tissue engineering. Full article
(This article belongs to the Special Issue Advanced Biomaterials for Wound Healing Application)
Show Figures

Figure 1

14 pages, 7917 KiB  
Article
Characterization of Polylactic Acid Membranes for Local Release of Tramadol
by Lafitte Fernández-Minotre, Mauricio Montero-Aguilar, Febe Carolina Vázquez-Vázquez, Janeth Serrano-Bello, José Vega-Baudrit, Reinaldo Pereira-Reyes, Amaury Pozos-Guillén and Daniel Chavarría-Bolaños
Int. J. Mol. Sci. 2025, 26(13), 6018; https://doi.org/10.3390/ijms26136018 - 23 Jun 2025
Viewed by 451
Abstract
This study aimed to develop polylactic acid (PLA)-based membranes incorporating tramadol (TMD) using air jet spinning (AJS), ensuring stable physicochemical properties and biocompatibility. Two groups were fabricated: 10% PLA membranes (control) and 10% PLA membranes loaded with TMD in an 80:1 ratio (experimental). [...] Read more.
This study aimed to develop polylactic acid (PLA)-based membranes incorporating tramadol (TMD) using air jet spinning (AJS), ensuring stable physicochemical properties and biocompatibility. Two groups were fabricated: 10% PLA membranes (control) and 10% PLA membranes loaded with TMD in an 80:1 ratio (experimental). Characterization included scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-VIS), and biocompatibility assays with human osteoblasts using resazurin, crystal violet staining, and 5-chloromethylfluorescein diacetate for fluorescence microscopy. SEM revealed a homogeneous, randomly distributed fiber pattern, with diameters under 5 µm and no structural voids. DSC and TGA indicated that TMD was uniformly incorporated, increased the thermal capacity, and slightly lowered the onset and inflection degradation temperatures. FT-IR confirmed the chemical compatibility of TMD with PLA, showing no structural alterations. UV-VIS detected sustained TMD release over 72 h. Biocompatibility tests showed no cytotoxic effects; cell viability and proliferation in TMD-loaded membranes were comparable to controls. Statistical analysis used ANOVA and Wilcoxon tests. 10% PLA membranes loaded with TMD at an 80:1 ratio exhibited stable physicochemical characteristics and favorable biocompatibility, supporting their potential use in drug delivery systems. Full article
Show Figures

Figure 1

Back to TopTop