Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = holographic space

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2486 KiB  
Article
Influence of Intense Internal Waves Traveling Along an Acoustic Path on Source Holographic Reconstruction in Shallow Water
by Sergey Pereselkov, Venedikt Kuz’kin, Matthias Ehrhardt, Sergey Tkachenko, Alexey Pereselkov and Nikolay Ladykin
J. Mar. Sci. Eng. 2025, 13(8), 1409; https://doi.org/10.3390/jmse13081409 - 24 Jul 2025
Viewed by 316
Abstract
This paper studies how intense internal waves (IIWs) affect the holographic reconstruction of the sound field generated by a moving source in a shallow-water environment. It is assumed that the IIWs propagate along the acoustic path between the source and the receiver. The [...] Read more.
This paper studies how intense internal waves (IIWs) affect the holographic reconstruction of the sound field generated by a moving source in a shallow-water environment. It is assumed that the IIWs propagate along the acoustic path between the source and the receiver. The presence of IIWs introduces inhomogeneities into the waveguide and causes significant mode coupling, which perturbs the received sound field. This paper proposes the use of holographic signal processing (HSP) to eliminate perturbations in the received signal caused by mode coupling due to IIWs. Within the HSP framework, we examine the interferogram (the received sound intensity distribution in the frequency–time domain) and the hologram (the two-dimensional Fourier transform of the interferogram) of a moving source in the presence of space–time inhomogeneities caused by IIWs. A key finding is that under the influence of IIWs, the hologram is divided into two regions that correspond to the unperturbed and perturbed components of the sound field. This hologram structure enables the extraction and reconstruction of the interferogram corresponding to the unperturbed field as it would appear in a shallow-water waveguide without IIWs. Numerical simulations of HSP application under the realistic conditions of the SWARM’95 experiment were carried out for stationary and moving sources. The results demonstrate the high efficiency of holographic reconstruction of the unperturbed sound field. Unlike matched field processing (MFP), HSP does not require prior knowledge of the propagation environment. These research results advance signal processing methods in underwater acoustics by introducing efficient HSP methods for environments with spatiotemporal inhomogeneities. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

13 pages, 2828 KiB  
Article
Efficient Single-Exposure Holographic Imaging via a Lightweight Distilled Strategy
by Jiaosheng Li, Haoran Liu, Zeyu Lai, Yifei Chen, Chun Shan, Shuting Zhang, Youyou Liu, Tude Huang, Qilin Ma and Qinnan Zhang
Photonics 2025, 12(7), 708; https://doi.org/10.3390/photonics12070708 - 14 Jul 2025
Viewed by 183
Abstract
Digital holography can capture and reconstruct 3D object information, making it valuable for biomedical imaging and materials science. However, traditional holographic reconstruction methods require the use of phase shift operation in the time or space domain combined with complex computational processes, which, to [...] Read more.
Digital holography can capture and reconstruct 3D object information, making it valuable for biomedical imaging and materials science. However, traditional holographic reconstruction methods require the use of phase shift operation in the time or space domain combined with complex computational processes, which, to some extent, limits the range of application areas. The integration of deep learning (DL) advancements with physics-informed methodologies has opened new avenues for tackling this challenge. However, most of the existing DL-based holographic reconstruction methods have high model complexity. In this study, we first design a lightweight model with fewer parameters through the synergy of deep separable convolution and Swish activation function and then employ it as a teacher to distill a smaller student model. By reducing the number of network layers and utilizing knowledge distillation to improve the performance of a simple model, high-quality holographic reconstruction is achieved with only one hologram, greatly reducing the number of parameters in the network model. This distilled lightweight method cuts computational expenses dramatically, with its parameter count representing just 5.4% of the conventional Unet-based method, thereby facilitating efficient holographic reconstruction in settings with limited resources. Full article
(This article belongs to the Special Issue Advancements in Optical Metrology and Imaging)
Show Figures

Figure 1

19 pages, 5086 KiB  
Article
Expedited Near-Field Holographic Microwave Imaging with an Azimuthally Distributed Antenna Array
by Mona Heydari and Reza K. Amineh
Electronics 2025, 14(13), 2518; https://doi.org/10.3390/electronics14132518 - 20 Jun 2025
Viewed by 640
Abstract
In this article, we propose a novel near-field holographic microwave imaging technique designed to accelerate the data acquisition process. The system employs a novel electronic switching mechanism utilizing two switching networks that virtually rotate the transmitting and receiving antennas along the azimuthal direction [...] Read more.
In this article, we propose a novel near-field holographic microwave imaging technique designed to accelerate the data acquisition process. The system employs a novel electronic switching mechanism utilizing two switching networks that virtually rotate the transmitting and receiving antennas along the azimuthal direction for efficient data collection. This minimizes the need for mechanical scanning of the antennas which, in turn, leads to faster data acquisition. To enhance the quality of the imaging outcome, the number of samples can be increased by combining only a few mechanical scanning steps with the electronic scanning. This data acquisition scheme leverages the system’s space-invariant property to enable convolution-based near-field holographic microwave image reconstruction. By capturing and processing scattered fields over a cylindrical aperture, the system achieves high-resolution imaging of concealed objects across multiple range positions. Both simulation and experimental results validate the effectiveness of the proposed approach in delivering high-quality imaging results. Its ability to provide faster and enhanced imaging outcomes highlights its potential for a wide range of applications, including biomedical imaging, security screening, and non-destructive testing of the materials. Full article
Show Figures

Figure 1

34 pages, 397 KiB  
Article
Hilbert Bundles and Holographic Space–Time Models
by Tom Banks
Astronomy 2025, 4(2), 7; https://doi.org/10.3390/astronomy4020007 - 22 Apr 2025
Viewed by 703
Abstract
We reformulate holographic space–time models in terms of Hilbert bundles over the space of the time-like geodesics in a Lorentzian manifold. This reformulation resolves the issue of the action of non-compact isometry groups on finite-dimensional Hilbert spaces. Following Jacobson, I view the background [...] Read more.
We reformulate holographic space–time models in terms of Hilbert bundles over the space of the time-like geodesics in a Lorentzian manifold. This reformulation resolves the issue of the action of non-compact isometry groups on finite-dimensional Hilbert spaces. Following Jacobson, I view the background geometry as a hydrodynamic flow, whose connection to an underlying quantum system follows from the Bekenstein–Hawking relation between area and entropy, generalized to arbitrary causal diamonds. The time-like geodesics are equivalent to the nested sequences of causal diamonds, and the area of the holoscreen (The holoscreen is the maximal d2 volume (“area”) leaf of a null foliation of the diamond boundary. I use the term area to refer to its volume.) encodes the entropy of a certain density matrix on a finite-dimensional Hilbert space. I review arguments that the modular Hamiltonian of a diamond is a cutoff version of the Virasoro generator L0 of a 1+1-dimensional CFT of a large central charge, living on an interval in the longitudinal coordinate on the diamond boundary. The cutoff is chosen so that the von Neumann entropy is lnD, up to subleading corrections, in the limit of a large-dimension diamond Hilbert space. I also connect those arguments to the derivation of the ’t Hooft commutation relations for horizon fluctuations. I present a tentative connection between the ’t Hooft relations and U(1) currents in the CFTs on the past and future diamond boundaries. The ’t Hooft relations are related to the Schwinger term in the commutator of the vector and axial currents. The paper in can be read as evidence that the near-horizon dynamics for causal diamonds much larger than the Planck scale is equivalent to a topological field theory of the ’t Hooft CR plus small fluctuations in the transverse geometry. Connes’ demonstration that the Riemannian geometry is encoded in the Dirac operator leads one to a completely finite theory of transverse geometry fluctuations, in which the variables are fermionic generators of a superalgebra, which are the expansion coefficients of the sections of the spinor bundle in Dirac eigenfunctions. A finite cutoff on the Dirac spectrum gives rise to the area law for entropy and makes the geometry both “fuzzy” and quantum. Following the analysis of Carlip and Solodukhin, I model the expansion coefficients as two-dimensional fermionic fields. I argue that the local excitations in the interior of a diamond are constrained states where the spinor variables vanish in the regions of small area on the holoscreen. This leads to an argument that the quantum gravity in asymptotically flat space must be exactly supersymmetric. Full article
Show Figures

Figure 1

34 pages, 3195 KiB  
Review
Beyond Fiber: Toward Terahertz Bandwidth in Free-Space Optical Communication
by Rahat Ullah, Sibghat Ullah, Jianxin Ren, Hathal Salamah Alwageed, Yaya Mao, Zhipeng Qi, Feng Wang, Suhail Ayoub Khan and Umar Farooq
Sensors 2025, 25(7), 2109; https://doi.org/10.3390/s25072109 - 27 Mar 2025
Viewed by 1651
Abstract
The rapid advancement of terahertz (THz) communication systems has positioned this technology as a key enabler for next-generation telecommunication networks, including 6G, secure communications, and hybrid wireless-optical systems. This review comprehensively analyzes THz communication, emphasizing its integration with free-space optical (FSO) systems to [...] Read more.
The rapid advancement of terahertz (THz) communication systems has positioned this technology as a key enabler for next-generation telecommunication networks, including 6G, secure communications, and hybrid wireless-optical systems. This review comprehensively analyzes THz communication, emphasizing its integration with free-space optical (FSO) systems to overcome conventional bandwidth limitations. While THz-FSO technology promises ultra-high data rates, it is significantly affected by atmospheric absorption, particularly absorption beyond 500 GHz, where the attenuation exceeds 100 dB/km, which severely limits its transmission range. However, the presence of a lower-loss transmission window at 680 GHz provides an opportunity for optimized THz-FSO communication. This paper explores recent developments in high-power THz sources, such as quantum cascade lasers, photonic mixers, and free-electron lasers, which facilitate the attainment of ultra-high data rates. Additionally, adaptive optics, machine learning-based beam alignment, and low-loss materials are examined as potential solutions to mitigating signal degradation due to atmospheric absorption. The integration of THz-FSO systems with optical and radio frequency (RF) technologies is assessed within the framework of software-defined networking (SDN) and multi-band adaptive communication, enhancing their reliability and range. Furthermore, this review discusses emerging applications such as self-driving systems in 6G networks, ultra-low latency communication, holographic telepresence, and inter-satellite links. Future research directions include the use of artificial intelligence for network optimization, creating energy-efficient system designs, and quantum encryption to obtain secure THz communications. Despite the severe constraints imposed by atmospheric attenuation, the technology’s power efficiency, and the materials that are used, THz-FSO technology is promising for the field of ultra-fast and secure next-generation networks. Addressing these limitations through hybrid optical-THz architectures, AI-driven adaptation, and advanced waveguides will be critical for the full realization of THz-FSO communication in modern telecommunication infrastructures. Full article
(This article belongs to the Special Issue Challenges and Future Trends in Optical Communications)
Show Figures

Figure 1

9 pages, 5726 KiB  
Communication
Mixed Reality (Holography)-Guided Minimally Invasive Cardiac Surgery—A Novel Comparative Feasibility Study
by Winn Maung Maung Aye, Laszlo Kiraly, Senthil S. Kumar, Ayyadarshan Kasivishvanaath, Yujia Gao and Theodoros Kofidis
J. Cardiovasc. Dev. Dis. 2025, 12(2), 49; https://doi.org/10.3390/jcdd12020049 - 27 Jan 2025
Cited by 2 | Viewed by 1126
Abstract
The operative field and exposure in minimally invasive cardiac surgery (MICS) are limited. Meticulous preoperative planning and intraoperative visualization are crucial. We present our initial experience with HoloLens® 2 as an intraoperative guide during MICS procedures: aortic valve replacement (AVR) via right [...] Read more.
The operative field and exposure in minimally invasive cardiac surgery (MICS) are limited. Meticulous preoperative planning and intraoperative visualization are crucial. We present our initial experience with HoloLens® 2 as an intraoperative guide during MICS procedures: aortic valve replacement (AVR) via right anterior small thoracotomy, coronary artery bypass graft surgery (CABG) via left anterior small thoracotomy (LAST), and pulmonary valve replacement (PVR) via LAST. Three-dimensional (3D) segmentations were performed using the patient’s computer tomography (CT) data subsequently rendered into a 3D hologram on the HoloLens® 2. The holographic image was then superimposed on the patient lying on the operating table, using the xiphoid and the clavicle as landmarks, and was used as a real-time anatomical image guide for the surgery. The incision site marking made using HoloLens® 2 differed by one intercostal space from the marking made using a conventional surgeon’s mental reconstructed image from the patient’s preoperative imaging and was found to be a more appropriate site of entry into the chest for the structure of interest. The transparent visor of the HoloLens® 2 provided unobstructed views of the operating field. A mixed reality (MR) device could contribute to preoperative surgical planning and intraoperative real-time image guidance, which facilitates the understanding of anatomical relationships. MR has the potential to improve surgical precision, decrease risk, and enhance patient safety. Full article
Show Figures

Figure 1

17 pages, 13090 KiB  
Article
Dynamic Imaging of Projected Electric Potentials of Operando Semiconductor Devices by Time-Resolved Electron Holography
by Tolga Wagner, Hüseyin Çelik, Simon Gaebel, Dirk Berger, Peng-Han Lu, Ines Häusler, Nina Owschimikow, Michael Lehmann, Rafal E. Dunin-Borkowski, Christoph T. Koch and Fariba Hatami
Electronics 2025, 14(1), 199; https://doi.org/10.3390/electronics14010199 - 5 Jan 2025
Cited by 1 | Viewed by 1625
Abstract
Interference gating (iGate) has emerged as a groundbreaking technique for ultrafast time-resolved electron holography in transmission electron microscopy, delivering nanometer spatial and nanosecond temporal resolution with minimal technological overhead. This study employs iGate to dynamically observe the local projected electric potential within the [...] Read more.
Interference gating (iGate) has emerged as a groundbreaking technique for ultrafast time-resolved electron holography in transmission electron microscopy, delivering nanometer spatial and nanosecond temporal resolution with minimal technological overhead. This study employs iGate to dynamically observe the local projected electric potential within the space-charge region of a contacted transmission electron microscopy (TEM) lamella manufactured from a silicon diode during switching between unbiased and reverse-biased conditions, achieving a temporal resolution of 25 ns at a repetition rate of 3 MHz. By synchronizing the holographic acquisition with the applied voltage, this approach enables the direct visualization of time-dependent potential distributions with high precision. Complementary static and dynamic experiments reveal a remarkable correspondence between modeled and measured projected potentials, validating the method’s robustness. The observed dynamic phase progressions resolve and allow one to differentiate between localized switching dynamics and preparation-induced effects, such as charge recombination near the sample edges. These results establish iGate as a transformative tool for operando investigations of semiconductor devices, paving the way for advancing the nanoscale imaging of high-speed electronic processes. Full article
(This article belongs to the Section Optoelectronics)
Show Figures

Figure 1

26 pages, 3854 KiB  
Article
The Quantum Memory Matrix: A Unified Framework for the Black Hole Information Paradox
by Florian Neukart, Reuben Brasher and Eike Marx
Entropy 2024, 26(12), 1039; https://doi.org/10.3390/e26121039 - 30 Nov 2024
Cited by 3 | Viewed by 5710
Abstract
We present the Quantum Memory Matrix (QMM) hypothesis, which addresses the longstanding Black Hole Information Paradox rooted in the apparent conflict between Quantum Mechanics (QM) and General Relativity (GR). This paradox raises the question of how information is preserved during black hole formation [...] Read more.
We present the Quantum Memory Matrix (QMM) hypothesis, which addresses the longstanding Black Hole Information Paradox rooted in the apparent conflict between Quantum Mechanics (QM) and General Relativity (GR). This paradox raises the question of how information is preserved during black hole formation and evaporation, given that Hawking radiation appears to result in information loss, challenging unitarity in quantum mechanics. The QMM hypothesis proposes that space–time itself acts as a dynamic quantum information reservoir, with quantum imprints encoding information about quantum states and interactions directly into the fabric of space–time at the Planck scale. By defining a quantized model of space–time and mechanisms for information encoding and retrieval, QMM aims to conserve information in a manner consistent with unitarity during black hole processes. We develop a mathematical framework that includes space–time quantization, definitions of quantum imprints, and interactions that modify quantum state evolution within this structure. Explicit expressions for the interaction Hamiltonians are provided, demonstrating unitarity preservation in the combined system of quantum fields and the QMM. This hypothesis is compared with existing theories, including the holographic principle, black hole complementarity, and loop quantum gravity, noting its distinctions and examining its limitations. Finally, we discuss observable implications of QMM, suggesting pathways for experimental evaluation, such as potential deviations from thermality in Hawking radiation and their effects on gravitational wave signals. The QMM hypothesis aims to provide a pathway towards resolving the Black Hole Information Paradox while contributing to broader discussions in quantum gravity and cosmology. Full article
(This article belongs to the Special Issue The Black Hole Information Problem)
Show Figures

Figure 1

23 pages, 1167 KiB  
Article
Cosmological Models within f(T, B) Gravity in a Holographic Framework
by Khandro K. Chokyi and Surajit Chattopadhyay
Particles 2024, 7(3), 856-878; https://doi.org/10.3390/particles7030051 - 22 Sep 2024
Cited by 3 | Viewed by 1588
Abstract
We investigate the cosmological evolution of the universe for a spatially flat FLRW background space within the context of f(T,B) gravity, which is a recently formulated teleparallel theory that connects both f(T) and [...] Read more.
We investigate the cosmological evolution of the universe for a spatially flat FLRW background space within the context of f(T,B) gravity, which is a recently formulated teleparallel theory that connects both f(T) and f(R) gravity under suitable limits. The analysis focuses on four different f(T,B) cosmological models corresponding to various choices of scale factor, namely, emergent, logamediate, and intermediate. In addition to this, we assume a power law-like function of f(T,B) gravity. The reconstruction of f(T,B) gravity considers the Holographic Ricci Dark Energy (HRDE) as the background fluid. We analyze the equation of state parameters and the squared speed of sound for the reconstructed models. Finally, we conduct a thermodynamical analysis for each reconstructed model. The generalized second law of thermodynamics (GSLT) is valid for the four different f(T,B) cosmological models. Full article
Show Figures

Figure 1

19 pages, 8161 KiB  
Article
Half-Space Sound Field Reconstruction Based on the Combination of the Helmholtz Equation Least-Squares Method and Equivalent Source Method
by Laixu Jiang, Yingqi Xi, Yingying Hu, Guo Wang and Jingqiao Liu
Sensors 2024, 24(14), 4651; https://doi.org/10.3390/s24144651 - 17 Jul 2024
Viewed by 1199
Abstract
In practical conditions, near-field acoustic holography (NAH) requires the measurement environment to be a free sound field. If vibrating objects are located above the reflective ground, the sound field becomes non-free in the presence of a reflecting surface, and conventional NAH may not [...] Read more.
In practical conditions, near-field acoustic holography (NAH) requires the measurement environment to be a free sound field. If vibrating objects are located above the reflective ground, the sound field becomes non-free in the presence of a reflecting surface, and conventional NAH may not identify the sound source. In this work, two types of half-space NAH techniques based on the Helmholtz equation least-squares (HELS) method are developed to reconstruct the sound field above a reflecting plane. The techniques are devised by introducing the concept of equivalent source in HELS-method-based NAH. Two equivalent sources are tested. In one technique, spherical waves are used as the equivalent source, and the sound reflected from the reflecting surface is regarded as a linear superposition of orthogonal spherical wave functions of different orders located below the reflecting surface. In the other technique, some monopoles are considered equivalent sources, and the reflected sound is considered a series of sounds generated by simple sources distributed under the reflecting surface. The sound field is reconstructed by matching the pressure measured on the holographic surface with the orthogonal spherical wave source in the vibrating object and replacing the reflected sound with an equivalent source. Therefore, neither technique is related to the surface impedance of the reflected plane. Compared with the HELS method, both methods show higher reconstruction accuracy for a half-space sound field and are expected to broaden the application range of HELS-method-based NAH techniques. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

10 pages, 312 KiB  
Article
The Holographic Principle Comes from Finiteness of the Universe’s Geometry
by Arkady Bolotin
Entropy 2024, 26(7), 604; https://doi.org/10.3390/e26070604 - 17 Jul 2024
Cited by 1 | Viewed by 2179
Abstract
Discovered as an apparent pattern, a universal relation between geometry and information called the holographic principle has yet to be explained. This relation is unfolded in the present paper. As it is demonstrated there, the origin of the holographic principle lies in the [...] Read more.
Discovered as an apparent pattern, a universal relation between geometry and information called the holographic principle has yet to be explained. This relation is unfolded in the present paper. As it is demonstrated there, the origin of the holographic principle lies in the fact that a geometry of physical space has only a finite number of points. Furthermore, it is shown that the puzzlement of the holographic principle can be explained by a magnification of grid cells used to discretize geometrical magnitudes such as areas and volumes into sets of points. To wit, when grid cells of the Planck scale are projected from the surface of the observable universe into its interior, they become enlarged. For that reason, the space inside the observable universe is described by the set of points whose cardinality is equal to the number of points that constitute the universe’s surface. Full article
(This article belongs to the Section Astrophysics, Cosmology, and Black Holes)
38 pages, 513 KiB  
Review
Thermodynamics and Decay of de Sitter Vacuum
by Grigory E. Volovik
Symmetry 2024, 16(6), 763; https://doi.org/10.3390/sym16060763 - 18 Jun 2024
Cited by 10 | Viewed by 2416
Abstract
We discuss the consequences of the unique symmetry of de Sitter spacetime. This symmetry leads to the specific thermodynamic properties of the de Sitter vacuum, which produces a thermal bath for matter. de Sitter spacetime is invariant under the modified translations, [...] Read more.
We discuss the consequences of the unique symmetry of de Sitter spacetime. This symmetry leads to the specific thermodynamic properties of the de Sitter vacuum, which produces a thermal bath for matter. de Sitter spacetime is invariant under the modified translations, rreHta, where H is the Hubble parameter. For H0, this symmetry corresponds to the conventional invariance of Minkowski spacetime under translations rra. Due to this symmetry, all the comoving observers at any point of the de Sitter space perceive the de Sitter environment as the thermal bath with temperature T=H/π, which is twice as large as the Gibbons–Hawking temperature of the cosmological horizon. This temperature does not violate de Sitter symmetry and, thus, does not require the preferred reference frame, as distinct from the thermal state of matter, which violates de Sitter symmetry. This leads to the heat exchange between gravity and matter and to the instability of the de Sitter state towards the creation of matter, its further heating, and finally the decay of the de Sitter state. The temperature T=H/π determines different processes in the de Sitter environment that are not possible in the Minkowski vacuum, such as the process of ionization of an atom in the de Sitter environment. This temperature also determines the local entropy of the de Sitter vacuum state, and this allows us to calculate the total entropy of the volume inside the cosmological horizon. The result reproduces the Gibbons–Hawking area law, which is attributed to the cosmological horizon, Shor=4πKA, where K=1/(16πG). This supports the holographic properties of the cosmological event horizon. We extend the consideration of the local thermodynamics of the de Sitter state using the f(R) gravity. In this thermodynamics, the Ricci scalar curvature R and the effective gravitational coupling K are thermodynamically conjugate variables. The holographic connection between the bulk entropy of the Hubble volume and the surface entropy of the cosmological horizon remains the same but with the gravitational coupling K=df/dR. Such a connection takes place only in the 3+1 spacetime, where there is a special symmetry due to which the variables K and R have the same dimensionality. We also consider the lessons from de Sitter symmetry for the thermodynamics of black and white holes. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry: Feature Review Papers 2024)
19 pages, 13981 KiB  
Article
MCML-BF: A Metal-Column Embedded Microstrip Line Transmission Structure with Bias Feeders for Beam-Scanning Leakage Antenna Design
by Shunhu Hou, Shengliang Fang, Youchen Fan, Yuhai Li, Zhao Ma and Jinming Li
Sensors 2024, 24(11), 3467; https://doi.org/10.3390/s24113467 - 28 May 2024
Viewed by 1084
Abstract
This article proposes a novel fixed-frequency beam scanning leakage antenna based on a liquid crystal metamaterial (LCM) and adopting a metal column embedded microstrip line (MCML) transmission structure. Based on the microstrip line (ML) transmission structure, it was observed that by adding two [...] Read more.
This article proposes a novel fixed-frequency beam scanning leakage antenna based on a liquid crystal metamaterial (LCM) and adopting a metal column embedded microstrip line (MCML) transmission structure. Based on the microstrip line (ML) transmission structure, it was observed that by adding two rows of metal columns in the dielectric substrate, electromagnetic waves can be more effectively transmitted to reduce dissipation, and attenuation loss can be lowered to improve energy radiation efficiency. This antenna couples TEM mode electromagnetic waves into free space by periodically arranging 72 complementary split ring resonators (CSRRs). The LC layer is encapsulated in the transmission medium between the ML and the metal grounding plate. The simulation results show that the antenna can achieve a 106° continuous beam turning from reverse −52° to forward 54° at a frequency of 38 GHz with the holographic principle. In practical applications, beam scanning is achieved by applying a DC bias voltage to the LC layer to adjust the LC dielectric constant. We designed a sector-blocking bias feeder structure to minimize the impact of RF signals on the DC source and avoid the effect of DC bias on antenna radiation. Further comparative experiments revealed that the bias feeder can significantly diminish the influence between the two sources, thereby reducing the impact of bias voltage introduced by LC layer feeding on antenna performance. Compared with existing approaches, the antenna array simultaneously combines the advantages of high frequency band, high gain, wide beam scanning range, and low loss. Full article
Show Figures

Figure 1

17 pages, 590 KiB  
Article
Tsallis Holographic Dark Energy with Power Law Ansatz Approach
by Oem Trivedi, Maxim Khlopov and Alexander V. Timoshkin
Symmetry 2024, 16(4), 446; https://doi.org/10.3390/sym16040446 - 7 Apr 2024
Cited by 5 | Viewed by 1779
Abstract
Holographic principles have proven to be a very interesting approach towards dealing with the issues of the late-time acceleration of the universe, which has resulted in a great amount of work on holographic dark energy models. We consider one such very interesting holographic [...] Read more.
Holographic principles have proven to be a very interesting approach towards dealing with the issues of the late-time acceleration of the universe, which has resulted in a great amount of work on holographic dark energy models. We consider one such very interesting holographic scenario, namely the Tsallis Holographic dark energy model, and consider an ansatz based approach to such models. We consider three cosmological scenarios in such models, namely those with viscous, non-viscous, and Chaplygin gas scenarios, discussing various crucial aspects related to these models. We discuss various crucial properties of the Tsallis model in such scenarios and see how the phantom divide is crossed in each case, but it is only the Chaplygin gas models which provide a better view on stability issues.The symmetry property of the theory presented in the article is the assumption that space is isotropic. Using bulk viscosity instead of shear viscosity reflects spatial isotropy. Full article
(This article belongs to the Special Issue Symmetry: Feature Papers 2024)
Show Figures

Figure 1

12 pages, 5471 KiB  
Article
Crosstalk-Free Multiplane Full-Color Holography Based on the Space Division Method
by Axiu Cao, Yingfei Pang and Qiling Deng
Photonics 2024, 11(3), 230; https://doi.org/10.3390/photonics11030230 - 2 Mar 2024
Cited by 1 | Viewed by 1571
Abstract
This paper has proposed a full-color holography based on the space division method to provide a new solution for three-dimensional color holographic display. The hologram is divided into three different regions for the R, G, and B trichromatic hologram components, which will be [...] Read more.
This paper has proposed a full-color holography based on the space division method to provide a new solution for three-dimensional color holographic display. The hologram is divided into three different regions for the R, G, and B trichromatic hologram components, which will be designed separately at the corresponding positions. The projection images at different projection depths are preprocessed to meet dimension matching and position matching conditions. Different color images are reconstructed on a single plane and 19 planes in simulations and experiments, respectively, which verify the feasibility of the method. The designed phase-only holograms were fabricated on the silica substrate to obtain the diffraction optical element (DOE). Expect for one DOE, three lasers, and one CCD, no additional optical components are required to prompt a compact and simple experimental setup, which is expected to be used to realize full-color display. Full article
Show Figures

Figure 1

Back to TopTop