Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = hollow-fiber membrane contactor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1540 KiB  
Article
Polymeric Membrane Contactors for CO2 Separation: A Systematic Literature Analysis of the Impact of Absorbent Temperature
by Edoardo Magnone, Min Chang Shin and Jung Hoon Park
Polymers 2025, 17(10), 1387; https://doi.org/10.3390/polym17101387 - 18 May 2025
Viewed by 481
Abstract
Global warming, driven significantly by carbon dioxide (CO2) emissions, necessitates immediate climate action. Consequently, CO2 capture is essential for mitigating carbon output from industrial and power generation processes. This study investigates the effect of absorbent temperature on CO2 separation [...] Read more.
Global warming, driven significantly by carbon dioxide (CO2) emissions, necessitates immediate climate action. Consequently, CO2 capture is essential for mitigating carbon output from industrial and power generation processes. This study investigates the effect of absorbent temperature on CO2 separation performance using gas–liquid polymeric hollow fiber membrane (HFM) contactors. It summarizes the relationship between liquid-phase temperature and CO2 capture efficiency across various physical and chemical absorption processes. Twelve relevant studies (nine experimental, three mathematical), providing a comprehensive database of 104 individual measurements, were rigorously analyzed. Liquid-phase temperature significantly influences CO2 separation performance in HFM contactors. In particular, the present analysis reveals that, overall, for every 10 °C temperature increase, physical absorption performance decreases by approximately 3%, while chemical absorption performance improves by 3%, regardless of other parameters. This empirical law was confirmed by direct comparisons with additional experimental results. Strategies for further development of these processes are also proposed. Full article
(This article belongs to the Special Issue Polymer Materials for Environmental Applications)
Show Figures

Graphical abstract

20 pages, 4431 KiB  
Article
Simulation of Carbon Dioxide Absorption in a Hollow Fiber Membrane Contactor Under Non-Isothermal Conditions
by Youkang Jin, Lei Wang, Jinpeng Bi, Wei Zhao, Hui Zhang, Yuexia Lv and Xi Chen
Membranes 2025, 15(3), 93; https://doi.org/10.3390/membranes15030093 - 14 Mar 2025
Viewed by 930
Abstract
CO2 capture by membrane gas absorption technology has been considered a promising alternative to mitigate or stabilize atmospheric CO2 concentrations. The non-isothermal nature of the CO2 absorption process in hollow fiber membrane contactors is a critical factor that significantly influences [...] Read more.
CO2 capture by membrane gas absorption technology has been considered a promising alternative to mitigate or stabilize atmospheric CO2 concentrations. The non-isothermal nature of the CO2 absorption process in hollow fiber membrane contactors is a critical factor that significantly influences CO2 removal performance. In the present study, a non-isothermal mathematical model and a two-dimensional computational simulation were carried out to evaluate the CO2 separation by three typical absorbents in a polyvinylidene fluoride hollow fiber membrane contactor under non-wetting operation mode. The simulation results exhibited good matching with the published experimental data with the deviations in the range of lower than 5%, which validated the reliability of the developed numerical model. A significant temperature increase ranging from 2 to 15 K was observed along the length of the hollow fiber membrane contactor, which further facilitated the absorption and reaction process in this study. The results showed that potassium glycinate exhibited the highest absorption capacity, followed by monoethanolamine and 1-ethyl-3-methylimidazolium. In addition, the mass transfer could be enhanced by increasing the liquid flow rate, absorbent concentration, module length, and membrane porosity, while increasing the gas velocity and CO2 inlet concentration were unfavorable for the CO2 removal process. Full article
Show Figures

Figure 1

39 pages, 5021 KiB  
Article
Novel Landfill-Gas-to-Biomethane Route Using a Gas–Liquid Membrane Contactor for Decarbonation/Desulfurization and Selexol Absorption for Siloxane Removal
by Guilherme Pereira da Cunha, José Luiz de Medeiros and Ofélia de Queiroz F. Araújo
Processes 2024, 12(8), 1667; https://doi.org/10.3390/pr12081667 - 8 Aug 2024
Cited by 1 | Viewed by 1366
Abstract
A new landfill-gas-to-biomethane process prescribing decarbonation/desulfurization via gas–liquid membrane contactors and siloxane absorption using Selexol are presented in this study. Firstly, an extension for an HYSYS simulator was developed as a steady-state gas–liquid contactor model featuring: (a) a hollow-fiber membrane contactor for countercurrent/parallel [...] Read more.
A new landfill-gas-to-biomethane process prescribing decarbonation/desulfurization via gas–liquid membrane contactors and siloxane absorption using Selexol are presented in this study. Firstly, an extension for an HYSYS simulator was developed as a steady-state gas–liquid contactor model featuring: (a) a hollow-fiber membrane contactor for countercurrent/parallel contacts; (b) liquid/vapor mass/energy/momentum balances; (c) CO2/H2S/CH4/water fugacity-driven bidirectional transmembrane transfers; (d) temperature changes from transmembrane heat/mass transfers, phase change, and compressibility effects; and (e) external heat transfer. Secondly, contactor batteries using a countercurrent contact and parallel contact were simulated for selective landfill-gas decarbonation/desulfurization with water. Several separation methods were applied in the new process: (a) a water solvent gas–liquid contactor battery for adiabatic landfill-gas decarbonation/desulfurization; (b) water regeneration via high-pressure strippers, reducing the compression power for CO2 exportation; and (c) siloxane absorption with Selexol. The results show that the usual isothermal/isobaric contactor simplification is unrealistic at industrial scales. The process converts water-saturated landfill-gas (CH4 = 55.7%mol, CO2 = 40%mol, H2S = 150 ppm-mol, and Siloxanes = 2.14 ppm-mol) to biomethane with specifications of CH4MIN = 85%mol, CO2MAX = 3%mol, H2SMAX = 10 mg/Nm3, and SiloxanesMAX = 0.03 mg/Nm3. This work demonstrates that the new model can be validated with bench-scale literature data and used in industrial-scale batteries with the same hydrodynamics. Once calibrated, the model becomes economically valuable since it can: (i) predict industrial contactor battery performance under scale-up/scale-down conditions; (ii) detect process faults, membrane leakages, and wetting; and (iii) be used for process troubleshooting. Full article
(This article belongs to the Special Issue Sustainability Use of Wood/Wood Residues and Other Bioenergy Sources)
Show Figures

Figure 1

17 pages, 3019 KiB  
Article
Environmental Impact Evaluation of CO2 Absorption and Desorption Enhancement by Membrane Gas Absorption: A Life Cycle Assessment Study
by Fuzhao Li, Yuexia Lv, Jinpeng Bi, Hui Zhang, Wei Zhao, Yancai Su, Tingting Du and Junkun Mu
Energies 2024, 17(10), 2371; https://doi.org/10.3390/en17102371 - 14 May 2024
Cited by 1 | Viewed by 1993
Abstract
Membrane gas absorption technology has been considered a promising approach to mitigate CO2 emissions from power plants. The aim of this study is to evaluate the environmental impacts of CO2 absorption and desorption processes by hollow fiber membrane contactors using a [...] Read more.
Membrane gas absorption technology has been considered a promising approach to mitigate CO2 emissions from power plants. The aim of this study is to evaluate the environmental impacts of CO2 absorption and desorption processes by hollow fiber membrane contactors using a life cycle assessment methodology. On the basis of the ReCipe 2016 Midpoint and the ReCipe 2016 Endpoint methods, the research results show that membrane gas absorption systems exhibit the lowest environmental impacts across the majority of assessed categories in comparison with chemical absorption and membrane gas separation systems. The CO2 capture process via membrane gas absorption has the most significant impact on the METP category, with heat consumption as the primary contributing factor accounting for 55%, followed by electricity consumption accounting for 43.1%. According to the sensitivity analysis, heating by natural gas shows better performance than other heat supply sources in improving overall environmental impacts. In addition, the increasing utilization of renewable energy in electricity supply reduces the global warming potential, fossil resource consumption and ozone formation. Full article
(This article belongs to the Special Issue Sustainable Technologies for Decarbonising the Energy Sector)
Show Figures

Figure 1

21 pages, 3326 KiB  
Article
Techno-Economic Evaluation on Solar-Assisted Post-Combustion CO2 Capture in Hollow Fiber Membrane Contactors
by Junkun Mu, Jinpeng Bi, Yuexia Lv, Yancai Su, Wei Zhao, Hui Zhang, Tingting Du, Fuzhao Li and Hongyang Zhou
Energies 2024, 17(9), 2139; https://doi.org/10.3390/en17092139 - 30 Apr 2024
Cited by 1 | Viewed by 1190
Abstract
In this study, a novel system which integrates solar thermal energy with membrane gas absorption technology is proposed to capture CO2 from a 580 MWe pulverized coal power plant. Technical feasibility and economic evaluation are carried out on the proposed system in [...] Read more.
In this study, a novel system which integrates solar thermal energy with membrane gas absorption technology is proposed to capture CO2 from a 580 MWe pulverized coal power plant. Technical feasibility and economic evaluation are carried out on the proposed system in three cities with different solar resources in China. Research results show that the output capacity and net efficiency of the SOL-HFMC power plant are significantly higher than those of the reference power plant regardless of whether a TES system is applied or not. In addition, the CEI of the SOL-HFMC power plant with the TES system is 4.36 kg CO2/MWh, 4.45 kg CO2/MWh and 4.66 kg CO2/MWh lower than that of the reference power plant. The prices of the membrane, vacuum tube collector and phase change material should be reduced to achieve lower LCOE and COR values. Specifically for the SOL-HFMC power plant with the TES system, the corresponding vacuum tube collector price shall be lower than 25.70 $/m2 for Jinan, 95.20 $/m2 for Xining, and 128.70 $/m2 for Lhasa, respectively. To be more competitive than a solar-assisted ammonia-based post-combustion CO2 capture power plant, the membrane price in Jinan, Xining and Lhasa shall be reduced to 0.012 $/m, 0.015 $/m and 0.016 $/m for the sake of LCOE, and 0.03 $/m, 0.033 $/m and 0.034 $/m for the sake of COR, respectively. Full article
(This article belongs to the Special Issue Sustainable Technologies for Decarbonising the Energy Sector)
Show Figures

Figure 1

20 pages, 19063 KiB  
Article
3D-CFD Modeling of Hollow-Fiber Membrane Contactor for CO2 Absorption Using MEA Solution
by Alexandru-Constantin Bozonc, Vlad-Cristian Sandu, Calin-Cristian Cormos and Ana-Maria Cormos
Membranes 2024, 14(4), 86; https://doi.org/10.3390/membranes14040086 - 9 Apr 2024
Cited by 6 | Viewed by 2956
Abstract
Membrane technology is considered an innovative and promising approach due to its flexibility and low energy consumption. In this work, a comprehensive 3D-CFD model of the Hollow-Fiber Membrane Contactor (HFMC) system for CO2 capture into aqueous MEA solution, considering a counter-current fluid [...] Read more.
Membrane technology is considered an innovative and promising approach due to its flexibility and low energy consumption. In this work, a comprehensive 3D-CFD model of the Hollow-Fiber Membrane Contactor (HFMC) system for CO2 capture into aqueous MEA solution, considering a counter-current fluid flow, was developed and validated with experimental data. Two different flow arrangements were considered for the gas mixture and liquid solution inside the HFMC module. The simulation results showed that the CO2 absorption efficiency was considerably higher when the gas mixture was channeled through the membranes and the liquid phase flowed externally between the membranes, across a wide range of gas and liquid flow rates. Sensitivity studies were performed in order to determine the optimal CO2 capture process parameters under different operating conditions (flow rates/flow velocities and concentrations) and HFMC geometrical characteristics (e.g., porosity, diameter, and thickness of membranes). It was found that increasing the membrane radius, while maintaining a constant thickness, positively influenced the efficiency of CO2 absorption due to the higher mass transfer area and residence time. Conversely, higher membrane thickness resulted in higher mass transfer resistance. The optimal membrane thickness was also investigated for various inner fiber diameters, resulting in a thickness of 0.2 mm as optimal for a fiber inner radius of 0.225 mm. Additionally, a significant improvement in CO2 capture efficiency was observed when increasing membrane porosity to values below 0.2, at which point the increase dampened considerably. The best HFMC configuration involved a combination of low porosity, moderate thickness, and large fiber inner diameter, with gas flow occurring within the fiber membranes. Full article
(This article belongs to the Special Issue Advanced Membrane Materials for CO2 Capture and Separation)
Show Figures

Figure 1

18 pages, 4776 KiB  
Review
Recovery of Dissolved Hydrogen Sulfide from Various Wastewater Streams Using Membranes and Other Relevant Techniques: A Review
by Abdul Waheed, Isam H. Aljundi and Umair Baig
Membranes 2023, 13(7), 646; https://doi.org/10.3390/membranes13070646 - 5 Jul 2023
Cited by 6 | Viewed by 2481
Abstract
Given the significance of dissolved H2S, various techniques have been explored in the literature. The current review describes in detail the various membrane-based techniques, such as membrane contactors, for removing dissolved H2S from various wastewater streams. Various types of [...] Read more.
Given the significance of dissolved H2S, various techniques have been explored in the literature. The current review describes in detail the various membrane-based techniques, such as membrane contactors, for removing dissolved H2S from various wastewater streams. Various types of hydrophobic membranes have been used, with more emphasis placed on PVDF hollow fiber membranes. The hydrophobic membranes do not allow water to pass through, whereas H2S is readily allowed to pass through the membrane at ambient conditions. In addition, the use of monoethanol amine triazine (MEA-Triazine)- based H2S scavengers has also been described in detail, including the possible scavenging mechanism. The possibility of different types of byproducts has also been explained along with the possible routes to get rid of scavenger byproducts, such as apDTZ. The use of peroxy acetic acid has also been explained to oxidize and solubilize apDTZ. Furthermore, the use of vacuum-based dissolved H2S gas has also been described in detail. The application of the Knudsen and bulk diffusion models to the separation of dissolved H2S through the pores of the hollow fibers has also been explained. Finally, the future challenges and possible solutions along with concluding remarks have also been mentioned in the current review. Full article
(This article belongs to the Special Issue Advanced Membranes for Desalination and Water Treatment)
Show Figures

Figure 1

11 pages, 2152 KiB  
Article
CO2 Capture and H2 Recovery Using a Hollow Fiber Membrane Contactor
by Cheonwoo Jeong, Sadanand Pandey, Dongcheol Lee, SangHyeon Park, Joon Hyun Baik and Joonwoo Kim
Separations 2023, 10(7), 367; https://doi.org/10.3390/separations10070367 - 22 Jun 2023
Cited by 4 | Viewed by 2678
Abstract
In this study, hydrogen was recovered and purified by using a membrane contactor unit from CO2-rich gas without the use of any basic chemicals such as amines. The membrane operational parameters were adjusted to achieve high CO2 removal and H [...] Read more.
In this study, hydrogen was recovered and purified by using a membrane contactor unit from CO2-rich gas without the use of any basic chemicals such as amines. The membrane operational parameters were adjusted to achieve high CO2 removal and H2 recovery. The effects of gas flow rate, pressure, gas composition (CO2/H2 ratio), pressure difference between liquid and gas, and gas/liquid ratio on CO2 removal and H2 recovery were investigated. Depending on the gas flow rate, the contact time between gas and liquid could be controlled, changing the absorption amounts of CO2 and H2. Regarding gas composition, an increase in the CO2/H2 ratio from 0.25 to 1 boosted H2 recovery. Furthermore, increasing the CO2/H2 ratio above 1 (from 1 to 3) generally reduced H2 recovery from 98.7% to 83%. Additionally, supplementation with the optimal amount of additive enhanced CO2 removal and H2 recovery. Thus, using a membrane contactor system results in high CO2 removal (82.7–93.5%) and H2 recovery (91.5–98.7%). Moreover, H2 production and separation can be performed in one system, implying that CO2 removal can be performed more efficiently by the membrane contactor. This study offers a new and promising route for producing high-purity H2 while removing CO2. Full article
(This article belongs to the Section Materials in Separation Science)
Show Figures

Graphical abstract

23 pages, 3410 KiB  
Article
Advanced Hybrid System for Ammonium Valorization as Liquid Fertilizer from Treated Urban Wastewaters: Validation of Natural Zeolites Pretreatment and Liquid-Liquid Membrane Contactors at Pilot Plant Scale
by Álvaro Mayor, Mònica Reig, Xanel Vecino, José Luis Cortina and César Valderrama
Membranes 2023, 13(6), 580; https://doi.org/10.3390/membranes13060580 - 2 Jun 2023
Cited by 13 | Viewed by 2456
Abstract
This study evaluates a hybrid system combining zeolites as a sorption stage and a hollow fiber membrane contactor (HFMC) for ammonia (NH3) recovery from treated urban wastewater. Ion exchange with zeolites was selected as an advanced pretreatment and concentration step before [...] Read more.
This study evaluates a hybrid system combining zeolites as a sorption stage and a hollow fiber membrane contactor (HFMC) for ammonia (NH3) recovery from treated urban wastewater. Ion exchange with zeolites was selected as an advanced pretreatment and concentration step before the HFMC. The system was tested with wastewater treatment plant (WWTP) effluent (mainstream, 50 mg N-NH4/L) and anaerobic digestion centrates (sidestream, 600–800 mg N-NH4/L) from another WWTP. Natural zeolite, primarily clinoptilolite, demonstrated effective desorption of retained ammonium using a 2% NaOH solution in a closed-loop configuration, resulting in an ammonia-rich brine that enabled over 95% NH3 recovery using polypropylene HFMCs. A 1 m3/h demonstration plant processed both urban wastewaters, which were pretreated by ultrafiltration, removing over 90% of suspended solids and 60–65% of COD. The 2% NaOH regeneration brines (2.4–5.6 g N-NH4/L) were treated in a closed-loop HFMC pilot system, producing 10–15% N streams with potential use as liquid fertilizers. The resulting ammonium nitrate was free of heavy metals and organic micropollutants, making it suitable for use as liquid fertilizer. This comprehensive N management solution for urban wastewater applications can contribute to local economies while achieving reduced N discharge and circularity goals. Full article
Show Figures

Figure 1

15 pages, 3786 KiB  
Article
Red Fruit Juice Concentration by Osmotic Distillation: Optimization of Operating Conditions by Response Surface Methodology
by René Ruby-Figueroa, Rosanna Morelli, Carmela Conidi and Alfredo Cassano
Membranes 2023, 13(5), 496; https://doi.org/10.3390/membranes13050496 - 8 May 2023
Cited by 10 | Viewed by 3523
Abstract
Osmotic distillation (OD) was implemented at laboratory scale to concentrate a red fruit juice produced from a blend of blood orange, prickly pear, and pomegranate juice. The raw juice was clarified by microfiltration and then concentrated by using an OD plant equipped with [...] Read more.
Osmotic distillation (OD) was implemented at laboratory scale to concentrate a red fruit juice produced from a blend of blood orange, prickly pear, and pomegranate juice. The raw juice was clarified by microfiltration and then concentrated by using an OD plant equipped with a hollow fiber membrane contactor. The clarified juice was recirculated on the shell side of the membrane module, while calcium chloride dehydrate solutions, used as extraction brine, were recirculated on the lumen side in a counter-current mode. The influence of different process parameters, such as brine concentration (20, 40, and 60% w/w), juice flow rate (0.3, 2.0, and 3.7 L min−1), and brine flow rate (0.3, 2.0, and 3.7 L min−1) on the performance of the OD process in terms of evaporation flux and increase in juice concentration, was investigated according to the response surface methodology (RSM). From the regression analysis, the evaporation flux and juice concentration rate were expressed with quadratic equations of juice and brine flow rates, as well as the brine concentration. The desirability function approach was applied to analyse the regression model equations in order to maximize the evaporation flux and juice concentration rate. The optimal operating conditions were found to be 3.32 L min−1 brine flow rate, 3.32 L min−1 juice flow rate, and an initial brine concentration of 60% w/w. Under these conditions, the average evaporation flux and the increase in the soluble solid content of the juice resulted in 0.41 kg m−2 h−1 and 12.0 °Brix, respectively. Experimental data on evaporation flux and juice concentration, obtained in optimized operating conditions, resulted in good agreement with the predicted values of the regression model. Full article
(This article belongs to the Special Issue Application of Membranes and Membrane Processes in the Food Industry)
Show Figures

Figure 1

15 pages, 2283 KiB  
Article
A Simplified Kinetic Modeling of CO2 Absorption into Water and Monoethanolamine Solution in Hollow-Fiber Membrane Contactors
by Mai Lien Tran, Chi Hieu Nguyen, Kuan-Yan Chu and Ruey-Shin Juang
Membranes 2023, 13(5), 494; https://doi.org/10.3390/membranes13050494 - 5 May 2023
Cited by 4 | Viewed by 2126
Abstract
The absorption of CO2 from CO2-N2 gas mixtures using water and monoethanolamine (MEA) solution in polypropylene (PP) hollow-fiber membrane contactors was experimentally and theoretically examined. Gas was flowed through the lumen of the module, whereas the absorbent liquid was [...] Read more.
The absorption of CO2 from CO2-N2 gas mixtures using water and monoethanolamine (MEA) solution in polypropylene (PP) hollow-fiber membrane contactors was experimentally and theoretically examined. Gas was flowed through the lumen of the module, whereas the absorbent liquid was passed counter-currently across the shell. Experiments were carried out under various gas- and liquid-phase velocities as well as MEA concentrations. The effect of pressure difference between the gas and liquid phases on the flux of CO2 absorption in the range of 15–85 kPa was also investigated. A simplified mass balance model that considers non-wetting mode as well as adopts the overall mass-transfer coefficient evaluated from absorption experiments was proposed to follow the present physical and chemical absorption processes. This simplified model allowed us to predict the effective length of the fiber for CO2 absorption, which is crucial in selecting and designing membrane contactors for this purpose. Finally, the significance of membrane wetting could be highlighted by this model while using high concentrations of MEA in the chemical absorption process. Full article
Show Figures

Figure 1

24 pages, 3608 KiB  
Article
Life Cycle Assessment of Post-Combustion CO2 Capture and Recovery by Hydrophobic Polypropylene Cross-Flow Hollow Fiber Membrane Contactors with Activated Methyldiethanolamine
by Aytac Perihan Akan, John Chau, Gulen Gullu and Kamalesh K. Sirkar
Atmosphere 2023, 14(3), 490; https://doi.org/10.3390/atmos14030490 - 1 Mar 2023
Cited by 3 | Viewed by 5022
Abstract
The present study evaluated the environmental impacts of post-combustion CO2 capture and recovery via membrane–gas absorption processes. We have used SimaPro v.9 packages with the Ecoinvent v3.5 database employing two different methods, ReCiPe 2016 Endpoint (H) and Midpoint (H), considering a fundamental [...] Read more.
The present study evaluated the environmental impacts of post-combustion CO2 capture and recovery via membrane–gas absorption processes. We have used SimaPro v.9 packages with the Ecoinvent v3.5 database employing two different methods, ReCiPe 2016 Endpoint (H) and Midpoint (H), considering a fundamental methodological framework to determine the most environmentally friendly experimental condition. Life cycle impact categories were examined and assessed supposing a functional unit of 1 kgCO2/h recovered. Fourteen environmental impact categories including global warming, ozone depletion, eutrophication, and toxicity potentials have been evaluated within the context of a gate-to-gate approach focusing on only the process stage. Simulation results showed that the maximum liquid flow rate, sweep helium flow rate together with the minimum solvent concentration demonstrated the highest impact on human health, ecosystem, and resources. The usage of pure methyldiethanolamine (MDEA) activated by piperazine as a reactive absorbent provided the lowest environmental impact due to the elimination of the energy needed to heat and evaporate water present in aqueous absorbent solutions and the prevention of the excess water consumption depending on meeting the water needed for reactive absorption of CO2 in tertiary amine MDEA from simulated humidified flue gas stream. The study highlights the importance of LCA in the determination of an environmentally more sustainable condition during the capture and recovery of post-combustion CO2 by gas absorption and stripping using membrane contactors in tertiary amine MDEA. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

19 pages, 4614 KiB  
Article
Investigation on the Performance of CO2 Absorption in Ceramic Hollow-Fiber Gas/Liquid Membrane Contactors
by Chii-Dong Ho, Hsuan Chang, Yu-Han Chen, Thiam Leng Chew and Jui-Wei Ke
Membranes 2023, 13(2), 249; https://doi.org/10.3390/membranes13020249 - 19 Feb 2023
Cited by 5 | Viewed by 2411
Abstract
The absorption efficiencies of CO2 in ceramic hollow-fiber membrane contactors using monoethanolamine (MEA) absorbent under both cocurrent- and countercurrent-flow operations were investigated theoretically and experimentally; various MEA absorbent flow rates, CO2 feed flow rates, and inlet CO2 concentrations were used [...] Read more.
The absorption efficiencies of CO2 in ceramic hollow-fiber membrane contactors using monoethanolamine (MEA) absorbent under both cocurrent- and countercurrent-flow operations were investigated theoretically and experimentally; various MEA absorbent flow rates, CO2 feed flow rates, and inlet CO2 concentrations were used as parameters. Theoretical predictions of the CO2 absorption flux were analyzed by developing the mathematical formulations based on Happel’s free surface model in terms of mass transfer resistances in series. The experiments of the CO2 absorption were conducted by using alumina (Al2O3) hollow-fiber membranes to confirm the accuracy of the theoretical predictions. The simplified expression of the Sherwood number was formulated to calculate the mass transfer coefficient of the CO2 absorption incorporating experimental data. The data were obtained numerically using the fourth-order Runge–Kutta method to predict the concentration distribution and absorption rate enhancement under various fiber packing configurations accomplished by the CO2/N2 stream passing through the fiber cells. The operations of the hollow-fiber membrane contactor encapsulating N = 7 fiber cells and N = 19 fiber cells of different packing densities were fabricated in this work to examine the device performance. The accuracy derivation between experimental results and theoretical predictions for cocurrent- and countercurrent-flow operations were 1.31×102E4.35×102 and 3.90×103E2.43×102, respectively. A maximum of 965.5% CO2 absorption rate enhancement was found in the module with embedding multiple fiber cells compared with that in the device with inserting single-fiber cell. Implementing more fiber cells offers an inexpensive method of improving the absorption efficiency, and thus the operations of the ceramic hollow-fiber membrane contactor with implementing more fiber cells propose a low-priced design to improve the absorption rate enhancement. The higher overall CO2 absorption rate was achieved in countercurrent-flow operations than that in cocurrent-flow operations. Full article
Show Figures

Figure 1

12 pages, 1924 KiB  
Article
Reclaiming of Amine CO2 Solvent Using Extraction of Heat Stable Salts in Liquid-Liquid Membrane Contactor
by Sergey Shirokikh, Denis Kalmykov, Dmitry Matveev and Stepan Bazhenov
Membranes 2023, 13(2), 230; https://doi.org/10.3390/membranes13020230 - 14 Feb 2023
Cited by 6 | Viewed by 3280
Abstract
Amine CO2 solvents undergo oxidative degradation with the formation of heat stable salts (HSS). These HSS reduce the sorption capacity of amines and lead to intense corrosion of the equipment. In our work, we propose a membrane-supported liquid-liquid extraction of the HSS [...] Read more.
Amine CO2 solvents undergo oxidative degradation with the formation of heat stable salts (HSS). These HSS reduce the sorption capacity of amines and lead to intense corrosion of the equipment. In our work, we propose a membrane-supported liquid-liquid extraction of the HSS from alkanolamines. For this purpose, a hollow fiber membrane contactor was used for the first time. A lab-scale extraction system on the basis of a hollow-fiber liquid-liquid membrane contactor with hollow fiber ultrafiltration polyvinylidenefluoride and polysulfone membranes has been studied. The extraction of the HSS-ions from a 30 wt.% solution of monoethanolamine was carried out using a 0.25–1 M solution of OH-modified methyltrioctylammonium chloride in 1-octanol as an extractant. It has been shown that >90% of HSS ions can be extracted from the alkanolamine solvent within 8 h after extraction. The results obtained confirm the possibility of using membrane extraction with a liquid-liquid membrane contactor for the reclaiming of amine CO2 solvents to increase the general efficiency of carbon dioxide capture. Full article
(This article belongs to the Special Issue Membrane Technologies for Resource Recovery (Volume II))
Show Figures

Figure 1

22 pages, 3798 KiB  
Article
Ozone Diffusion through a Hollow Fiber Membrane Contactor for Pharmaceuticals Removal and Bromate Minimization
by Alice Schmitt, Julie Mendret, Hani Cheikho and Stephan Brosillon
Membranes 2023, 13(2), 171; https://doi.org/10.3390/membranes13020171 - 31 Jan 2023
Cited by 3 | Viewed by 2823
Abstract
Recently, ozonation has been advocated as a solution to tackle emerging contaminants. Hollow fiber membrane contactors (HFMC) have a lower residual ozone concentration than bubble reactors that could limit the formation of potential ozonation by-products, especially bromates that are regulated in drinking water. [...] Read more.
Recently, ozonation has been advocated as a solution to tackle emerging contaminants. Hollow fiber membrane contactors (HFMC) have a lower residual ozone concentration than bubble reactors that could limit the formation of potential ozonation by-products, especially bromates that are regulated in drinking water. The aim of this study was to evaluate ozonation with HFMC for pharmaceutical abatement and bromate minimization compared to bubble columns in wastewater. A HFMC, composed of 65 polytetrafluoroethylene hollow fibers with a 0.45 mm/0.87 mm inner/external diameter and a 0.107 m² exchange surface, was used for the ozonation of real-treated wastewater spiked with 2 µM of p-chlorobenzoic acid (p-CBA) and 3 mg.L−1 of bromide. p-CBA was tracked to monitor the production of strongly-oxidant hydroxyl radicals from the decomposition of the molecular ozone. At 100% p-CBA abatement, 1600 µg.L−1 of bromate was formed with the HFMC, whereas 3486 µg.L−1 was formed with the bubble column. These results demonstrate that HFMC can produce a significant amount of hydroxyl radicals while limiting bromate formation in real-treated wastewater. The test water was also spiked with carbamazepine and sulfamethoxazole to evaluate the abatement efficiency of the process. Short contact times (approximately 2s) achieved high rates of pharmaceuticals removal without bromate formation. Full article
Show Figures

Graphical abstract

Back to TopTop