Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = holes of complex geometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 7430 KiB  
Article
Against Expectations: A Simple Greedy Heuristic Outperforms Advanced Methods in Bitmap Decomposition
by Ville Pitkäkangas
Electronics 2025, 14(13), 2615; https://doi.org/10.3390/electronics14132615 - 28 Jun 2025
Viewed by 315
Abstract
Partitioning rectangular and rectilinear shapes in n-dimensional binary images into the smallest set of axis-aligned n-cuboids is a fundamental problem in image analysis, pattern recognition, and computational geometry, with applications in object detection, shape simplification, and data compression. This paper introduces and evaluates [...] Read more.
Partitioning rectangular and rectilinear shapes in n-dimensional binary images into the smallest set of axis-aligned n-cuboids is a fundamental problem in image analysis, pattern recognition, and computational geometry, with applications in object detection, shape simplification, and data compression. This paper introduces and evaluates four deterministic decomposition methods: pure greedy selection, greedy with backtracking, greedy with a priority queue, and an iterative integer linear programming (IILP) approach. These methods are benchmarked against three established baseline techniques across 13 diverse 1D–4D images (up to 8 × 8 × 8 × 8 elements), featuring holes, concavities, and varying orientations. Surprisingly, the simplest approach—a purely greedy heuristic selecting the largest unvisited region at each step—consistently achieved optimal or near-optimal decompositions, even for complex images, and maintained optimality under rotation without post-processing. By contrast, the more sophisticated methods (backtracking, prioritization, and IILP) exhibited trade-offs between speed and quality, with IILP adding overhead without superior results. Runtime testing showed IILP was on average ~37× slower than the fastest greedy method (ranging from ~3× to 100× slower). These findings highlight that a well-designed greedy strategy can outperform more complex algorithms for practical binary shape decomposition, offering a compelling balance between computational efficiency and solution quality in pattern recognition and image analysis. Full article
Show Figures

Graphical abstract

16 pages, 12805 KiB  
Article
Influence of Embedding Microcapsules on Tribological Properties of Alumina Ceramics Prepared by Gel Casting
by Ze Sun, Hui Chen, Xianglong Meng, Guangchun Xiao, Zhaoqiang Chen, Mingdong Yi, Jingjie Zhang, Wenyu Liu and Chonghai Xu
Materials 2025, 18(9), 2110; https://doi.org/10.3390/ma18092110 - 4 May 2025
Cited by 1 | Viewed by 516
Abstract
The continuous advancement of technology has led to escalating demands for superior tribological performance in industrial applications, necessitating the enhancement of ceramic materials’ frictional properties through innovative approaches. Solid-lubricant embedding is a widely employed lubrication strategy in metals. However, the challenge of machining [...] Read more.
The continuous advancement of technology has led to escalating demands for superior tribological performance in industrial applications, necessitating the enhancement of ceramic materials’ frictional properties through innovative approaches. Solid-lubricant embedding is a widely employed lubrication strategy in metals. However, the challenge of machining holes on ceramic surfaces remains a significant barrier to applying this lubrication technique to ceramics. Gel casting, as a near-net-shaping process, offers several advantages, including uniform green body density, low organic content, and the capability to fabricate components with complex geometries, making it a promising solution for addressing these challenges. In this study, alumina ceramics with small surface holes designed for embedding oil-containing microcapsules were fabricated via gel casting using an N-hydroxy methylacrylamide gel system, which demonstrates lower toxicity compared to conventional acrylamide systems. The fabricated alumina ceramic materials exhibited a high density of 98.2%, a hardness of 16 GPa, and a bending strength of 276 MPa. The oil-containing microcapsules were self-synthesized using hexafluorophosphate ionic liquid as the core material and polyurea-formaldehyde as the wall material. The research results show that under conditions of using an alumina ball, sliding speed of 10 cm/min, load of 5 N, and at room temperature, the material with a microcapsule content of 15 wt% and embedded hole diameter of 1.2 mm reduced the friction coefficient from 0.696 in an unlubricated condition to 0.317. Moreover, the embedding of microcapsules further improved the wear resistance of the alumina. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

18 pages, 10795 KiB  
Article
Experimental Study on the Hole-Forming Process at the Borehole Bottom During Hot Water Drilling in Ice and Its Influence Mechanisms
by Zhipeng Deng, Youhong Sun, Xiaopeng Fan, Pavel Talalay, Yifan Yang, Ximu Liu, Da Gong, Bing Li, Ting Wang, Wei Wu, Nan Zhang and Xianzhe Wei
J. Mar. Sci. Eng. 2025, 13(4), 817; https://doi.org/10.3390/jmse13040817 - 20 Apr 2025
Viewed by 625
Abstract
Hot water drilling is a drilling method that employs high-temperature and high-pressure hot water jetting to achieve ice melting drilling. Characterized by rapid drilling speed and large hole diameter, it is widely used for drilling observation holes in polar ice sheets and ice [...] Read more.
Hot water drilling is a drilling method that employs high-temperature and high-pressure hot water jetting to achieve ice melting drilling. Characterized by rapid drilling speed and large hole diameter, it is widely used for drilling observation holes in polar ice sheets and ice shelves. Understanding the hole-enlargement process at the bottom of hot water-drilled holes is crucial for rationally designing the structure of hot water drills. However, due to the complexity of heat transfer processes, no suitable theoretical model currently exists to accurately predict this process. To address this, this paper establishes an experimental platform for hot water drilling and conducts 24 sets of experiments under different drilling parameters using visualization techniques. The study reveals the influence mechanisms of drilling speed, hot water flow rate, hot water temperature, downhole drill shape, and nozzle structure on the hole-forming process at the borehole bottom. Experimental results indicate that the primary hole enlargement occurs near the nozzle, achieving 69–81% of the theoretical maximum borehole diameter. The thermal melting efficiency at the borehole bottom is approximately 80%, with about 20% of the input hot water energy heating the surrounding ice. Under identical hot water parameters, jet shapes and drill shapes exhibit minimal impact on borehole geometry. But the improvement of the jet speed and hot water temperature can accelerate the hole-forming process. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 9770 KiB  
Article
Damage Evaluation of Typical Aircraft Panel Structure Subjected to High-Speed Fragments
by Yitao Wang, Teng Zhang, Hanzhe Zhang, Liying Ma, Yuting He and Antai Ren
Aerospace 2025, 12(4), 354; https://doi.org/10.3390/aerospace12040354 - 17 Apr 2025
Viewed by 510
Abstract
This study explores the damage behavior of typical titanium alloy aircraft panel structures under high-speed fragment impacts via ballistic experiments and FEM-SPH simulations. Using a ballistic gun and two-stage light gas gun, tests were conducted with spherical, rhombic, and rod-shaped fragments at 1100–2100 [...] Read more.
This study explores the damage behavior of typical titanium alloy aircraft panel structures under high-speed fragment impacts via ballistic experiments and FEM-SPH simulations. Using a ballistic gun and two-stage light gas gun, tests were conducted with spherical, rhombic, and rod-shaped fragments at 1100–2100 m/s to analyze damage morphology. The FEM-SPH method effectively modeled dynamic impacts, capturing primary penetration and debris cloud-induced secondary damage. Residual strength under tension was evaluated via multiple restart analysis, linking impact dynamics to post-damage mechanics. Experimental results revealed fragment-dependent damage modes: spherical fragments caused circular shear holes with conical/jet-like debris clouds; rhombic fragments induced irregular tearing and triangular perforations due to unstable flight; rod-shaped fragments produced elongated breaches with extensive plastic deformation in stringers. Numerical simulations accurately reproduced debris cloud diffusion and secondary effects like spallation. Residual strength analysis showed tensile capacity was governed by breach geometry and location: rhombic breaches (34.6 kN) had lower strength than circular/square ones (38.1–38.3 kN) due to tip stress concentration, while stringer-located damage increased ultimate load by 8–12% via structural redundancy. In conclusion, high-speed fragment impacts dominate shear/tensile tearing, with morphology dependent on fragment characteristics and impact conditions. Debris cloud-induced secondary damage must be considered in structural assessments. The FEM-SPH method is effective for complex damage simulation, while breach geometry and damage location are critical for residual strength. Stringer involvement enhances load-bearing capacity, highlighting component-level design importance for aircraft survivability. The study results and methodologies presented herein can serve as references for aircraft structural damage analysis, residual strength evaluation of battle-damaged structures, and survivability design. Full article
Show Figures

Figure 1

39 pages, 401 KiB  
Article
Computational Holography
by Logan Nye
Int. J. Topol. 2025, 2(2), 5; https://doi.org/10.3390/ijt2020005 - 15 Apr 2025
Viewed by 849
Abstract
We establish a comprehensive framework demonstrating that physical reality can be understood as a holographic encoding of underlying computational structures. Our central thesis is that different geometric realizations of the same physical system represent equivalent holographic encodings of a unique computational structure. We [...] Read more.
We establish a comprehensive framework demonstrating that physical reality can be understood as a holographic encoding of underlying computational structures. Our central thesis is that different geometric realizations of the same physical system represent equivalent holographic encodings of a unique computational structure. We formalize quantum complexity as a physical observable, establish its mathematical properties, and demonstrate its correspondence with geometric descriptions. This framework naturally generalizes holographic principles beyond AdS/CFT correspondence, with direct applications to black hole physics and quantum information theory. We derive specific, quantifiable predictions with numerical estimates for experimental verification. Our results suggest that computational structure, rather than geometry, may be the more fundamental concept in physics. Full article
(This article belongs to the Special Issue Feature Papers in Topology and Its Applications)
21 pages, 5430 KiB  
Article
Initial Research on Ultrasonic Vibration-Assisted EDM for Processing Cylindrical Surfaces
by Van-Thanh Dinh, Thi-Tam Do, Thu-Quy Le, Anh-Tung Luu, Ngoc-Pi Vu and Thi-Phuong-Thao Tran
Coatings 2025, 15(4), 463; https://doi.org/10.3390/coatings15040463 - 14 Apr 2025
Viewed by 540
Abstract
Electrical discharge machining represents a non-conventional machining process, specifically designed for the effective fabrication of materials that are difficult to machine and for components with complex geometries. Many studies have been carried out that combine electrical discharge machining with the ultrasonic vibration of [...] Read more.
Electrical discharge machining represents a non-conventional machining process, specifically designed for the effective fabrication of materials that are difficult to machine and for components with complex geometries. Many studies have been carried out that combine electrical discharge machining with the ultrasonic vibration of electrodes. Nevertheless, most of these investigations have concentrated on the processing of hole or cavity components. This document presents an experimental study focused on the design of an electrode holder for ultrasonic vibration electrical discharge machining, focusing on the machining of cylindrical surfaces. This study involved a two-stage design process for the electrode holder, aimed at determining the optimal length to achieve the maximal material removal rate and to ensure surface roughness. The novel aspect of this study is that it is the first to be published on the use of ultrasonic vibration in the electrical discharge machining process for processing cylindrical surfaces. Furthermore, splitting the electrode holder design process into two stages (theoretical calculation and experimental determination) made it possible to identify an electrode holder design for ultrasonic vibration electrical discharge machining that increased the MRR by 35.5% while maintaining SR values that were similar to those produced during the electrical discharge machining without ultrasonic vibration. Full article
Show Figures

Figure 1

23 pages, 20449 KiB  
Article
Numerical Study on Hydraulic Fracture Propagation in Coalbed Methane Considering Coal Seam Cleats
by Hui Xiao, Han Zhang, Hongsen Wang, Xin Xie, Chunbing Wang and Junchen Liu
Processes 2025, 13(4), 1036; https://doi.org/10.3390/pr13041036 - 31 Mar 2025
Viewed by 432
Abstract
This study investigated the mechanisms influencing hydraulic fracture propagation under the influence of cleat complex geometries. The study established a 3D-DEM (three-dimensional discrete element method) model for complex fracture propagation, utilizing the discrete element method and incorporating complex cleat geometries. The model simulates [...] Read more.
This study investigated the mechanisms influencing hydraulic fracture propagation under the influence of cleat complex geometries. The study established a 3D-DEM (three-dimensional discrete element method) model for complex fracture propagation, utilizing the discrete element method and incorporating complex cleat geometries. The model simulates the propagation patterns of hydraulic fractures within coal seams. The findings indicate the following: (1) The fracture width within coal seam cleats undergoes significant variations. A quantification method for these variations and a novel concept of cleat-induced fracture deflection angle are proposed. As the cleat angle increases from 0° to 45°, the cleat-induced fracture deflection angle also increases, reaching 17.1°, demonstrating that cleats have a directional inducing effect on hydraulic fracture propagation; (2) injection hole pressure decreases during fracture capture by coal cleats, whereas pressure escalation occurs during penetration through these cleats; (3) a smaller angle between the face cleat orientation and the direction of maximum principal stress results in longer fracture lengths and narrower fracture widths; and (4) higher injection rates augment the fracture width, facilitating the entry of proppants. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 6004 KiB  
Article
Investigating the Microstructural Behavior and Energy Absorption of Pure Copper Lattice Structures Fabricated by Selective Electron Beam Melting
by Xin Yang, Zhaoyang Zhang, Fan Song, Xiaodong Xie, Huan Qi and Chao Ding
Coatings 2025, 15(3), 348; https://doi.org/10.3390/coatings15030348 - 18 Mar 2025
Viewed by 552
Abstract
Pure copper’s exceptional thermal and electrical properties, along with its processability, make it indispensable in aerospace, automotive, and electrical industries, particularly in heat exchangers and radiators. Lattice structures, with high specific surface areas, low weight, and high strength, are ideal for lightweight yet [...] Read more.
Pure copper’s exceptional thermal and electrical properties, along with its processability, make it indispensable in aerospace, automotive, and electrical industries, particularly in heat exchangers and radiators. Lattice structures, with high specific surface areas, low weight, and high strength, are ideal for lightweight yet strong components. While traditional methods struggle with complex lattice geometries, selective electron beam melting (SEBM) enables the fabrication of intricate pure copper lattices with high energy efficiency in a vacuum environment. This study used SEBM to fabricate OCTET pure copper lattices with relative densities of 21.16%–73.77%. The macrostructure matched the design, achieving a maximum energy absorption capacity of 15.00 MJ/m3. At 40.04% relative density, compressive response shifted from shock to compression hardening, with densification strains ranging from 23.96% to 51.68%. Microdefects such as corrugation, size differences, and internal holes influenced mechanical properties and energy absorption. Post-polishing reduced surface roughness from 14.12 μm to 2.70 μm without affecting specific energy absorption. Increasing strut diameter reduced the microdefects’ impact on lattice strength, enhancing performance and reliability. Full article
Show Figures

Figure 1

18 pages, 852 KiB  
Article
Non-Keplerian Charged Accretion Disk Orbiting a Black Hole Pulsar
by Audrey Trova and Eva Hackmann
Universe 2025, 11(2), 45; https://doi.org/10.3390/universe11020045 - 1 Feb 2025
Viewed by 680
Abstract
Recent studies have focused on how spinning black holes (BHs) within a binary system containing a strongly magnetized neutron star, then immersed in external magnetic fields, can acquire charge through mechanisms like the Wald process and how this charge could power pulsar-like electromagnetic [...] Read more.
Recent studies have focused on how spinning black holes (BHs) within a binary system containing a strongly magnetized neutron star, then immersed in external magnetic fields, can acquire charge through mechanisms like the Wald process and how this charge could power pulsar-like electromagnetic radiation. Those objects called “Black hole pulsar” mimic the behaviour of a traditional pulsar, and they can generate electromagnetic fields, such as magnetic dipoles. Charged particles within an accretion disk around the black hole would then be influenced not only by the gravitational forces but also by electromagnetic forces, leading to different geometries and dynamics. In this context, we focus here on the interplay of the magnetic dipole and the accretion disk. We construct the equilibrium structures of non-conducting charged perfect fluids orbiting Kerr black holes under the influence of a dipole magnetic field aligned with the rotation axis of the BH. The dynamics of the accretion disk in such a system are shaped by a complex interplay between the non-uniform, non-Keplerian angular momentum distribution, the black hole’s induced magnetic dipole, and the fluid’s charge. We show how these factors jointly influence key properties of the disk, such as its geometry, aspect ratio, size, and rest mass density. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2024 – Compact Objects)
Show Figures

Figure 1

24 pages, 13384 KiB  
Article
Optimization of the Geometric Characteristics of Damping Layers for Acoustic Black Hole Beams Based on the Backpropagation Algorithm
by Lijun Ouyang, Jiahao Zhang and Bin Zhen
Appl. Sci. 2025, 15(3), 1227; https://doi.org/10.3390/app15031227 - 25 Jan 2025
Viewed by 738
Abstract
In real-world scenarios, it is common to apply a damping layer of a specific thickness to the surface of an acoustic black hole (ABH) beam to boost its energy dissipation capacity. However, it has become apparent that excessive damping layers might result in [...] Read more.
In real-world scenarios, it is common to apply a damping layer of a specific thickness to the surface of an acoustic black hole (ABH) beam to boost its energy dissipation capacity. However, it has become apparent that excessive damping layers might result in negative consequences. The present study suggests employing the backpropagation (BP) algorithm to refine the positioning, thickness, and contour of the damping layer for optimal results. This study begins with the derivation of a semi-analytical solution for the vibration characteristics of an ABH beam under a harmonic load using the Gaussian expansion method (GEM). This process results in the preliminary identification of a thickness profile for the damping layer that exhibits significant potential for energy dissipation. Subsequently, a BP neural network is trained on the data produced by the semi-analytical solution to further optimize this thickness variation function. The findings reveal that the geometry of the damping layer has a more complex influence on performance than previously recognized. The optimization guided by the BP neural network suggests that achieving a strong ABH effect does not require uniform application of the damping layer across the entire ABH section. Rather, the most effective approach is to concentrate the damping layer thickness at the ABH tip, with a rapid decrease in thickness as one moves away from this point. It is also determined that applying a damping layer in areas far from the tip is unnecessary. Additionally, an innovative strategy is proposed to enhance the system’s energy dissipation capabilities without changing the truncation thickness of the ABH beam. This research contributes to a deeper understanding of how the damping layer affects the energy dissipation performance of ABH beams. Full article
Show Figures

Figure 1

13 pages, 2207 KiB  
Article
Inline-Acquired Product Point Clouds for Non-Destructive Testing: A Case Study of a Steel Part Manufacturer
by Michalis Ntoulmperis, Silvia Discepolo, Paolo Castellini, Paolo Catti, Nikolaos Nikolakis, Wilhelm van de Kamp and Kosmas Alexopoulos
Machines 2025, 13(2), 88; https://doi.org/10.3390/machines13020088 - 23 Jan 2025
Cited by 1 | Viewed by 1014
Abstract
Modern vision-based inspection systems are inherently limited by their two-dimensional nature, particularly when inspecting complex product geometries. These systems are often unable to capture critical depth information, leading to challenges in accurately measuring features such as holes, edges, and surfaces with irregular curvature. [...] Read more.
Modern vision-based inspection systems are inherently limited by their two-dimensional nature, particularly when inspecting complex product geometries. These systems are often unable to capture critical depth information, leading to challenges in accurately measuring features such as holes, edges, and surfaces with irregular curvature. To address these shortcomings, this study introduces an approach that leverages computer-aided design-oriented three-dimensional point clouds, captured via a laser line triangulation sensor mounted onto a motorized linear guide. This setup facilitates precise surface scanning, extracting complex geometrical features, which are subsequently processed through an AI-based analytical component. Dimensional properties, such as radii and inter-feature distances, are computed using a combination of K-nearest neighbors and least-squares circle fitting algorithms. This approach is validated in the context of steel part manufacturing, where traditional 2D vision-based systems often struggle due to the material’s reflectivity and complex geometries. This system achieves an average accuracy of 95.78% across three different product types, demonstrating robustness and adaptability to varying geometrical configurations. An uncertainty analysis confirms that the measurement deviations remain within acceptable limits, supporting the system’s potential for improving quality control in industrial environments. Thus, the proposed approach may offer a reliable, non-destructive inline testing solution, with the potential to enhance manufacturing efficiency. Full article
(This article belongs to the Special Issue Application of Sensing Measurement in Machining)
Show Figures

Figure 1

11 pages, 5764 KiB  
Article
In-Hole Measurements of Flow Inside Fan-Shaped Film Cooling Holes and Downstream Effects
by Emin Issakhanian
Int. J. Turbomach. Propuls. Power 2024, 9(4), 36; https://doi.org/10.3390/ijtpp9040036 - 2 Dec 2024
Viewed by 1521
Abstract
The study of low-speed jets into crossflow is critical to the performance of gas turbines. Film cooling is a method to maintain manageable blade temperatures in turbine sections while increasing turbine inlet temperatures and turbine efficiencies. Initially, cooling holes were cylindrical. Film cooling [...] Read more.
The study of low-speed jets into crossflow is critical to the performance of gas turbines. Film cooling is a method to maintain manageable blade temperatures in turbine sections while increasing turbine inlet temperatures and turbine efficiencies. Initially, cooling holes were cylindrical. Film cooling jets from these discrete round holes were found to be very susceptible to jet liftoff, which reduces surface effectiveness. Shaped holes have become prominent for improved coolant coverage. Fan-shaped holes are the most common design and have shown good improvement over round holes. However, fan-shaped holes introduce additional parameters to the already complex task of modeling cooling effectiveness. Studies of these flows range in hole lengths from those found in actual turbine blades to very long holes with fully developed flow. The flow within the holes themselves is difficult to study as there is limited optical access. However, the flow within the holes has a strong effect on the resulting properties of the jet. This study presents velocity and vorticity fields measured using high-resolution magnetic resonance velocimetry (MRV) to study three different fan-shaped hole geometries at two blowing ratios. Because MRV does not require line of sight, it provides otherwise hard-to-obtain experimental data of the flow within the film cooling hole in addition to the mainflow measurements. By allowing measurement within the cooling hole, MRV shows how a poor choice of diffuser start point and angle can be detrimental to film cooling if overall hole length and cooling flow velocity are not properly accounted for in the design. The downstream effect of these choices on the jet height and counter-rotating vortex pair is also observed. Full article
Show Figures

Figure 1

23 pages, 9957 KiB  
Article
Multi-Objective Optimization of Three-Stage Turbomachine Rotor Based on Complex Transfer Matrix Method
by Hüseyin Tarık Niş and Ahmet Yıldız
Appl. Sci. 2024, 14(22), 10445; https://doi.org/10.3390/app142210445 - 13 Nov 2024
Viewed by 1261
Abstract
This study presents the complex transfer matrix method (CTMM) as an advanced mathematical model, providing significant advantages over the finite element method (FEM) by yielding rapid solutions for complex optimization problems. In order to design a more efficient structure of a three-stage turbomachine [...] Read more.
This study presents the complex transfer matrix method (CTMM) as an advanced mathematical model, providing significant advantages over the finite element method (FEM) by yielding rapid solutions for complex optimization problems. In order to design a more efficient structure of a three-stage turbomachine rotor, we integrated this method with various optimization algorithms, including genetic algorithm (GA), differential evolution (DE), simulated annealing (SA), gravitational search algorithm (GSA), black hole (BH), particle swarm optimization (PSO), Harris hawk optimization (HHO), artificial bee colony (ABC), and non-metaheuristic pattern search (PS). Thus, the best rotor geometry can be obtained fast with minimum bearing forces and disk deflections within design limits. In the results, the efficiency of the CTMM for achieving optimized designs is demonstrated. The CTMM outperformed the FEM in both speed and applicability for complex rotordynamic problems. The CTMM was found to deliver results of comparable quality much faster than the FEM, especially with higher element quality. The use of the CTMM in the iterative optimization process is shown to be highly advantageous. Furthermore, it is noted that among the different optimization algorithms, ABC provided the best results for this multi-objective optimization problem. Full article
(This article belongs to the Topic Multi-scale Modeling and Optimisation of Materials)
Show Figures

Figure 1

16 pages, 1102 KiB  
Article
Geometric Analysis of Black Hole with Primary Scalar Hair
by Haotian Liu
Symmetry 2024, 16(11), 1505; https://doi.org/10.3390/sym16111505 - 9 Nov 2024
Cited by 1 | Viewed by 717
Abstract
Within the novel context of primary scalar hair black holes, this article explores the fascinating subject of black hole thermal stability. Thermodynamic stability is the main subject of our investigation, which involves measuring the bound points, divergence points, black hole mass, thermal temperature, [...] Read more.
Within the novel context of primary scalar hair black holes, this article explores the fascinating subject of black hole thermal stability. Thermodynamic stability is the main subject of our investigation, which involves measuring the bound points, divergence points, black hole mass, thermal temperature, and specific heat capacity. In addition, we determine the scalar curvatures of thermodynamic geometries like Ruppeiner, Weinhold, Hendi-Panahiyah-Eslam-Momennia, and geometrothermodynamics formulations inside the framework of primary scalar hair black holes and delve into their complexities. Improving our knowledge of fundamental scalar hair black holes, this study sheds light on the intricate thermal geometric properties of these objects. Full article
(This article belongs to the Special Issue Symmetry in Researches of Neutron Stars and Black Holes)
Show Figures

Figure 1

9 pages, 31439 KiB  
Technical Note
A Toolpath Generator Based on Signed Distance Fields and Clustering Algorithms for Optimized Additive Manufacturing
by Alp Karakoç
J. Manuf. Mater. Process. 2024, 8(5), 199; https://doi.org/10.3390/jmmp8050199 - 15 Sep 2024
Cited by 1 | Viewed by 1737
Abstract
Additive manufacturing (AM) methods have been gaining momentum because they provide vast design and fabrication possibilities, increasing the accessibility of state-of-the-art hardware through recent developments in user-friendly computer-aided drawing/engineering/manufacturing (CAD/CAE/CAM) tools. However, in comparison to the conventional manufacturing methods, AM processes have some [...] Read more.
Additive manufacturing (AM) methods have been gaining momentum because they provide vast design and fabrication possibilities, increasing the accessibility of state-of-the-art hardware through recent developments in user-friendly computer-aided drawing/engineering/manufacturing (CAD/CAE/CAM) tools. However, in comparison to the conventional manufacturing methods, AM processes have some disadvantages, including the machining precision and fabrication process times. The first issue has been mostly resolved through the recent advances in manufacturing hardware, sensors, and controller systems. However, the latter has been widely investigated by researchers with different toolpath planning perspectives. As a contribution to these investigations, the present study proposes a toolpath planning method for AM, which aims to provide highly continuous yet distance-optimized solutions. The approach is based on the utilization of the signed distance field (SDF), clustering, and minimization of toolpath distances among cluster centroids. The method was tested on various geometries with simple closed curves to complex geometries with holes, which provides effective toolpaths, e.g., with relative distance reduction percentages up to 16.5% in comparison to conventional rectilinear infill patterns. Full article
Show Figures

Figure 1

Back to TopTop