Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (128)

Search Parameters:
Keywords = historic building renovation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 78202 KiB  
Article
Climate-Adaptive Architecture: Analysis of the Wei Family Compound’s Thermal–Ventilation Environment in Ganzhou, China
by Xiaolong Tao, Xin Liang and Wenjia Liu
Buildings 2025, 15(15), 2673; https://doi.org/10.3390/buildings15152673 - 29 Jul 2025
Viewed by 484
Abstract
Sustainable building design is significantly impacted by the local climate response knowledge ingrained in traditional architecture. However, its integration and dissemination with contemporary green technologies are limited by the absence of a comprehensive quantitative analysis of the regulation of its humid and temperature [...] Read more.
Sustainable building design is significantly impacted by the local climate response knowledge ingrained in traditional architecture. However, its integration and dissemination with contemporary green technologies are limited by the absence of a comprehensive quantitative analysis of the regulation of its humid and temperature environment. The Ganzhou Wei family compound from China’s wind–heat environmental regulation systems are examined in this study. We statistically evaluate the synergy between spatial morphology, material qualities, and microclimate using field data with Thsware and Ecotect software in a multiscale simulation framework. The findings indicate that the compound’s special design greatly controls the thermal and wind conditions. Cold alleyways and courtyards work together to maximize thermal environment regulation and encourage natural ventilation. According to quantitative studies, courtyards with particular depths (1–4 m) and height-to-width ratios (e.g., 1:1) reduce wind speed loss. A cool alley (5:1 height–width ratio) creates a dynamic wind–speed–temperature–humidity balance by lowering summer daytime temperatures by 2.5 °C. It also serves as a “cold source area” that moderates temperatures in the surrounding area by up to 2.1 °C. This study suggests a quantitative correlation model based on “spatial morphology–material performance–microclimate response,” which offers a technical route for historic building conservation renovation and green renewal, as well as a scientific foundation for traditional buildings to maintain thermal comfort under low energy consumption. Although based on a specific geographical case, the innovative analytical methods and strategies of this study are of great theoretical and practical significance for promoting the modernization and transformation of traditional architecture, low-carbon city construction, and sustainable building design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

33 pages, 9781 KiB  
Article
Spatial Narrative Optimization in Digitally Gamified Architectural Scenarios
by Deshao Wang, Jieqing Xu and Luwang Chen
Buildings 2025, 15(15), 2597; https://doi.org/10.3390/buildings15152597 - 23 Jul 2025
Viewed by 264
Abstract
Currently, exploring digital immersive experiences is a new trend in the innovation and development of cultural tourism. This study addresses the growing demand for digital immersion in cultural tourism by examining the integration of spatial narrative and digitally gamified architectural scenarios. This study [...] Read more.
Currently, exploring digital immersive experiences is a new trend in the innovation and development of cultural tourism. This study addresses the growing demand for digital immersion in cultural tourism by examining the integration of spatial narrative and digitally gamified architectural scenarios. This study synthesizes an optimized framework for narrative design in digitally gamified architectural scenarios, integrating spatial narrative theory and feedback-informed design. The proposed model comprises four key components: (1) developing spatial narrative design methods for such scenarios; (2) constructing a spatial language system for spatial narratives using linguistic principles to organize narrative expression; (3) building a preliminary digitally gamified scenario based on the “Wuhu Jiaoji Temple Renovation Project” after architectural and environmental enhancements; and (4) optimization through thermal feedback experiments—collecting visitor trajectory heatmaps, eye-tracking heatmaps, and oculometric data. The results show that the optimized design, validated in the original game Dreams of Jiaoji, effectively enhanced spatial narrative execution by refining both on-site and in-game architectural scenarios. Post-optimization visitor feedback confirmed the validity of the proposed optimization strategies and principles, providing theoretical and practical references for innovative digital cultural tourism models and architectural design advancements. In the context of site-specific architectural conservation, this approach achieves two key objectives: the generalized interpretation of architectural cultural resources and their visual representation through gamified interactions. This paradigm not only enhances public engagement through enabling a multidimensional understanding of historical building cultures but also accelerates the protective reuse of heritage sites, allowing heritage value to be maximized through contemporary reinterpretation. The interdisciplinary methodology promotes sustainable development in the digital transformation of cultural tourism, fostering user-centered experiences and contributing to rural revitalization. Ultimately, this study highlights the potential use of digitally gamified architectural scenarios as transformative tools for heritage preservation, cultural dissemination, and rural community revitalization. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

26 pages, 5713 KiB  
Article
Enhancing the Energy Performance of Historic Buildings Using Heritage Building Information Modelling: A Case Study
by Mina Kakouei, Monty Sutrisna, Eziaku Rasheed and Zhenan Feng
Sustainability 2025, 17(14), 6655; https://doi.org/10.3390/su17146655 - 21 Jul 2025
Viewed by 655
Abstract
Heritage building conservation plays a special role in addressing modern sustainability challenges by preserving the cultural identity, retrofitting, restoring, and renovating these structures to improve energy performance, which is crucial for revitalisation. This research aims to use Heritage Building Information Modelling (HBIM) to [...] Read more.
Heritage building conservation plays a special role in addressing modern sustainability challenges by preserving the cultural identity, retrofitting, restoring, and renovating these structures to improve energy performance, which is crucial for revitalisation. This research aims to use Heritage Building Information Modelling (HBIM) to increase energy efficiency and environmental sustainability in historic buildings. Retrofitting heritage buildings presents unique challenges and opportunities to simultaneously reduce energy consumption and carbon emissions while maintaining historical integrity. Traditional approaches are often insufficient to meet heritage structures’ energy needs. Modern technologies such as information building modelling and energy simulations can offer solutions. HBIM is a vigorous digital framework that facilitates interdisciplinary collaboration and offers detailed insights into building restoration and energy modelling. HBIM supports the integration of thermal and energy efficiency measures while maintaining the authenticity of heritage architecture by creating a comprehensive database. Using a case study heritage building, this research demonstrates how retrofitting the different aspects of heritage buildings can improve energy performance. Evaluating the preservation of heritage buildings’ cultural and architectural values and the effectiveness of using HBIM to model energy performance offers a viable framework for sustainable retrofitting of heritage buildings. Full article
(This article belongs to the Section Tourism, Culture, and Heritage)
Show Figures

Figure 1

28 pages, 4519 KiB  
Article
HBIM-Based Multicriteria Method for Assessing Internal Insulation in Heritage Buildings
by Angelo Massafra, Luca Mattioli, Iuliia Kozlova, Cecilia Mazzoli, Giorgia Predari and Riccardo Gulli
Heritage 2025, 8(7), 259; https://doi.org/10.3390/heritage8070259 - 1 Jul 2025
Viewed by 397
Abstract
Energy retrofitting of historic buildings presents complex challenges, particularly when using internal insulation strategies. While such interventions can enhance thermal comfort and reduce energy demand, they can also pose risks of condensation and mold formation, thereby reducing usable space. This paper proposes an [...] Read more.
Energy retrofitting of historic buildings presents complex challenges, particularly when using internal insulation strategies. While such interventions can enhance thermal comfort and reduce energy demand, they can also pose risks of condensation and mold formation, thereby reducing usable space. This paper proposes an evaluation methodology for assessing the performance of internal insulating panels within a multicriteria framework to support decision-making during the design phase. The approach, scalable to various contexts, is grounded in a digital workflow that integrates heritage building information modeling (HBIM), visual programming (VP), and building energy modeling (BEM) to create a decision-support tool for renovation designers. The methodology, tested on a building located in Bologna (Italy), allows for assessing internal insulation systems with varying thermophysical properties and performance characteristics, and evaluating how they affect space- and wall-level key performance indicators, including condensation risk, energy efficiency improvement, and usable space reduction. The research was conducted under the Horizon Europe HERIT4AGES project, which aims to develop reversible, innovative insulation panels fabricated from local and recycled materials for historic building retrofitting. Full article
Show Figures

Figure 1

34 pages, 8454 KiB  
Article
Architectural Heritage Conservation and Green Restoration with Hydroxyapatite Sustainable Eco-Materials
by Alina Moșiu, Rodica-Mariana Ion, Iasmina Onescu, Meda Laura Moșiu, Ovidiu-Constantin Bunget, Lorena Iancu, Ramona Marina Grigorescu and Nelu Ion
Sustainability 2025, 17(13), 5788; https://doi.org/10.3390/su17135788 - 24 Jun 2025
Cited by 1 | Viewed by 619
Abstract
Sustainable architectural heritage conservation focuses on preserving historical buildings while promoting environmental sustainability. It involves using eco-friendly materials and methods to ensure that the cultural value of these structures is maintained while minimizing their ecological impact. In this paper, the use of the [...] Read more.
Sustainable architectural heritage conservation focuses on preserving historical buildings while promoting environmental sustainability. It involves using eco-friendly materials and methods to ensure that the cultural value of these structures is maintained while minimizing their ecological impact. In this paper, the use of the hydroxyapatite (HAp) in various combinations on masonry samples is presented, with the aim of identifying the ideal solution to be applied to an entire historical building in Banloc monument. The new solution has various advantages: compatibility with historical lime mortars (chemical and physical), increased durability under aggressive environmental conditions, non-invasive and reversible, aligning with conservation ethics, bioinspired material that avoids harmful synthetic additives, preservation of esthetics—minimal visual change to treated surfaces, and nanostructural (determined via SEM and AFM) reinforcement to improve cohesion without altering the porosity. An innovative approach involving hydroxiapatite addition to commercial mortars is developed and presented within this paper. Physico-chemical, mechanical studies, and architectural and economic trends will be addressed in this paper. Some specific tests (reduced water absorption, increased adhesion, high mechanical strength, unchanged chromatic aspect, high contact angle, not dangerous freeze–thaw test, reduced carbonation test), will be presented to evidence the capability of hydroxyapatite to be incorporated into green renovation efforts, strengthen the consolidation layer, and focus on its potential uses as an eco-material in building construction and renovation. The methodology employed in evaluating the comparative performance of hydroxyapatite (HAp)-modified mortar versus standard Baumit MPI25 mortar includes a standard error (SE) analysis computed column-wise across performance indicators. To further substantiate the claim of “optimal performance” at 20% HAp addition, independent samples t-tests were performed. The results of the independent samples t-tests were applied to three performance and cost indicators: Application Cost, Annualized Cost, and Efficiency-Cost-Performance (ECP) Index. This validates the claim that HAp-modified mortar offers superior overall performance when considering efficiency, cost, and durability combined. Full article
Show Figures

Figure 1

30 pages, 3943 KiB  
Article
Appraisal of Sustainable Retrofitting of Historical Settlements: Less than 60% Unexpected Outcomes
by Mariangela Musolino, Domenico Enrico Massimo, Francesco Calabrò, Pierfrancesco De Paola, Roberta Errigo and Alessandro Malerba
Sustainability 2025, 17(13), 5695; https://doi.org/10.3390/su17135695 - 20 Jun 2025
Viewed by 415
Abstract
The present research aims to assess, from both ecological and economic perspectives, a strategic solution applied to the building sector that can contribute to mitigating the planetary tragedy of the overconsumption of global fossil energy (coal, oil, and gas) and, thus, climate change, [...] Read more.
The present research aims to assess, from both ecological and economic perspectives, a strategic solution applied to the building sector that can contribute to mitigating the planetary tragedy of the overconsumption of global fossil energy (coal, oil, and gas) and, thus, climate change, along with its dramatic negative impacts on the planet, humanity, and the world’s economy. Buildings are the largest consumers of fossil fuel energy, significantly contributing to Greenhouse Gas (GHG) emissions and, consequently, to climate change. Reducing their environmental impact is therefore crucial for achieving global sustainability goals. Existing buildings, mostly the historical ones, represent a significant part of the global building stocks, which, for the most part, consist of buildings built more than 70 years ago, which are aged, in a state of deterioration, and in need of intervention. Recovering, renovating, and redeveloping existing and historical buildings could be a formidable instrument for improving the energy quality of the international and national building stocks. When selecting the type of possible interventions to be applied, there are two choices: simple and unsustainable ordinary maintenance versus ecological retrofitting, i.e., a quality increase in the indoor environment and building energy savings using local bio-natural materials. The success of the “Ecological Retrofitting” Strategy strongly relies on its economic and financial sustainability; therefore, the goal of this research is to underline and demonstrate the economic and ecological benefits of the ecological transition at the building level through an integrated valuation applied in a case study, located in Southern Italy. First, in order to demonstrate the ecological benefits of the proposed strategy, the latter was tested through a new energy assessment tool in an updated BIM platform; subsequently, an economic valuation was conducted, clearly demonstrating the cost-effectiveness of the building’s ecological transition. The real-world experiment through the proposed case study achieved important results and reached the goals of the “Ecological Retrofitting” Strategy in existing (but not preserved) liberty-style constructions. First of all, a significant improvement in the buildings’ thermal performance was achieved after some targeted interventions, resulting in energy savings; most importantly, the economic feasibility of the proposed strategy was demonstrated. Full article
Show Figures

Figure 1

21 pages, 2830 KiB  
Article
Identifying and Assessing Vulnerable Micro-Enterprises in Lithuania
by Viktorija Bobinaite, Eimantas Neniskis, Inga Konstantinaviciute and Dalius Tarvydas
Sustainability 2025, 17(12), 5405; https://doi.org/10.3390/su17125405 - 11 Jun 2025
Viewed by 481
Abstract
The aim of this research was to clarify the concept of vulnerable micro-enterprises (MEs) and develop a set of indicators for identifying and analyzing developments in vulnerable MEs in “catching up” economies in the context of the regulation on the Social Climate Fund [...] Read more.
The aim of this research was to clarify the concept of vulnerable micro-enterprises (MEs) and develop a set of indicators for identifying and analyzing developments in vulnerable MEs in “catching up” economies in the context of the regulation on the Social Climate Fund (SCF). The case of Lithuania is studied. A retrospective analysis of business structure research indicators during the period from 2010 to 2023 was carried out. The method of the median was applied to determine thresholds of indicators above (below) which a ME is considered vulnerable. Absolute and relative business structure research indicators were calculated to provide estimates of the number of vulnerable MEs and reveal their role in the economy. The results revealed the number and share of vulnerable MEs which experienced high fuel expenditure (above the median (1M), 1.5M, or 2M). Historically, these MEs created a share of added value and provided employment opportunities. The share was found to vary in accordance with economic activity and the Lithuanian municipality, suggesting that the distribution of financing from the SCF should consider aspects of economic activity and regionality. A number of MEs had an essential share of fuel expenditure in their total operating costs. Vulnerable MEs demonstrate low or negative profitability, and may be insolvent; therefore, they cannot invest in building renovation or environmentally friendly transport. Thus, the research results indicate the need for discussions regarding financing vulnerable MEs in Lithuania. Full article
Show Figures

Figure 1

22 pages, 7535 KiB  
Article
Responsive Public Policies for Smart and Sustainable Buildings: An Experimental Application of the Smart Readiness Indicator
by Massimo Lauria, Maria Azzalin, Francesca Giglio and Giovanna Maria La Face
Buildings 2025, 15(12), 2002; https://doi.org/10.3390/buildings15122002 - 10 Jun 2025
Viewed by 363
Abstract
The digital transition and decarbonization are strategic European objectives, supported at different levels by the Green Deal, the Energy Performance Building Directive (EPBD), and policies and tools such as the Energy Performance Certificate (EPC) and the Smart Readiness Indicator (SRI). The SRI measures [...] Read more.
The digital transition and decarbonization are strategic European objectives, supported at different levels by the Green Deal, the Energy Performance Building Directive (EPBD), and policies and tools such as the Energy Performance Certificate (EPC) and the Smart Readiness Indicator (SRI). The SRI measures a building’s ability to use intelligent technologies to reduce its consumption and increase the energy awareness of occupants for energy efficiency. Furthermore, today, it has a limited impact on national regulations and public decision-making. Its application presents challenges including those related to heritage conservation. This paper contributes to the Italian SRI framework through an experimental application in the renovation of a historic building in the metropolitan city of Reggio Calabria (Italy). The analysis evaluates the SRI’s adaptability by comparing its pre-renovated state, current state, and pre-design plan. The SRI calculation integrates assessment tools with BIM models for a potential future digital twin approach. The study, part of a funded national research project, aims to enhance policies for digitalization in the green transition. The paper is organized into the Introduction; Materials and Methods, which contains the methodological approach; Results; and Discussion and Conclusions. Following the experimental application, the results show that standardizing the SRI approach could enhance energy efficiency and digitalization in buildings. Full article
(This article belongs to the Special Issue Advanced Research on Smart Buildings and Sustainable Construction)
Show Figures

Graphical abstract

17 pages, 6282 KiB  
Article
Preliminary Analysis of the Impact of Finishing Layers on the Hygroscopic Performance of Vernacular Earthen Plasters from Santiago, Chile
by Patrícia Marchante, Amanda Rivera Vidal, Simone Murgia, Antonia Navarro Ezquerra, Maddalena Achenza and Paulina Faria
Buildings 2025, 15(11), 1930; https://doi.org/10.3390/buildings15111930 - 3 Jun 2025
Viewed by 635
Abstract
Buildings of historic neighborhoods of Santiago de Chile are protected by a coating system composed of different layers of earth-based mortars, as part of a building culture that has been neglected and forgotten since the introduction of industrialized materials but still exists in [...] Read more.
Buildings of historic neighborhoods of Santiago de Chile are protected by a coating system composed of different layers of earth-based mortars, as part of a building culture that has been neglected and forgotten since the introduction of industrialized materials but still exists in many buildings. This study presents preliminary results from ongoing research that explores the hygroscopic capacity of this vernacular coating system and the impact of incorporating recent finishing layers into traditional construction practices. The investigation focuses on identifying materials and techniques typical of traditional Chilean coatings, highlighting their role in enhancing the durability of historic buildings, improving user comfort, and promoting environmental sustainability. It contributes to the conservation of historic buildings and their reuse, as well as to the health of its inhabitants, due to its contribution to hygrometric regulation. This article focuses on this last purpose, through the identification and characterization of the coating system and its finishing layer materials, and a comparative sorption/desorption test of four case studies with these vernacular coatings. This study began with the sample extraction in situ, followed by its observation and cataloguing. Stratigraphic and stereo microscope analysis of the finishing layers were carried out to identify them. The characterization of the finishing materials was performed using FTIR-ATR and SEM-EDX tests. The sorption/desorption test was performed with a set of original complete samples of the four case studies. Subsequently, another set was prepared with the removal of the finishing layers in order to compare their influence on the hygroscopicity of the coating systems. The results elucidate the variety of materials employed on the finishing layer of these coatings, which are often superimposed, revealing renovations and reparations over time. The influence of these finishing materials on sorption properties of the coating system (the scratch and base coats) is exposed by comparing the samples with and without them. Full article
(This article belongs to the Special Issue Materials and Technologies for Regenerative Built Environments)
Show Figures

Figure 1

25 pages, 3547 KiB  
Article
Study on Energy Efficiency of Retrofitting Existing Residential Buildings Based on System Dynamics Modeling
by Siqi Lang, Lihong Li, Haifang Liu and Ranran Shang
Appl. Sci. 2025, 15(11), 6072; https://doi.org/10.3390/app15116072 - 28 May 2025
Cited by 1 | Viewed by 415
Abstract
This study constructs a system dynamics (SD)-based energy efficiency model for retrofitting existing residential buildings by considering urban residential buildings in Liaoning Province, China. In this study, we sorted the boundaries of building energy efficiency accounting, analyzed the current status of related research [...] Read more.
This study constructs a system dynamics (SD)-based energy efficiency model for retrofitting existing residential buildings by considering urban residential buildings in Liaoning Province, China. In this study, we sorted the boundaries of building energy efficiency accounting, analyzed the current status of related research and system dynamics theory, determined the influencing factors and transmission mechanisms of residential building energy efficiency renovation, set the research boundaries and assumptions, drew the circuit diagrams of various subsystems, determined the main equations and parameters of the model, and ensured the reliability of the model through stability and historicity tests. Through scenario simulation and analysis, it was found that, from 2016 to 2035, the comprehensive benefits of urban residential building renovation will grow slowly in the early stage and rapidly in the late stage, which will potentially have large benefits. The socio-economic environment, governmental policies, energy-saving technologies, market demand, and other factors influence each other, among which the progress of energy-saving technologies has the greatest impact on the comprehensive benefits. Changing the inputs of a certain aspect cannot make the benefits of energy consumption, environment, and economic tripartite grow equally. The energy consumption benefit potential of centralized heating renovation is larger. The results of this study provide a theoretical basis and decision support for the energy-saving transformation of existing residential buildings. Full article
Show Figures

Figure 1

19 pages, 9297 KiB  
Article
Heritage-Based Evaluation Criteria for French Colonial Architecture on Le Loi Street, Hue, Vietnam
by Ngoc Tung Nguyen, Minh Son Le, Hoang Phuong Truong and Phong Canh Nguyen
Sustainability 2025, 17(11), 4753; https://doi.org/10.3390/su17114753 - 22 May 2025
Viewed by 1117
Abstract
The architectural legacy of the French colonial period forms a key part of Vietnam’s urban identity, especially in Hue. Yet, this heritage is rapidly declining: from over 240 structures in 2000, fewer than 100 remain today. This study introduces a heritage-based evaluation framework [...] Read more.
The architectural legacy of the French colonial period forms a key part of Vietnam’s urban identity, especially in Hue. Yet, this heritage is rapidly declining: from over 240 structures in 2000, fewer than 100 remain today. This study introduces a heritage-based evaluation framework to assess and preserve French colonial buildings using Le Loi Street, Hue’s historic “Western quarter” as a pilot site. Fourteen colonial-era buildings were systematically assessed through field surveys and expert consultation. A total of 40 specialists participated in the criteria development process, and eight selected experts conducted detailed building evaluations. The final framework includes three main categories and nine specific criteria, based on a 100-point scale, incorporating architectural integrity, historical and cultural significance, contextual fit, and adaptive reuse potential. The results show that all the surveyed buildings qualify as Group A or B, warranting strict conservation or minimal renovation. The study emphasizes the value of localized, expert-informed approaches to heritage planning. The research provides a practical foundation for integrating historic architecture into context-sensitive urban conservation strategies in Hue and comparable Southeast Asian contexts. Full article
(This article belongs to the Special Issue Architecture, Urban Space and Heritage in the Digital Age)
Show Figures

Figure 1

20 pages, 846 KiB  
Article
The Impact of Climate Change on Economic Uncertainty in the Renovation of a Social Housing Building
by Marco Manzan, Atlas Ramezani and Julia Jean Corona
Energies 2025, 18(10), 2562; https://doi.org/10.3390/en18102562 - 15 May 2025
Viewed by 449
Abstract
The renovation of buildings impacts various factors; one of them is the economic aspect, which has a significant influence on the decision-making process in building refurbishment, especially in social housing. An often-neglected aspect of renovation is the influence of climate change. Typically, historical [...] Read more.
The renovation of buildings impacts various factors; one of them is the economic aspect, which has a significant influence on the decision-making process in building refurbishment, especially in social housing. An often-neglected aspect of renovation is the influence of climate change. Typically, historical climate data are used to estimate the building’s future energy needs. However, due to climate change, this approach may fail to accurately represent future environmental conditions, resulting in miscalculations in energy consumption and costs. This study analyzed a building archetype obtained from the TABULA webtool with the characteristics of a social house building located in Trieste. Dynamic simulations were performed using DesignBuilder and EnergyPlus software and future climate models (the GERICS_CNRM-CM5 and GERICS_IPSL-CM5A-MR models obtained from the EURO-CORDEX database). The projected energy needs of the renovated building and its economic effects were compared with current scenarios, and due to the uncertainties in economic parameters, the outcome is expressed in terms of percentiles of the Net Present Value (NPV). The results of this study show that since temperature increases in the future, the need for energy in the heating period reduces, while the need for cooling increases, directly affecting the statistical distribution of the NPV. Full article
(This article belongs to the Special Issue Performance Analysis of Building Energy Efficiency)
Show Figures

Figure 1

23 pages, 38314 KiB  
Article
Multi-Analytical Characterization of Serpentinite Rocks Employed as Stone Material: An Example from Andalusia (Southern Spain), Basilicata, and Calabria (Southern Italy)
by Roberto Visalli, Rafael Navarro, Roberto Buccione, Valeria Indelicato, Giovanna Rizzo, Rosolino Cirrincione and Rosalda Punturo
Minerals 2025, 15(5), 522; https://doi.org/10.3390/min15050522 - 14 May 2025
Viewed by 645
Abstract
Serpentinites are metamorphic rocks constituted primarily by serpentine-group minerals (antigorite, chrysotile, lizardite) resulting from the transformation and low-temperature hydration of previous olivine-rich ultramafic rocks, such as dunite, lherzolite, wehrlite, and harzburgite. The peculiar features of the serpentinites such as the greenish color and [...] Read more.
Serpentinites are metamorphic rocks constituted primarily by serpentine-group minerals (antigorite, chrysotile, lizardite) resulting from the transformation and low-temperature hydration of previous olivine-rich ultramafic rocks, such as dunite, lherzolite, wehrlite, and harzburgite. The peculiar features of the serpentinites such as the greenish color and the intricate vein and mesh-like texture, as well as their role in CO2 sequestration when carbonated, have hugely increased interest in studying these rocks over recent decades. Moreover, since antiquity, serpentinites have long been exploited, traded, and exported worldwide as daily tools, as well as in buildings and decorative stones in both internal and external architectural elements, because of their aesthetic appeal, attractiveness, and durability. In this work, we analyzed and compared petrographic features, geochemical signatures, and physical–mechanical properties of serpentinites from historical quarries from Andalusia (southern Spain), Basilicata, and Calabria (southern Italy) where they have been used as dimension stones in religious and civil buildings and as construction materials. We aim to evaluate and assess differences in petrographic, carbonation, uniaxial compressive strength, and seismic behavior, that could affect the efficiency when these serpentinites are used as either building and construction materials or for preservation/renovation purposes in cultural heritage. Results obtained from petrophysical investigations of serpentinites from these regions highlight that these materials are suitable for use in construction to various extents and are considered a valuable georesource, behind a detailed characterization carried out before their implementation in construction or conservation/restoration of architectural heritage. Full article
(This article belongs to the Special Issue Mineralogy, Chemistry, Weathering and Application of Serpentinite)
Show Figures

Figure 1

25 pages, 9363 KiB  
Article
Globalization and Architecture: Urban Homogenization and Challenges for Unprotected Heritage. The Case of Postmodern Buildings with Complex Geometric Shapes in the Ensanche of San Sebastián
by María Senderos, Maialen Sagarna, Juan Pedro Otaduy and Fernando Mora
Buildings 2025, 15(3), 497; https://doi.org/10.3390/buildings15030497 - 5 Feb 2025
Cited by 3 | Viewed by 2976
Abstract
Globalization has profoundly impacted architecture by promoting urban homogenization, where global styles and materials overshadow local character. This shift prioritizes standardized functionality and energy efficiency over cultural identity, erasing regional architectural distinctiveness. In historical urban centers, globalization-driven interventions—such as ventilated facades or external [...] Read more.
Globalization has profoundly impacted architecture by promoting urban homogenization, where global styles and materials overshadow local character. This shift prioritizes standardized functionality and energy efficiency over cultural identity, erasing regional architectural distinctiveness. In historical urban centers, globalization-driven interventions—such as ventilated facades or external thermal insulation systems (ETISs)—often simplify original compositions and alter building materiality, texture, and color. The Ensanche of San Sebastián serves as a case study highlighting this issue. Despite its architectural richness, which includes neoclassical and modernist buildings primarily constructed with sandstone from the Igeldo quarry, unprotected buildings are at risk of unsympathetic renovations. Such changes can distort the identity of what is considered “everyday heritage”, encompassing the residential buildings and public spaces that shape the collective memory of cities. This study presents a replicable methodology for assessing the vulnerability of buildings to facade interventions. By utilizing tools like digital twins, point cloud modeling, and typological analysis, the research establishes criteria for interventions aimed at preserving architectural values. It emphasizes the importance of collaborative efforts with urban planning authorities and public awareness campaigns to safeguard heritage. Ultimately, protecting architectural identity requires balancing the goals of energy efficiency with cultural preservation. This approach ensures that urban landscapes maintain their historical and social significance amidst globalization pressures. Full article
(This article belongs to the Special Issue Selected Papers from the REHABEND 2024 Congress)
Show Figures

Figure 1

13 pages, 14087 KiB  
Article
From Data Surveying to the Geometrical Analysis of Historical Constructive Wooden Ceiling Structures: A Renaissance Villa in the North of Italy
by Daniela Oreni
Computers 2025, 14(2), 48; https://doi.org/10.3390/computers14020048 - 4 Feb 2025
Viewed by 1021
Abstract
Villa Cicogna Mozzoni, located in Bisuschio near Varese and Lake Lugano, on the border between Lombardy and Switzerland, has origins dating back to the 1540s as a hunting lodge owned by the Mozzoni family. In the 16th century, significant renovations transformed it into [...] Read more.
Villa Cicogna Mozzoni, located in Bisuschio near Varese and Lake Lugano, on the border between Lombardy and Switzerland, has origins dating back to the 1540s as a hunting lodge owned by the Mozzoni family. In the 16th century, significant renovations transformed it into a “villa di delizia”, adding gardens and elaborate decorative features to the interior and exterior, many of which are still preserved today. This article focuses on a precise geometric analysis of the building’s wooden ceilings, based on laser scanning and photogrammetric data surveying. The ongoing research particularly examines the wooden coffered ceilings on the first floor and the camorcanna wooden fake vault of the Grand Staircase of Honor. By analyzing the geometric data and comparing it with historical, archival, and recent manuals, the study has provided valuable morphological, construction, and conservation insights, forming the basis for the diagnostic and restoration project. Full article
(This article belongs to the Special Issue Computational Science and Its Applications 2024 (ICCSA 2024))
Show Figures

Figure 1

Back to TopTop