Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = histone demethylases with a jumonji domain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 4013 KiB  
Review
Demystifying the Role of Histone Demethylases in Colorectal Cancer: Mechanisms and Therapeutic Opportunities
by Yuanbin Liu, Min Huang, Xia Tian and Xiaodong Huang
Curr. Issues Mol. Biol. 2025, 47(4), 267; https://doi.org/10.3390/cimb47040267 - 9 Apr 2025
Viewed by 1003
Abstract
Histone demethylases (HDMs) play a pivotal role in colorectal cancer (CRC) progression through dynamic epigenetic regulation. This review summarizes the role and therapeutic potential of HDM in CRC. HDMs primarily target lysine (K) for demethylation (lysine demethylase, KDM). The KDM family is divided [...] Read more.
Histone demethylases (HDMs) play a pivotal role in colorectal cancer (CRC) progression through dynamic epigenetic regulation. This review summarizes the role and therapeutic potential of HDM in CRC. HDMs primarily target lysine (K) for demethylation (lysine demethylase, KDM). The KDM family is divided into the lysine-specific demethylase family and the Jumonji C domain-containing family. HDMs play complex roles in CRC cell proliferation, invasion, migration, stemness, epithelial–mesenchymal transition, immune response, and chemoresistance through epigenetic regulation of different histone demethylation sites. Increasing evidence suggests that KDM may interact with certain factors and regulate CRC tumorigenesis by modulating multiple signaling pathways and affecting the transcription of target genes. These processes may be regulated by upstream genes and thus form a complex epigenetic regulatory network. However, the potential roles and regulatory mechanisms of some HDMs in CRC remain understudied. Preclinical studies have revealed that small-molecule inhibitors targeting HDM impact the activity of specific genes and pathways by inhibiting specific HDM expression, thereby reshaping the tumorigenic landscape of CRC. However, the clinical translational potential of these inhibitors remains unexplored. In conclusion, HDMs play a complex and critical role in CRC progression by dynamically regulating histone methylation patterns. These HDMs shape the malignant behavior of CRC by influencing the activity of key pathways and target genes through epigenetic reprogramming. Targeting HDM may be a promising direction for CRC treatment. Further exploration of the role of specific HDMs in CRC and the therapeutic potential of HDM-specific inhibitors is needed in the future. Full article
(This article belongs to the Special Issue Advances in Molecular Pathogenesis Regulation in Cancer 2025)
Show Figures

Figure 1

15 pages, 1022 KiB  
Review
PHF8/KDM7B: A Versatile Histone Demethylase and Epigenetic Modifier in Nervous System Disease and Cancers
by Tingyu Fan, Jianlian Xie, Guo Huang, Lili Li, Xi Zeng and Qian Tao
Epigenomes 2024, 8(3), 36; https://doi.org/10.3390/epigenomes8030036 - 15 Sep 2024
Cited by 2 | Viewed by 2747
Abstract
Many human diseases, such as malignant tumors and neurological diseases, have a complex pathophysiological etiology, often accompanied by aberrant epigenetic changes including various histone modifications. Plant homologous domain finger protein 8 (PHF8), also known as lysine-specific demethylase 7B (KDM7B), is a critical histone [...] Read more.
Many human diseases, such as malignant tumors and neurological diseases, have a complex pathophysiological etiology, often accompanied by aberrant epigenetic changes including various histone modifications. Plant homologous domain finger protein 8 (PHF8), also known as lysine-specific demethylase 7B (KDM7B), is a critical histone lysine demethylase (KDM) playing an important role in epigenetic modification. Characterized by the zinc finger plant homology domain (PHD) and the Jumonji C (JmjC) domain, PHF8 preferentially binds to H3K4me3 and erases repressive methyl marks, including H3K9me1/2, H3K27me1, and H4K20me1. PHF8 is indispensable for developmental processes and the loss of PHF8 enzyme activity is linked to neurodevelopmental disorders. Moreover, increasing evidence shows that PHF8 is highly expressed in multiple tumors as an oncogenic factor. These findings indicate that studying the role of PHF8 will facilitate the development of novel therapeutic agents by the manipulation of PHF8 demethylation activity. Herein, we summarize the current knowledge of PHF8 about its structure and demethylation activity and its involvement in development and human diseases, with an emphasis on nervous system disorders and cancer. This review will update our understanding of PHF8 and promote the clinical transformation of its predictive and therapeutic value. Full article
Show Figures

Figure 1

15 pages, 4079 KiB  
Article
Allyl Isothiocyanate Suppresses the Proliferation in Oral Squamous Cell Carcinoma via Mediating the KDM8/CCNA1 Axis
by Cheng-Chih Hsieh, Cheng-Yu Yang, Bo Peng, Sien-Lin Ho, Chang-Huei Tsao, Chih-Kung Lin, Chun-Shu Lin, Gu-Jiun Lin, Heng-Yi Lin, Hung-Chi Huang, Szu-Chien Chang, Huey-Kang Sytwu, Wei-Tso Chia and Yuan-Wu Chen
Biomedicines 2023, 11(10), 2669; https://doi.org/10.3390/biomedicines11102669 - 29 Sep 2023
Cited by 3 | Viewed by 1982
Abstract
The dysregulated expression of cyclin genes can lead to the uncontrolled proliferation of cancer cells. Histone demethylase Jumonji-C domain-containing protein 5 (KDM8, JMJD5) and cyclin A1 (CCNA1) are pivotal in cell cycle progression. A promising candidate for augmenting cancer treatment is Allyl isothiocyanate [...] Read more.
The dysregulated expression of cyclin genes can lead to the uncontrolled proliferation of cancer cells. Histone demethylase Jumonji-C domain-containing protein 5 (KDM8, JMJD5) and cyclin A1 (CCNA1) are pivotal in cell cycle progression. A promising candidate for augmenting cancer treatment is Allyl isothiocyanate (AITC), a natural dietary chemotherapeutic and epigenetic modulator. This study aimed to investigate AITC’s impact on the KDM8/CCNA1 axis to elucidate its role in oral squamous cell carcinoma (OSCC) tumorigenesis. The expression of KDM8 and CCNA1 was assessed using a tissue microarray (TMA) immunohistochemistry (IHC) assay. In vitro experiments with OSCC cell lines and in vivo experiments with patient-derived tumor xenograft (PDTX) and SAS subcutaneous xenograft tumor models were conducted to explore AITC’s effects on their expression and cell proliferation. The results showed elevated KDM8 and CCNA1 levels in the OSCC patient samples. AITC exhibited inhibitory effects on OSCC tumor growth in vitro and in vivo. Additionally, AITC downregulated KDM8 and CCNA1 expression while inducing histone H3K36me2 expression in oral cancer cells. These findings underscore AITC’s remarkable anticancer properties against oral cancer, highlighting its potential as a therapeutic option for oral cancer treatment by disrupting the cell cycle by targeting the KDM8/CCNA1 axis. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

12 pages, 3690 KiB  
Article
Synthesis, Characterization, and Antitumor Mechanism Investigation of Ruthenium(II)/Rhenium(I)-Daminozide Conjugates
by Pei-Xin Yang, Kai Xie, Mei-Ru Chen, Zheng Zhang, Bo Huang, Rong-Tao Li and Rui-Rong Ye
Inorganics 2023, 11(4), 142; https://doi.org/10.3390/inorganics11040142 - 26 Mar 2023
Cited by 1 | Viewed by 1956
Abstract
Daminozide, a plant growth regulator, is an effective inhibitor of the Jumonji domain-containing protein (JMJD) histone demethylase. Herein, four ruthenium(II)/rhenium(I)-daminozide conjugates, with molecular formulas [Ru(N-N)2bpy(4-CH2OH-4′-CH2O-daminozide)](PF6)2 (Ru-1/Ru-2) (N-N = 1,10-phenanthroline (phen, in Ru-1 [...] Read more.
Daminozide, a plant growth regulator, is an effective inhibitor of the Jumonji domain-containing protein (JMJD) histone demethylase. Herein, four ruthenium(II)/rhenium(I)-daminozide conjugates, with molecular formulas [Ru(N-N)2bpy(4-CH2OH-4′-CH2O-daminozide)](PF6)2 (Ru-1/Ru-2) (N-N = 1,10-phenanthroline (phen, in Ru-1) and 4,7-diphenyl-1,10-phenanthroline (DIP, in Ru-2)) and Re(N-N)(CO)3(PyCH2O-daminozide) (Re-1/Re-2) (Py = pyridine, N-N = phen (in Re-1) and DIP (in Re-2)), were synthesized and characterized. Among these complexes, Ru-2 and Re-2 exhibited higher cytotoxicity against tumor cells than cisplatin. Upregulation of H3K9Me3 expression level was found in human cervical cancer cells (HeLa) treated with Ru-2 and Re-2, indicating that these two complexes can inhibit the activity of JMJD histone demethylase. Further investigation revealed that Re-2 can selectively accumulate in the mitochondria of HeLa cells. Both Ru-2 and Re-2 can cause mitochondrial damage, induce apoptosis, and inhibit cell migration and colony formation of HeLa cells. Overall, these complexes exhibit multiple anticancer functions, including inhibiting JMJD, inducing apoptosis, and inhibiting cell invasion, making them promising candidates for anticancer drugs. Full article
(This article belongs to the Special Issue Transition Metal Complex-Based Luminescent Probes)
Show Figures

Graphical abstract

19 pages, 6267 KiB  
Article
The Histone H3K27 Demethylase REF6 Is a Positive Regulator of Light-Initiated Seed Germination in Arabidopsis
by Yahan Wang, Dachuan Gu, Ling Deng, Chunmei He, Feng Zheng and Xuncheng Liu
Cells 2023, 12(2), 295; https://doi.org/10.3390/cells12020295 - 12 Jan 2023
Cited by 2 | Viewed by 3129
Abstract
Seed germination is the first step in initiating a new life cycle in seed plants. Light is a major environmental factor affecting seed germination. Phytochrome B (phyB) is the primary photoreceptor promoting germination during the initial phase of imbibition. Post-translational histone methylation occurring [...] Read more.
Seed germination is the first step in initiating a new life cycle in seed plants. Light is a major environmental factor affecting seed germination. Phytochrome B (phyB) is the primary photoreceptor promoting germination during the initial phase of imbibition. Post-translational histone methylation occurring at both lysine and arginine residues plays a crucial role in transcriptional regulation in plants. However, the role of histone lysine demethylation in light-initiated seed germination is not yet reported. Here, we identified that Relative of Early Flowering 6 (REF6)/Jumonji Domain-containing Protein 12 (JMJ12), a histone H3 lysine 27 (H3K27) demethylase, acts as a positive regulator of light-initiated seed germination. The loss of function of REF6 in Arabidopsis inhibits phyB-dependent seed germination. Genome-wide RNA-sequencing analysis revealed that REF6 regulates about half of the light-responsive transcriptome in imbibed seeds, including genes related to multiple hormonal signaling pathways and cellular processes. Phenotypic analyses indicated that REF6 not only regulates seed germination through GA (gibberellin) and ABA (abscisic acid) processes but also depends on the auxin signaling pathway. Furthermore, REF6 directly binds to and decreases the histone H3K27me3 levels of auxin-signaling- and cell-wall-loosening-related genes, leading to the activated expression of these genes in imbibed seeds. Taken together, our study identifies REF6 as the first histone lysine demethylase required for light-initiated seed germination. Our work also reveals the important role of REF6-mediated histone H3K27 demethylation in transcriptional reprogramming in the light-initiated seed germination process. Full article
(This article belongs to the Special Issue Epigenetics in Plant Growth and in Response to Abiotic Stress)
Show Figures

Figure 1

15 pages, 3514 KiB  
Article
JmjC Family of Histone Demethylases Form Nuclear Condensates
by Marta Vicioso-Mantis, Samuel Aguirre and Marian A. Martínez-Balbás
Int. J. Mol. Sci. 2022, 23(14), 7664; https://doi.org/10.3390/ijms23147664 - 11 Jul 2022
Cited by 12 | Viewed by 3697
Abstract
The Jumonji-C (JmjC) family of lysine demethylases (KDMs) (JMJC-KDMs) plays an essential role in controlling gene expression and chromatin structure. In most cases, their function has been attributed to the demethylase activity. However, accumulating evidence demonstrates that these proteins play roles distinct from [...] Read more.
The Jumonji-C (JmjC) family of lysine demethylases (KDMs) (JMJC-KDMs) plays an essential role in controlling gene expression and chromatin structure. In most cases, their function has been attributed to the demethylase activity. However, accumulating evidence demonstrates that these proteins play roles distinct from histone demethylation. This raises the possibility that they might share domains that contribute to their functional outcome. Here, we show that the JMJC-KDMs contain low-complexity domains and intrinsically disordered regions (IDR), which in some cases reached 70% of the protein. Our data revealed that plant homeodomain finger protein (PHF2), KDM2A, and KDM4B cluster by phase separation. Moreover, our molecular analysis implies that PHF2 IDR contributes to transcription regulation. These data suggest that clustering via phase separation is a common feature that JMJC-KDMs utilize to facilitate their functional responses. Our study uncovers a novel potential function for the JMJC-KDM family that sheds light on the mechanisms to achieve the competent concentration of molecules in time and space within the cell nucleus. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

15 pages, 3053 KiB  
Article
Evolutionary History and Functional Diversification of the JmjC Domain-Containing Histone Demethylase Gene Family in Plants
by Shifeng Ma, Zhiqiang Zhang, Yingqiang Long, Wenqi Huo, Yuzhi Zhang, Xiaoqing Yang, Jie Zhang, Xinyang Li, Qiying Du, Wei Liu, Daigang Yang and Xiongfeng Ma
Plants 2022, 11(8), 1041; https://doi.org/10.3390/plants11081041 - 12 Apr 2022
Cited by 11 | Viewed by 3767
Abstract
Histone demethylases containing JumonjiC (JmjC) domains regulate gene transcription and chromatin structure by changing the methylation status of lysine residues and play an important role in plant growth and development. In this study, a total of 332 JmjC family genes were [...] Read more.
Histone demethylases containing JumonjiC (JmjC) domains regulate gene transcription and chromatin structure by changing the methylation status of lysine residues and play an important role in plant growth and development. In this study, a total of 332 JmjC family genes were identified from 21 different plant species. The evolutionary analysis results showed that the JmjC gene was detected in each species, that is, the gene has already appeared in algae. The phylogenetic analysis showed that the KDM3/JHDM2 subfamily genes may have appeared when plants transitioned from water to land, but were lost in lycophytes (Selaginella moellendorffii). During the evolutionary process, some subfamily genes may have been lost in individual species. According to the analysis of the conserved domains, all of the plant JmjC genes contained a typical JmjC domain, which was highly conserved during plant evolution. The analysis of cis-acting elements showed that the promoter region of the JmjC gene was rich in phytohormones and biotic and abiotic stress-related elements. The transcriptome data analysis and protein interaction analyses showed that JmjC genes play an important role in plant growth and development. The results clarified the evolutionary history of JmjC family genes in plants and lay the foundation for the analysis of the biological functions of JmjC family genes. Full article
(This article belongs to the Topic Plant Breeding, Genetics and Genomics)
Show Figures

Figure 1

23 pages, 1661 KiB  
Review
The Epigenetic Role of Vitamin C in Neurodevelopment
by Sharna J. Coker, Carlos C. Smith-Díaz, Rebecca M. Dyson, Margreet C. M. Vissers and Mary J. Berry
Int. J. Mol. Sci. 2022, 23(3), 1208; https://doi.org/10.3390/ijms23031208 - 21 Jan 2022
Cited by 32 | Viewed by 9056
Abstract
The maternal diet during pregnancy is a key determinant of offspring health. Early studies have linked poor maternal nutrition during gestation with a propensity for the development of chronic conditions in offspring. These conditions include cardiovascular disease, type 2 diabetes and even compromised [...] Read more.
The maternal diet during pregnancy is a key determinant of offspring health. Early studies have linked poor maternal nutrition during gestation with a propensity for the development of chronic conditions in offspring. These conditions include cardiovascular disease, type 2 diabetes and even compromised mental health. While multiple factors may contribute to these outcomes, disturbed epigenetic programming during early development is one potential biological mechanism. The epigenome is programmed primarily in utero, and during this time, the developing fetus is highly susceptible to environmental factors such as nutritional insults. During neurodevelopment, epigenetic programming coordinates the formation of primitive central nervous system structures, neurogenesis, and neuroplasticity. Dysregulated epigenetic programming has been implicated in the aetiology of several neurodevelopmental disorders such as Tatton-Brown-Rahman syndrome. Accordingly, there is great interest in determining how maternal nutrient availability in pregnancy might affect the epigenetic status of offspring, and how such influences may present phenotypically. In recent years, a number of epigenetic enzymes that are active during embryonic development have been found to require vitamin C as a cofactor. These enzymes include the ten-eleven translocation methylcytosine dioxygenases (TETs) and the Jumonji C domain-containing histone lysine demethylases that catalyse the oxidative removal of methyl groups on cytosines and histone lysine residues, respectively. These enzymes are integral to epigenetic regulation and have fundamental roles in cellular differentiation, the maintenance of pluripotency and development. The dependence of these enzymes on vitamin C for optimal catalytic activity illustrates a potentially critical contribution of the nutrient during mammalian development. These insights also highlight a potential risk associated with vitamin C insufficiency during pregnancy. The link between vitamin C insufficiency and development is particularly apparent in the context of neurodevelopment and high vitamin C concentrations in the brain are indicative of important functional requirements in this organ. Accordingly, this review considers the evidence for the potential impact of maternal vitamin C status on neurodevelopmental epigenetics. Full article
(This article belongs to the Special Issue New Research on Endocrine Regulation of Brain Development)
Show Figures

Figure 1

19 pages, 1064 KiB  
Review
The Cross Marks the Spot: The Emerging Role of JmjC Domain-Containing Proteins in Myeloid Malignancies
by Hans Felix Staehle, Heike Luise Pahl and Jonas Samuel Jutzi
Biomolecules 2021, 11(12), 1911; https://doi.org/10.3390/biom11121911 - 20 Dec 2021
Cited by 8 | Viewed by 4291
Abstract
Histone methylation tightly regulates chromatin accessibility, transcription, proliferation, and cell differentiation, and its perturbation contributes to oncogenic reprogramming of cells. In particular, many myeloid malignancies show evidence of epigenetic dysregulation. Jumonji C (JmjC) domain-containing proteins comprise a large and diverse group of histone [...] Read more.
Histone methylation tightly regulates chromatin accessibility, transcription, proliferation, and cell differentiation, and its perturbation contributes to oncogenic reprogramming of cells. In particular, many myeloid malignancies show evidence of epigenetic dysregulation. Jumonji C (JmjC) domain-containing proteins comprise a large and diverse group of histone demethylases (KDMs), which remove methyl groups from lysines in histone tails and other proteins. Cumulating evidence suggests an emerging role for these demethylases in myeloid malignancies, rendering them attractive targets for drug interventions. In this review, we summarize the known functions of Jumonji C (JmjC) domain-containing proteins in myeloid malignancies. We highlight challenges in understanding the context-dependent mechanisms of these proteins and explore potential future pharmacological targeting. Full article
(This article belongs to the Special Issue Jumonji Domain-Containing Proteins in Cancer Progression)
Show Figures

Figure 1

13 pages, 2234 KiB  
Article
JMJ Histone Demethylases Balance H3K27me3 and H3K4me3 Levels at the HSP21 Locus during Heat Acclimation in Arabidopsis
by Nobutoshi Yamaguchi and Toshiro Ito
Biomolecules 2021, 11(6), 852; https://doi.org/10.3390/biom11060852 - 7 Jun 2021
Cited by 23 | Viewed by 4978
Abstract
Exposure to moderately high temperature enables plants to acquire thermotolerance to high temperatures that might otherwise be lethal. In Arabidopsis thaliana, histone H3 lysine 27 trimethylation (H3K27me3) at the heat shock protein 17.6C (HSP17.6C) and HSP22 loci is removed by [...] Read more.
Exposure to moderately high temperature enables plants to acquire thermotolerance to high temperatures that might otherwise be lethal. In Arabidopsis thaliana, histone H3 lysine 27 trimethylation (H3K27me3) at the heat shock protein 17.6C (HSP17.6C) and HSP22 loci is removed by Jumonji C domain-containing protein (JMJ) histone demethylases, thus allowing the plant to ‘remember’ the heat experience. Other heat memory genes, such as HSP21, are downregulated in acclimatized jmj quadruple mutants compared to the wild type, but how those genes are regulated remains uncharacterized. Here, we show that histone H3 lysine 4 trimethylation (H3K4me3) at HSP21 was maintained at high levels for at least three days in response to heat. This heat-dependent H3K4me3 accumulation was compromised in the acclimatized jmj quadruple mutant as compared to the acclimatized wild type. JMJ30 directly bound to the HSP21 locus in response to heat and coordinated H3K27me3 and H3K4me3 levels under standard and fluctuating conditions. Our results suggest that JMJs mediate the balance between H3K27me3 and H3K4me3 at the HSP21 locus through proper maintenance of H3K27me3 removal during heat acclimation. Full article
Show Figures

Figure 1

15 pages, 1392 KiB  
Article
The Arabidopsis JMJ29 Protein Controls Circadian Oscillation through Diurnal Histone Demethylation at the CCA1 and PRR9 Loci
by Hong Gil Lee and Pil Joon Seo
Genes 2021, 12(4), 529; https://doi.org/10.3390/genes12040529 - 5 Apr 2021
Cited by 6 | Viewed by 3332
Abstract
The circadian clock matches various biological processes to diurnal environmental cycles, such as light and temperature. Accumulating evidence shows that chromatin modification is crucial for robust circadian oscillation in plants, although chromatin modifiers involved in regulating core clock gene expression have been limitedly [...] Read more.
The circadian clock matches various biological processes to diurnal environmental cycles, such as light and temperature. Accumulating evidence shows that chromatin modification is crucial for robust circadian oscillation in plants, although chromatin modifiers involved in regulating core clock gene expression have been limitedly investigated. Here, we report that the Jumonji C domain-containing histone demethylase JMJ29, which belongs to the JHDM2/KDM3 group, shapes rhythmic changes in H3K4me3 histone marks at core clock loci in Arabidopsis. The evening-expressed JMJ29 protein interacts with the Evening Complex (EC) component EARLY FLOWERING 3 (ELF3). The EC recruits JMJ29 to the CCA1 and PRR9 promoters to catalyze the H3K4me3 demethylation at the cognate loci, maintaining a low-level expression during the evening time. Together, our findings demonstrate that interaction of circadian components with chromatin-related proteins underlies diurnal fluctuation of chromatin structures to maintain circadian waveforms in plants. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Circadian Clock Function in Plants)
Show Figures

Figure 1

18 pages, 374 KiB  
Review
The Functions of the Demethylase JMJD3 in Cancer
by Anna Sanchez, Fatma Zohra Houfaf Khoufaf, Mouhamed Idrissou, Frédérique Penault-Llorca, Yves-Jean Bignon, Laurent Guy and Dominique Bernard-Gallon
Int. J. Mol. Sci. 2021, 22(2), 968; https://doi.org/10.3390/ijms22020968 - 19 Jan 2021
Cited by 18 | Viewed by 5533
Abstract
Cancer is a major cause of death worldwide. Epigenetic changes in response to external (diet, sports activities, etc.) and internal events are increasingly implicated in tumor initiation and progression. In this review, we focused on post-translational changes in histones and, more particularly, the [...] Read more.
Cancer is a major cause of death worldwide. Epigenetic changes in response to external (diet, sports activities, etc.) and internal events are increasingly implicated in tumor initiation and progression. In this review, we focused on post-translational changes in histones and, more particularly, the tri methylation of lysine from histone 3 (H3K27me3) mark, a repressive epigenetic mark often under- or overexpressed in a wide range of cancers. Two actors regulate H3K27 methylation: Jumonji Domain-Containing Protein 3 demethylase (JMJD3) and Enhancer of zeste homolog 2 (EZH2) methyltransferase. A number of studies have highlighted the deregulation of these actors, which is why this scientific review will focus on the role of JMJD3 and, consequently, H3K27me3 in cancer development. Data on JMJD3’s involvement in cancer are classified by cancer type: nervous system, prostate, blood, colorectal, breast, lung, liver, ovarian, and gastric cancers. Full article
(This article belongs to the Special Issue Epigenetic Mechanisms and Human Pathology)
18 pages, 3938 KiB  
Article
Characterization and Stress Response of the JmjC Domain-Containing Histone Demethylase Gene Family in the Allotetraploid Cotton Species Gossypium hirsutum
by Jie Zhang, Junping Feng, Wei Liu, Zhongying Ren, Junjie Zhao, Xiaoyu Pei, Yangai Liu, Daigang Yang and Xiongfeng Ma
Plants 2020, 9(11), 1617; https://doi.org/10.3390/plants9111617 - 20 Nov 2020
Cited by 11 | Viewed by 3817
Abstract
Histone modification is an important epigenetic modification that controls gene transcriptional regulation in eukaryotes. Histone methylation is accomplished by histone methyltransferase and can occur on two amino acid residues, arginine and lysine. JumonjiC (JmjC) domain-containing histone demethylase regulates gene transcription and chromatin structure [...] Read more.
Histone modification is an important epigenetic modification that controls gene transcriptional regulation in eukaryotes. Histone methylation is accomplished by histone methyltransferase and can occur on two amino acid residues, arginine and lysine. JumonjiC (JmjC) domain-containing histone demethylase regulates gene transcription and chromatin structure by changing the methylation state of the lysine residue site and plays an important role in plant growth and development. In this study, we carried out genome-wide identification and comprehensive analysis of JmjC genes in the allotetraploid cotton species Gossypium hirsutum. In total, 50 JmjC genes were identified and in G. hirsutum, and 25 JmjC genes were identified in its two diploid progenitors, G. arboreum and G. raimondii, respectively. Phylogenetic analysis divided these JmjC genes into five subfamilies. A collinearity analysis of the two subgenomes of G. hirsutum and the genomes of G. arboreum and G. raimondii uncovered a one-to-one relationship between homologous genes of the JmjC gene family. Most homologs in the JmjC gene family between A and D subgenomes of G. hirsutum have similar exon-intron structures, which indicated that JmjC family genes were conserved after the polyploidization. All G. hirsutumJmjC genes were found to have a typical JmjC domain, and some genes also possess other special domains important for their function. Analysis of promoter regions revealed that cis-acting elements, such as those related to hormone and abiotic stress response, were enriched in G. hirsutum JmjC genes. According to a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, most G. hirsutumJmjC genes had high abundance expression at developmental stages of fibers, suggesting that they might participate in cotton fiber development. In addition, some G. hirsutumJmjC genes were found to have different degrees of response to cold or osmotic stress, thus indicating their potential role in these types of abiotic stress response. Our results provide useful information for understanding the evolutionary history and biological function of JmjC genes in cotton. Full article
(This article belongs to the Special Issue Polyploidy and Evolution in Plants)
Show Figures

Figure 1

20 pages, 3195 KiB  
Article
Histone Lysine Demethylase JMJD2D/KDM4D and Family Members Mediate Effects of Chronic Social Defeat Stress on Mouse Hippocampal Neurogenesis and Mood Disorders
by Swati Maitra, Nitin Khandelwal, Scherazad Kootar, Pooja Sant, Salil S. Pathak, Sujatha Reddy, Annapoorna P. K., Upadhyayula Suryanarayana Murty, Sumana Chakravarty and Arvind Kumar
Brain Sci. 2020, 10(11), 833; https://doi.org/10.3390/brainsci10110833 - 9 Nov 2020
Cited by 12 | Viewed by 4673
Abstract
Depression, anxiety and related mood disorders are major psychiatric illnesses worldwide, and chronic stress appears to be one of the primary underlying causes. Therapeutics to treat these debilitating disorders without a relapse are limited due to the incomplete molecular understanding of their etiopathology. [...] Read more.
Depression, anxiety and related mood disorders are major psychiatric illnesses worldwide, and chronic stress appears to be one of the primary underlying causes. Therapeutics to treat these debilitating disorders without a relapse are limited due to the incomplete molecular understanding of their etiopathology. In addition to the well-studied genetic component, research in the past two decades has implicated diverse epigenetic mechanisms in mediating the negative effects of chronic stressful events on neural circuits. This includes the cognitive circuitry, where the dynamic hippocampal dentate gyrus (DG) neurogenesis gets affected in depression and related affective disorders. Most of these epigenetic studies have focused on the impact of acetylation/deacetylation and methylation of several histone lysine residues on neural gene expression. However, there is a dearth of investigation into the role of demethylation of these lysine residues in chronic stress-induced changes in neurogenesis that results in altered behaviour. Here, using the chronic social defeat stress (CSDS) paradigm to induce depression and anxiety in C57BL/6 mice and ex vivo DG neural stem/progenitor cell (NSCs/NPCs) culture we show the role of the members of the JMJD2/KDM4 family of histone lysine demethylases (KDMs) in mediating stress-induced changes in DG neurogenesis and mood disorders. The study suggests a critical role of JMJD2D in DG neurogenesis. Altered enrichment of JMJD2D on the promoters of Id2 (inhibitor of differentiation 2) and Sox2 (SRY-Box Transcription Factor 2) was observed during proliferation and differentiation of NSCs/NPCs obtained from the DG. This would affect the demethylation of repressive epigenetic mark H3K9, thus activating or repressing these and possibly other genes involved in regulating proliferation and differentiation of DG NSCs/NPCs. Treatment of the NSCs/NPCs culture with Dimethyloxallyl Glycine (DMOG), an inhibitor of JMJDs, led to attenuation in their proliferation capacity. Additionally, systemic administration of DMOG in mice for 10 days induced depression-like and anxiety-like phenotype without any stress exposure. Full article
(This article belongs to the Special Issue Neurogenesis and Gliogenesis in Health and Disease)
Show Figures

Graphical abstract

16 pages, 25241 KiB  
Article
Histone H3K9 Demethylase JMJD2B Plays a Role in LXRα-Dependent Lipogenesis
by Ji-Hyun Kim, Dae Young Jung, Hye-Ran Kim and Myeong Ho Jung
Int. J. Mol. Sci. 2020, 21(21), 8313; https://doi.org/10.3390/ijms21218313 - 5 Nov 2020
Cited by 25 | Viewed by 3527
Abstract
Ligand-activated liver X receptor α (LXRα) upregulates the expression of hepatic lipogenic genes, which leads to triglyceride (TG) accumulation, resulting in nonalcoholic fatty liver disease (NAFLD). Thus, LXRα regulation may provide a novel therapeutic target against NAFLD. However, histone methylation-mediated epigenetic regulation involved [...] Read more.
Ligand-activated liver X receptor α (LXRα) upregulates the expression of hepatic lipogenic genes, which leads to triglyceride (TG) accumulation, resulting in nonalcoholic fatty liver disease (NAFLD). Thus, LXRα regulation may provide a novel therapeutic target against NAFLD. However, histone methylation-mediated epigenetic regulation involved in LXRα-dependent lipogenesis is poorly understood. In this study, we investigated the functional role of the histone demethylase Jumonji domain-containing protein 2B (JMJD2B) in LXRα-dependent lipogenesis. JMJD2B expression level was upregulated in HepG2 cells treated with LXRα agonist T0901317 or palmitate and the liver of mice administered with T0901317 or fed a high-fat diet. Knockdown of JMJD2B using siRNA abrogated T0901317-induced LXRα-dependent lipogenic gene expression and lowered intracellular TG accumulation. Conversely, overexpression of JMJD2B in HepG2 cells upregulated the expression of LXRα-dependent lipogenic genes, in line with increased intracellular TG levels. JMJD2B overexpression or T0901317 treatment induced the recruitment of JMJD2B and LXRα to LXR response elements (LXRE) in the promoter region of LXRα-target gene and reduced the enrichment of H3K9me2 and H3K9me3 in the vicinity of the LXRE. Furthermore, JMJD2B enhanced T0901317 or LXRα-induced transcriptional activities of reporters containing LXRE. A co-immunoprecipitation assay revealed that JMJD2B interacted with activated LXRα. Moreover, overexpression of JMJD2B in mice resulted in upregulation of hepatic LXRα-dependent lipogenic genes, consistent with development of hepatic steatosis. Taken together, these results indicate that JMJD2B plays a role in LXRα-mediated lipogenesis via removing the repressive histone marks, H3K9me2 and H3K9me3, at LXRE, which might contribute to hepatic steatosis. Full article
Show Figures

Graphical abstract

Back to TopTop