Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,134)

Search Parameters:
Keywords = histology investigation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 31042 KiB  
Article
Diagnostic System for Early In Situ Melanoma Detection Using Acoustic Microscopy and Infrared Spectroscopic Mapping Imaging
by Georgios th Karagiannis, Ioannis Grivas, Anastasia Tsingotjidou, Georgios Apostolidis, Eirini Tsardaka, Ioanna Dori, Kyriaki-Nefeli Poulatsidou, Ioannis Tsougos, Stefan Wesarg, Argyrios Doumas and Panagiotis Georgoulias
Cancers 2025, 17(15), 2599; https://doi.org/10.3390/cancers17152599 (registering DOI) - 7 Aug 2025
Abstract
This study proposes a novel diagnostic system for the early detection of cutaneous melanoma based on morphological and biochemical changes during tumor formation. The methods used in this system are acoustic microscopy and infrared (IR) spectroscopy. The former identifies the anatomical parameters of [...] Read more.
This study proposes a novel diagnostic system for the early detection of cutaneous melanoma based on morphological and biochemical changes during tumor formation. The methods used in this system are acoustic microscopy and infrared (IR) spectroscopy. The former identifies the anatomical parameters of the developing tumor, whilst the latter identifies its biochemical features, both at the micron scale. To implement this diagnostic method, an animal model that mimics human melanoma was developed. The results of this investigation show that using high-frequency (>20 MHz) acoustic microscopy in conjunction with spectroscopic images provides useful information about distinct features of melanoma tumors’ 3D structures. The structures and cytoarchitecture of the tumors were assessed using conventional histology, and their malignant nature was confirmed using histological and immumohistochemical analysis. The proposed approach may provide an invaluable tool in diagnostic dermatology, as it is noninvasive and produces highly detailed and accurate data about the early appearance and development of melanoma tumors. Full article
18 pages, 2974 KiB  
Article
Histological and Transcriptomic Insights into Rugose Surface Formation in Pepper (Capsicum annuum L.) Fruit
by Yiqi Xie, Haizhou Zhang, Chengshuang Li, Qing Cheng, Liang Sun and Huolin Shen
Plants 2025, 14(15), 2451; https://doi.org/10.3390/plants14152451 - 7 Aug 2025
Abstract
The rugose surface trait in pepper (Capsicum annuum L.), marked by ridges and depressions on the fruit epidermis, is linked to improved fruit texture. To investigate its regulatory basis, histological, textural, and transcriptomic differences, contrasting genotypes were analyzed. Histological analysis revealed that [...] Read more.
The rugose surface trait in pepper (Capsicum annuum L.), marked by ridges and depressions on the fruit epidermis, is linked to improved fruit texture. To investigate its regulatory basis, histological, textural, and transcriptomic differences, contrasting genotypes were analyzed. Histological analysis revealed that disorganized epidermal cell layers contribute to rugosity, with morphological differences emerging around 10 days post-anthesis (DPA). A computer-aided design (CAD)-based rugosity index (RI) was developed and showed strong correlation with sensory rugosity scores (R2 = 0.659, p < 0.001). Texture analysis demonstrated that increasing surface rugosity was associated with reduced rupture force and hardness, as well as elevated pectinase activity. Comparative transcriptome profiling identified 10 differentially expressed genes (DEGs) related to microtubule dynamics (e.g., CA03g18310 and CA09g13510) and phytohormone signaling (e.g., CA03g35180 and CA08g12070), which exhibited distinct spatial and temporal expression patterns. These findings suggest that coordinated cytoskeletal remodeling and hormonal regulation drive epidermal disorganization, leading to surface rugosity and altered fruit texture. The study provides novel insights into the molecular basis of fruit surface morphology and identifies promising targets for breeding high-quality pepper cultivars. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

18 pages, 3976 KiB  
Article
Impact of Salinity Stress on Antioxidant Enzyme Activity, Histopathology, and Gene Expression in the Hepatopancreas of the Oriental River Prawn, Macrobrachium nipponense
by Shubo Jin, Zhenghao Ye, Hongtuo Fu, Yiwei Xiong, Hui Qiao, Wenyi Zhang and Sufei Jiang
Animals 2025, 15(15), 2319; https://doi.org/10.3390/ani15152319 - 7 Aug 2025
Abstract
Macrobrachium nipponense represents a commercial decapod species that predominantly inhabits freshwater ecosystems or environments with low salinity. However, the species exhibits normal survival and reproductive capacity in natural aquatic habitats with salinity levels up to 10 parts per thousand (ppt). The present study [...] Read more.
Macrobrachium nipponense represents a commercial decapod species that predominantly inhabits freshwater ecosystems or environments with low salinity. However, the species exhibits normal survival and reproductive capacity in natural aquatic habitats with salinity levels up to 10 parts per thousand (ppt). The present study aimed to elucidate the molecular mechanisms underlying salinity acclimation in M. nipponense by investigating alterations in oxidative stress, morphological adaptations, and hepatopancreatic gene expression profiles following exposure to a salinity level of 10 ppt. The present study demonstrates that glutathione peroxidase and Na+/K+-ATPase play critical roles in mitigating oxidative stress induced by elevated salinity in M. nipponense. Furthermore, histological analysis revealed distinct pathological alterations in the hepatopancreas of M. nipponense following 7-day salinity exposure, including basement-membrane disruption, luminal expansion, vacuolization, and a marked reduction in storage cells. Transcriptomic profiling of M. nipponense hepatopancreas suggested coordinated activation of both immune (lysosome and protein processing in endoplasmic reticulum pathways) and energy (pyruvate metabolism, glycolysis/gluconeogenesis, and citrate cycle) metabolic processes during salinity acclimation in M. nipponense. Quantitative real-time PCR validation confirmed the reliability of RNA-seq data. This study provides molecular insights into the salinity adaptation mechanisms in M. nipponense, offering potential applications for improving cultivation practices in brackish water environments. Full article
(This article belongs to the Special Issue Developmental Genetics of Adaptation in Aquatic Animals)
Show Figures

Figure 1

21 pages, 3405 KiB  
Article
Allelic Variation of Helicobacter pylori vacA Gene and Its Association with Gastric Pathologies in Clinical Samples Collected in Jordan
by Mamoon M. Al-Hyassat, Hala I. Al-Daghistani, Lubna F. Abu-Niaaj, Sima Zein and Talal Al-Qaisi
Microorganisms 2025, 13(8), 1841; https://doi.org/10.3390/microorganisms13081841 - 7 Aug 2025
Abstract
Helicobacter pylori is a well-established causative agent of gastritis, peptic ulcers, gastric adenocarcinoma, and primary gastric lymphoma. It colonizes the human stomach and expresses numerous virulent factors that influence disease progression. Among these factors is the cytotoxin vacA gene, which encodes the vacuolating [...] Read more.
Helicobacter pylori is a well-established causative agent of gastritis, peptic ulcers, gastric adenocarcinoma, and primary gastric lymphoma. It colonizes the human stomach and expresses numerous virulent factors that influence disease progression. Among these factors is the cytotoxin vacA gene, which encodes the vacuolating capacity of the cytotoxin and plays a key role in the bacterium’s pathogenic potential. This study investigated the allelic diversity of the vacA among H. pylori strains infecting patients in Jordan with various gastric conditions and examined potential associations between vacA s-and m- genotypes, histopathological and endoscopic findings, and the development of gastric diseases. Gastric biopsies were collected from 106 patients at two hospitals in Jordan who underwent endoscopic examination. The collected biopsies for each patient were subjected to histopathological assessment, urease detection using the Rapid Urease Test (RUT), a diagnostic test for H. pylori, and molecular detection of the vacA gene and its s and m alleles. The histopathology reports indicated that 83 of 106 patients exhibited gastric disorders, of which 81 samples showed features associated with H. pylori infection. The RUT was positive in 76 of 106 with an accuracy of 93.8%. Real-time polymerase chain reaction (RT-PCR) targeting the 16S rRNA gene confirmed the presence of H. pylori in 79 of 81 histologically diagnosed cases as infected (97.5%), while the vacA gene was detected only in 75 samples (~95%). To explore genetic diversity, PCR-amplified fragments underwent sequence analysis of the vacA gene. The m-allele was detected in 58 samples (73%), the s-allele was detected in 45 (57%), while both alleles were not detected in 13% of samples. The predominant genotype combination among Jordanians was vacA s2/m2 (50%), significantly linked to mild chronic gastritis, followed by s1/m2 (35%) and s1/m1 (11.8%) which are linked to severe gastric conditions including malignancies. Age-and gender-related differences in vacA genotype were observed with less virulent s2m2 and s1m2 genotypes predominating in younger adults specially males, while the more virulent m1 genotypes were found exclusively in females and middle-aged patients. Genomic sequencing revealed extensive diversity within H. pylori, likely reflecting its long-standing co-evolution with human hosts in Jordan. This genetic variability plays a key role in modulating virulence and influencing clinical outcomes. Comprehensive characterization of vacA genotypic variations through whole-genome sequencing is essential to enhance diagnostic precision, strengthen epidemiological surveillance, and inform targeted therapeutic strategies. While this study highlights the significance of the vacA m and s alleles, future research is recommended in order to investigate the other vacA allelic variations, such as the i, d, and c alleles, to achieve a more comprehensive understanding of H. pylori pathogenicity and associated disease severity across different strains. These investigations will be crucial for improving diagnostic accuracy and guiding the development of targeted therapeutic strategies. Full article
(This article belongs to the Special Issue Helicobacter pylori Infection: Detection and Novel Treatment)
Show Figures

Figure 1

17 pages, 1800 KiB  
Article
Healing Kinetics of Sinus Lift Augmentation Using Biphasic Calcium Phosphate Granules: A Case Series in Humans
by Michele Furlani, Valentina Notarstefano, Nicole Riberti, Emira D’Amico, Tania Vanessa Pierfelice, Carlo Mangano, Elisabetta Giorgini, Giovanna Iezzi and Alessandra Giuliani
Bioengineering 2025, 12(8), 848; https://doi.org/10.3390/bioengineering12080848 - 6 Aug 2025
Abstract
Sinus augmentation provides a well-established model for investigating the three-dimensional morphometry and macromolecular dynamics of bone regeneration, particularly when using biphasic calcium phosphate (BCP) graft substitutes. This case series included six biopsies from patients who underwent maxillary sinus augmentation using BCP granules composed [...] Read more.
Sinus augmentation provides a well-established model for investigating the three-dimensional morphometry and macromolecular dynamics of bone regeneration, particularly when using biphasic calcium phosphate (BCP) graft substitutes. This case series included six biopsies from patients who underwent maxillary sinus augmentation using BCP granules composed of 30% hydroxyapatite (HA) and 70% β-tricalcium phosphate (β-TCP). Bone core biopsies were obtained at healing times of 6 months, 9 months, and 12 months. Histological evaluation yielded qualitative and quantitative insights into new bone distribution, while micro-computed tomography (micro-CT) and Raman microspectroscopy (RMS) were employed to assess the three-dimensional architecture and macromolecular composition of the regenerated bone. Micro-CT analysis revealed progressive maturation of the regenerated bone microstructure over time. At 6 months, the apical regenerated area exhibited a significantly higher mineralized volume fraction (58 ± 5%) compared to the basal native bone (44 ± 11%; p = 0.0170), as well as significantly reduced trabecular spacing (Tb.Sp: 187 ± 70 µm vs. 325 ± 96 µm; p = 0.0155) and degree of anisotropy (DA: 0.37 ± 0.05 vs. 0.73 ± 0.03; p < 0.0001). By 12 months, the mineralized volume fraction in the regenerated area (53 ± 5%) was statistically comparable to basal bone (44 ± 3%; p > 0.05), while Tb.Sp (211 ± 20 µm) and DA (0.23 ± 0.09) remained significantly lower (Tb.Sp: 395 ± 41 µm, p = 0.0041; DA: 0.46 ± 0.04, p = 0.0001), indicating continued structural remodelling and organization. Raman microspectroscopy further revealed dynamic macromolecular changes during healing. Characteristic β-TCP peaks (e.g., 1315, 1380, 1483 cm−1) progressively diminished over time and were completely absent in the regenerated tissue at 12 months, contrasting with their partial presence at 6 months. Simultaneously, increased intensity of collagen-specific bands (e.g., Amide I at 1661 cm−1, Amide III at 1250 cm−1) and carbonate peaks (1065 cm−1) reflected active matrix formation and mineralization. Overall, this case series provides qualitative and quantitative evidence that bone regeneration and integration of BCP granules in sinus augmentation continues beyond 6 months, with ongoing maturation observed up to 12 months post-grafting. Full article
Show Figures

Figure 1

20 pages, 1753 KiB  
Article
Vitamin E Enhances Immune Function and the Intestinal Histological Structure by Regulating the Nodal-Mediated Signaling Pathway: A Case Study on the Sea Cucumber Apostichopus japonicus
by Zitong Wang, Yan Wang, Xianyu Wang, Guangyao Zhao, Haiqing Zeng, Haoran Xiao, Lingshu Han, Jun Ding, Yaqing Chang and Rantao Zuo
Biology 2025, 14(8), 1008; https://doi.org/10.3390/biology14081008 - 6 Aug 2025
Abstract
The histological integrity of the intestine depends on the tight and orderly arrangement of epithelial cells within the intestinal villi. Nodal, a transforming growth factor-β (TGF-β) family member, has been reported to promote epithelial cell proliferation. Collagen not only establishes physical connections [...] Read more.
The histological integrity of the intestine depends on the tight and orderly arrangement of epithelial cells within the intestinal villi. Nodal, a transforming growth factor-β (TGF-β) family member, has been reported to promote epithelial cell proliferation. Collagen not only establishes physical connections between adjacent cells but also serves as an anchoring platform for cell adhesion and regeneration processes. Therefore, a 21-day feeding trial was conducted using RNA interference to investigate the role of the Nodal gene in regulating intestinal collagen synthesis and histological structure integrity in juvenile A. japonicus fed diets containing graded levels of vitamin E (VE) (0, 200, and 400 mg/kg). The results showed that the addition of 200 mg/kg VE significantly improved the growth rate, immune enzyme activities and related gene expression, as well as intestinal villus morphology. Additionally, the addition of 200 mg/kg VE upregulated the expression of Nodal, which activated the expression of collagen synthesis-related genes and promoted collagen deposition in the intestines of A. japonicus. After Nodal gene knockdown, A. japonicus presented a decreased growth rate, damage to the intestinal histological structure, and impaired collagen synthesis, with the most notable findings observed in A. japonicus fed diets without VE addition. However, these detrimental effects were eliminated to some extent by the addition of 200 mg/kg VE. These findings indicate that VE improves immune function and intestinal histological structure in A. japonicus through a Nodal-dependent pathway. Full article
(This article belongs to the Special Issue Current Advances in Echinoderm Research (2nd Edition))
Show Figures

Figure 1

17 pages, 8134 KiB  
Article
Chronic Low Back Pain in Young Adults: Pathophysiological Aspects of Neuroinflammation and Degeneration
by Natalya G. Pravdyuk, Anastasiia A. Buianova, Anna V. Novikova, Alesya A. Klimenko, Mikhail A. Ignatyuk, Liubov A. Malykhina, Olga I. Patsap, Dmitrii A. Atiakshin, Vitaliy V. Timofeev and Nadezhda A. Shostak
Int. J. Mol. Sci. 2025, 26(15), 7592; https://doi.org/10.3390/ijms26157592 - 6 Aug 2025
Abstract
Degenerative disc disease (DDD) is a major cause of chronic low back pain (LBP), yet the molecular mechanisms driving disc degeneration and pain remain poorly understood. This study analyzed intervertebral disc (IVD) tissue from 36 young patients (median age = 36.00 [31.00, 42.50] [...] Read more.
Degenerative disc disease (DDD) is a major cause of chronic low back pain (LBP), yet the molecular mechanisms driving disc degeneration and pain remain poorly understood. This study analyzed intervertebral disc (IVD) tissue from 36 young patients (median age = 36.00 [31.00, 42.50] years) with herniated discs and LBP, alongside healthy controls, to investigate changes in the extracellular matrix (ECM) and neurochemical alterations. Disc degeneration was assessed using MRI (Pfirrmann grading) and histology (Sive’s criteria). Histochemical and immunohistochemical methods were used to evaluate aggrecan content, calcification, and the expression of nerve growth factor (NGF), substance P (SP), and S-100 protein. MRI findings included Pfirrmann grades V (30.55%), IV (61.11%), III (5.56%), and II (2.78%). Severe histological degeneration (10–12 points) was observed in three patients. Aggrecan depletion correlated with longer pain duration (r = 0.449, p = 0.031). NGF expression was significantly elevated in degenerated discs (p = 0.0287) and strongly correlated with SP (r = 0.785, p = 5.268 × 10−9). Free nerve endings were identified in 5 cases. ECM calcification, present in 36.1% of patients, was significantly associated with radiculopathy (r = 0.664, p = 0.005). The observed co-localization of NGF and SP suggests a synergistic role in pain development. These results indicate that in young individuals, aggrecan loss, neurochemical imbalance, and ECM calcification are key contributors to DDD and chronic LBP. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Intervertebral Disc Disease)
Show Figures

Figure 1

26 pages, 1985 KiB  
Review
Feline Mammary Tumors: A Comprehensive Review of Histological Classification Schemes, Grading Systems, and Prognostic Factors
by Joana Rodrigues-Jesus, Hugo Vilhena, Ana Canadas-Sousa and Patrícia Dias-Pereira
Vet. Sci. 2025, 12(8), 736; https://doi.org/10.3390/vetsci12080736 - 5 Aug 2025
Abstract
As the body of knowledge on feline mammary tumors (FMTs) continues to grow, their histological classification and grading systems have undergone revisions and updates to better reflect the biological behavior of these tumors. In this review, the historical evolution of these frameworks is [...] Read more.
As the body of knowledge on feline mammary tumors (FMTs) continues to grow, their histological classification and grading systems have undergone revisions and updates to better reflect the biological behavior of these tumors. In this review, the historical evolution of these frameworks is traced and later revisited in the context of their prognostic relevance. Numerous studies have investigated clinicopathological prognostic factors in feline mammary carcinomas (FMCs); however, the heterogeneity in assessment methods, inclusion criteria for survival analysis, and the clinical endpoints considered can often complicate direct comparisons across different studies and may contribute to seemingly conflicting results. Furthermore, the small cohort size of many studies limits the robustness and transferability of their findings. This paper provides an updated overview of the epidemiological, clinical, and pathological prognostic factors of these tumors, while also highlighting current challenges, methodological limitations, and areas for future improvement. Full article
Show Figures

Figure 1

20 pages, 4870 KiB  
Article
Histological and Immunohistochemical Evidence in Hypothermia-Related Death: An Experimental Study
by Emina Dervišević, Nina Čamdžić, Edina Lazović, Adis Salihbegović, Francesco Sessa, Hajrudin Spahović and Stefano D’Errico
Int. J. Mol. Sci. 2025, 26(15), 7578; https://doi.org/10.3390/ijms26157578 - 5 Aug 2025
Abstract
Hypothermia-related deaths present significant diagnostic challenges due to non-specific and often inconsistent autopsy findings. This study investigated the histological and immunohistochemical alterations associated with primary and secondary hypothermia in an experimental Rattus norvegicus model, focusing on the effects of benzodiazepine and alcohol ingestion. [...] Read more.
Hypothermia-related deaths present significant diagnostic challenges due to non-specific and often inconsistent autopsy findings. This study investigated the histological and immunohistochemical alterations associated with primary and secondary hypothermia in an experimental Rattus norvegicus model, focusing on the effects of benzodiazepine and alcohol ingestion. Twenty-one male rats were divided into three groups: control (K), benzodiazepine-treated (B), and alcohol-treated (A). After two weeks of substance administration, hypothermia was induced and multiple organ samples were analyzed. Histologically, renal tissue showed hydropic and vacuolar degeneration, congestion, and acute tubular injury across all groups, with no significant differences in E-cadherin expression. Lung samples revealed congestion, emphysema, and hemorrhage, with more pronounced vascular congestion in the alcohol and benzodiazepine groups. Cardiac tissue exhibited vacuolar degeneration and protein denaturation, particularly in substance-exposed animals. The spleen showed preserved architecture but increased erythrocyte infiltration and significantly elevated myeloperoxidase (MPO)-positive granulocytes in the intoxicated groups. Liver samples demonstrated congestion, focal necrosis, and subcapsular hemorrhage, especially in the alcohol group. Immunohistochemical analysis revealed statistically significant differences in MPO expression in both lung and spleen tissues, with the highest levels observed in the benzodiazepine group. Similarly, CK7 and CK20 expression in the gastroesophageal junction was significantly elevated in both alcohol- and benzodiazepine-treated animals compared to the controls. In contrast, E-cadherin expression in the kidney did not differ significantly among the groups. These findings suggest that specific histological and immunohistochemical patterns, particularly involving pulmonary, cardiac, hepatic, and splenic tissues, may help differentiate primary hypothermia from substance-related secondary hypothermia. The study underscores the value of integrating toxicological, histological, and molecular analyses to enhance the forensic assessment of hypothermia-related fatalities. Future research should aim to validate these markers in human autopsy series and explore additional molecular indicators to refine diagnostic accuracy in forensic pathology. Full article
Show Figures

Figure 1

18 pages, 8203 KiB  
Article
Puerarin Enhances Eggshell Quality by Mitigating Uterine Senescence in Late-Phase Laying Breeder Hens
by Zhenwu Huang, Guangju Wang, Mengjie Xu, Yanru Shi, Jinghai Feng, Minhong Zhang and Chunmei Li
Antioxidants 2025, 14(8), 960; https://doi.org/10.3390/antiox14080960 - 5 Aug 2025
Viewed by 139
Abstract
The deterioration of uterine calcium transport capacity induced by aging is a common problem for late-laying period hens, causing decline in eggshell quality. This study aimed to investigate the effects and possible regulatory mechanisms of dietary puerarin (PU) on calcium transport and eggshell [...] Read more.
The deterioration of uterine calcium transport capacity induced by aging is a common problem for late-laying period hens, causing decline in eggshell quality. This study aimed to investigate the effects and possible regulatory mechanisms of dietary puerarin (PU) on calcium transport and eggshell quality in aged hens. Two hundred eighty-eight Hubbard Efficiency Plus broiler breeder hens (50-week-old) were randomly allocated to three dietary treatments containing 0, 40, or 200 mg/kg puerarin (PU), with 8 replicates of 12 birds each, for an 8-week trial. The results demonstrated that dietary PU ameliorated the eggshell thickness and strength, which in turn reduced the broken egg rate (p < 0.05). Histological analysis showed that PU improved uterus morphology and increased epithelium height in the uterus (p < 0.05). Antioxidative capacity was significantly improved via upregulation of Nrf2, HO-1, and GPX1 mRNA expression in the uterus (p < 0.05), along with enhanced total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-PX) activity, and decreased levels of the oxidative stress marker malondialdehyde (MDA) (p < 0.05). Meanwhile, PU treatment reduced the apoptotic index of the uterus, followed by a significant decrease in expression of pro-apoptotic genes Caspase3 and BAX and the rate of BAX/BCL-2. Additionally, calcium content in serum and uterus, as well as the activity of Ca2+-ATPase in the duodenum and uterus, were increased by dietary PU (p < 0.05). The genes involved in calcium transport including ERα, KCNA1, CABP-28K, and OPN in the uterus were upregulated by PU supplementation (p < 0.05). The 16S rRNA gene sequencing revealed that dietary PU supplementation could reverse the age-related decline in the relative abundance of Bacteroidota within the uterus (p < 0.05). Overall, dietary PU can improve eggshell quality and calcium transport through enhanced antioxidative defenses and mitigation of age-related uterine degeneration. Full article
Show Figures

Graphical abstract

16 pages, 1991 KiB  
Article
Antihypertensive Effects of Lotus Seed (Nelumbo nucifera Gaertn.) Extract via eNOS Upregulation and Oxidative Stress Reduction in L-NAME-Induced Hypertensive Rats
by Anjaree Inchan, Tippaporn Bualeong, Worasak Kaewkong, Nitra Nuengchamnong, Phapada Apaikawee, Pakaporn Sa-Nguanpong, Wiriyaporn Sumsakul, Natthawut Charoenphon, Usana Chatturong, Watcharakorn Deetud and Krongkarn Chootip
Pharmaceuticals 2025, 18(8), 1156; https://doi.org/10.3390/ph18081156 - 4 Aug 2025
Viewed by 192
Abstract
Background/Objectives: Nelumbo nucifera Gaertn. (lotus) seeds have traditionally been used to treat hypertension, though their mechanisms remain unclear. This study investigated the antihypertensive effects of lotus seed extract (LSE) and its mechanisms in rats with Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. [...] Read more.
Background/Objectives: Nelumbo nucifera Gaertn. (lotus) seeds have traditionally been used to treat hypertension, though their mechanisms remain unclear. This study investigated the antihypertensive effects of lotus seed extract (LSE) and its mechanisms in rats with Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Methods: Male Sprague Dawley rats received L-NAME (40 mg/kg/day) in drinking water and were treated orally with LSE (5, 10, or 100 mg/kg/day), captopril (5 mg/kg/day), or a combination of LSE and captopril (2.5 mg/kg/day each) for 5 weeks. Hemodynamic parameters and histological changes in the left ventricle and aorta were assessed. Mechanistic studies included measurements of plasma nitric oxide (NO) metabolites, malondialdehyde (MDA), superoxide dismutase (SOD) activity, angiotensin II (Ang II), angiotensin-converting enzyme (ACE) activity, and protein expression via western blot. Results: L-NAME elevated systolic blood pressure and induced cardiovascular remodeling, oxidative stress, and renin-angiotensin system activation. LSE treatment reduced blood pressure, improved antioxidant status, increased NO bioavailability, and downregulated gp91phox and AT1R expression. The combination of low-dose LSE and captopril produced stronger effects than LSE alone, with efficacy comparable to captopril. Conclusions: These findings suggest that LSE exerts antihypertensive effects via antioxidant activity and inhibition of the renin-angiotensin system, supporting its potential as an adjunct therapy for hypertension. Full article
Show Figures

Graphical abstract

16 pages, 5845 KiB  
Article
Ultrastructure and Transcriptomic Analysis Reveal Alternative Pathways of Zona Radiata Formation in Culter alburnus with Different Spawning Habits
by Yan Zhao, Ge Xue, Yanghui Peng, Jia Zhang, Feng Chen, Yeke Wang, Jun He, Jun Chen and Ping Xie
Biology 2025, 14(8), 987; https://doi.org/10.3390/biology14080987 - 3 Aug 2025
Viewed by 198
Abstract
Spawning diversity plays an essential role in fish survival and reproduction, which contributes to the exceptional diversity of teleosts among vertebrates. Different zona radiata structures reflect the adaptability of fish to the environment of spawning and early embryonic development. The morphological and transcriptional [...] Read more.
Spawning diversity plays an essential role in fish survival and reproduction, which contributes to the exceptional diversity of teleosts among vertebrates. Different zona radiata structures reflect the adaptability of fish to the environment of spawning and early embryonic development. The morphological and transcriptional characteristics of fish follicle development between different spawning habits, particularly the zona radiata variations, have been poorly documented. In this study, we integrated histology and transcriptomics to investigate the differences in the zona radiata structure and gene expression profiles among follicles from different spawning habits of Culter alburnus. Our results revealed that stage Ⅲ was the crucial period for zona radiata thickening and structure differentiation. Transcriptomic analyses of adhesive and semi-buoyant eggs at stage Ⅲ revealed a significant upregulation of genes involved in glycoprotein synthesis, extracellular matrix formation, and regulation of protease activity in adhesive eggs, such as the wfdc and a2ml gene family. This upregulation likely underpins the thicker zona radiata in adhesive eggs, facilitating their attachment to substrates. This study represents the first elucidation of the ultrastructure of the zona radiata and gene expression patterns in different developmental stages of adhesive and semi-buoyant eggs of Culter alburnus, offering new perspectives for aquaculture research in understanding fish reproductive adaptations. Full article
Show Figures

Figure 1

16 pages, 2901 KiB  
Article
Unveiling the Genetic Landscape of Canine Papillomavirus in the Brazilian Amazon
by Jeneffer Caroline de Macêdo Sousa, André de Medeiros Costa Lins, Fernanda dos Anjos Souza, Higor Ortiz Manoel, Cleyton Silva de Araújo, Lorena Yanet Cáceres Tomaya, Paulo Henrique Gilio Gasparotto, Vyctoria Malayhka de Abreu Góes Pereira, Acácio Duarte Pacheco, Fernando Rosado Spilki, Mariana Soares da Silva, Felipe Masiero Salvarani, Cláudio Wageck Canal, Flavio Roberto Chaves da Silva and Cíntia Daudt
Microorganisms 2025, 13(8), 1811; https://doi.org/10.3390/microorganisms13081811 - 2 Aug 2025
Viewed by 363
Abstract
Papillomaviruses (PVs) are double-stranded DNA viruses known to induce a variety of epithelial lesions in dogs, ranging from benign hyperplasia to malignancies. In regions of rich biodiversity such as the Western Amazon, data on the circulation and genetic composition of canine papillomaviruses (CPVs) [...] Read more.
Papillomaviruses (PVs) are double-stranded DNA viruses known to induce a variety of epithelial lesions in dogs, ranging from benign hyperplasia to malignancies. In regions of rich biodiversity such as the Western Amazon, data on the circulation and genetic composition of canine papillomaviruses (CPVs) remain scarce. This study investigated CPV types present in oral and cutaneous papillomatous lesions in domiciled dogs from Acre and Rondônia States, Brazil. Sixty-one dogs with macroscopically consistent lesions were clinically evaluated, and tissue samples were collected for histopathological examination and PCR targeting the L1 gene. Among these, 37% were histologically diagnosed as squamous papillomas or fibropapillomas, and 49.2% (30/61) tested positive for papillomavirus DNA. Sequencing of the L1 gene revealed that most positive samples belonged to CPV1 (Lambdapapillomavirus 2), while one case was identified as CPV8 (Chipapillomavirus 3). Complete genomes of three CPV1 strains were obtained via high-throughput sequencing and showed high identity with CPV1 strains from other Brazilian regions. Phylogenetic analysis confirmed close genetic relationships among isolates across distinct geographic areas. These findings demonstrate the circulation of genetically conserved CPVs in the Amazon and reinforce the value of molecular and histopathological approaches for the accurate diagnosis and surveillance of viral diseases in domestic dogs, especially in ecologically complex regions. Full article
(This article belongs to the Topic Advances in Infectious and Parasitic Diseases of Animals)
Show Figures

Figure 1

33 pages, 8604 KiB  
Article
Sulforaphane-Rich Broccoli Sprout Extract Promotes Hair Regrowth in an Androgenetic Alopecia Mouse Model via Enhanced Dihydrotestosterone Metabolism
by Laxman Subedi, Duc Dat Le, Eunbin Kim, Susmita Phuyal, Arjun Dhwoj Bamjan, Vinhquang Truong, Nam Ah Kim, Jung-Hyun Shim, Jong Bae Seo, Suk-Jung Oh, Mina Lee and Jin Woo Park
Int. J. Mol. Sci. 2025, 26(15), 7467; https://doi.org/10.3390/ijms26157467 - 1 Aug 2025
Viewed by 382
Abstract
Androgenetic alopecia (AGA) is a common progressive hair loss disorder driven by elevated dihydrotestosterone (DHT) levels, leading to follicular miniaturization. This study investigated sulforaphane-rich broccoli sprout extract (BSE) as a potential oral therapy for AGA. BSE exhibited dose-dependent proliferative and migratory effects on [...] Read more.
Androgenetic alopecia (AGA) is a common progressive hair loss disorder driven by elevated dihydrotestosterone (DHT) levels, leading to follicular miniaturization. This study investigated sulforaphane-rich broccoli sprout extract (BSE) as a potential oral therapy for AGA. BSE exhibited dose-dependent proliferative and migratory effects on keratinocytes, dermal fibroblasts, and dermal papilla cells, showing greater in vitro activity than sulforaphane (SFN) and minoxidil under the tested conditions, while maintaining low cytotoxicity. In a testosterone-induced AGA mouse model, oral BSE significantly accelerated hair regrowth, with 20 mg/kg achieving 99% recovery by day 15, alongside increased follicle length, density, and hair weight. Mechanistically, BSE upregulated hepatic and dermal DHT-metabolizing enzymes (Akr1c21, Dhrs9) and activated Wnt/β-catenin signaling in the skin, suggesting dual actions via androgen metabolism modulation and follicular regeneration. Pharmacokinetic analysis revealed prolonged SFN plasma exposure following BSE administration, and in silico docking showed strong binding affinities of key BSE constituents to Akr1c2 and β-catenin. No systemic toxicity was observed in liver histology. These findings indicate that BSE may serve as a safe, effective, and multitargeted natural therapy for AGA. Further clinical studies are needed to validate its efficacy in human populations. Full article
Show Figures

Figure 1

11 pages, 231 KiB  
Review
The Current Landscape of Molecular Pathology for the Diagnosis and Treatment of Pediatric High-Grade Glioma
by Emma Vallee, Alyssa Steller, Ashley Childress, Alayna Koch and Scott Raskin
J. Mol. Pathol. 2025, 6(3), 17; https://doi.org/10.3390/jmp6030017 - 1 Aug 2025
Viewed by 176
Abstract
Pediatric high-grade glioma (pHGG) is a devastating group of childhood cancers associated with poor outcomes. Traditionally, diagnosis was based on histologic and immunohistochemical characteristics, including high mitotic activity, presence of necrosis, and presence of glial cell markers (e.g., GFAP). With advances in molecular [...] Read more.
Pediatric high-grade glioma (pHGG) is a devastating group of childhood cancers associated with poor outcomes. Traditionally, diagnosis was based on histologic and immunohistochemical characteristics, including high mitotic activity, presence of necrosis, and presence of glial cell markers (e.g., GFAP). With advances in molecular tumor profiling, these tumors have been recategorized based on specific molecular findings that better lend themselves to prediction of treatment response and prognosis. pHGG is now categorized into four subtypes: H3K27-altered, H3G34-mutant, H3/IDH-WT, and infant-type high-grade glioma (iHGG). Molecular profiling has not only increased the specificity of diagnosis but also improved prognostication. Additionally, these molecular findings provide novel targets for individual tumor-directed therapy. While these therapies are largely still under investigation, continued investigation of distinct molecular markers in these tumors is imperative to extending event-free survival (EFS) and overall survival (OS) for patients with pHGG. Full article
(This article belongs to the Collection Feature Papers in Journal of Molecular Pathology)
Back to TopTop