Identification and Cloning of a Putative Male Fertility Gene Encoding an Oxidosqualene Cyclase in Qingke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Selection and Preparation
2.2. RNA Quantification and Qualification
2.3. RNA Isolation, Library Construction and RNA-Seq
2.4. Quality Control and Comparative Analysis
2.5. Gene Functional Annotation
2.6. Gene Expression Quantification
2.7. Differentially Expressed Genes (DEGs)
2.8. Reverse Transcription and qRT-PCR Assays
2.9. Primer Design and Cloning of Target Gene and Promoter
2.10. Bioinformatics Analysis
3. Results
3.1. Transcriptome Sequencing Results
3.2. Functional Annotation
3.3. Functional Annotation of DEGs and Enrichment Analysis
3.3.1. GO and KEGG Functional Enrichment Analysis of DEGs
3.3.2. Genes Related to Genic Male Sterility
3.4. Cloning of the Complete Sequence of Target Gene HvtOSC12
3.5. Bioinformatics Analysis of HvtOSC12
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsu, T.W. Origin and phylogeny of cultivated barley with reference to the discovery of Ganze wild two-rowed barley Hordeum spontaneum C. koch. Acta Genet. Sin. 1975, 2, 6. [Google Scholar]
- Ma, D.Q.; Xu, T.W. The research on classification and origin of cultivated barley in Tibet Autonomous Region. Sci. Agric. Sin. 1988, 21, 7–14. [Google Scholar]
- Liu, Z.F.; Yao, Z.J.; Yu, C.; Zhong, Z.M. Assessing Crop Water Demand and Deficit for the Growth of Spring Highland Barley in Tibet, China. J. Integr. Agric. 2013, 12, 541–551. [Google Scholar] [CrossRef]
- Pandey, M.; Wagner, C.; Friedt, W.; Ordon, F. Genetic relatedness and population differentiation of Himalayan hulless barley (Hordeum vulgare L.) landraces inferred with SSRs. Theor. Appl. Genet. 2006, 113, 715–729. [Google Scholar] [CrossRef] [PubMed]
- Manjunatha, T.; Bisht, I.S.; Bhat, K.V.; Singh, B.P. Genetic Diversity in Barley (Hordeum vulgare L. ssp. vulgare) Landraces from Uttaranchal Himalaya of India. Genet. Resour. Crop Evol. 2007, 54, 55–65. [Google Scholar] [CrossRef]
- Zeng, X.Q.; Long, H.; Wang, Z.; Zhao, S.C.; Tang, Y.W.; Huang, Z.Y.; Wang, Y.L.; Xu, Q.J.; Mao, L.K.; Deng, G.B.; et al. The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 1095–1100. [Google Scholar] [CrossRef]
- Zeng, X.Q.; Guo, Y.; Xu, Q.J.; Mascher, M.; Guo, G.G.; Li, S.C.; Mao, L.K.; Liu, Q.F.; Xia, Z.F.; Zhou, J.H.; et al. Origin and evolution of qingke barley in Tibet. Nat. Commun. 2018, 9, 5433. [Google Scholar] [CrossRef]
- Guo, T.L.; Horvath, C.; Chen, L.; Chen, J.; Zheng, B. Understanding the nutrient composition and nutritional functions of highland barley (Qingke): A review. Trends Food Sci. Technol. 2020, 103, 109–117. [Google Scholar] [CrossRef]
- Lin, S.; Guo, H.; Lu, M.; Lu, M.Y.; Gong, J.D.B.; Wang, L.; Zhang, Q.; Qin, W.; Wu, D.T. Correlations of Molecular Weights of β-Glucans from Qingke (Tibetan Hulless Barley) to Their Multiple Bioactivities. Molecules 2018, 23, 1710. [Google Scholar] [CrossRef]
- Mühleisen, J.; Maurer, H.P.; Stiewe, G.; Bury, P.; Reif, J.C. Hybrid Breeding in Barley. Crop Sci. 2013, 53, 819–824. [Google Scholar] [CrossRef]
- Marulanda, J.J.; Mi, X.F.; Melchinger, A.E.; Xu, J.L.; Würschum, T.; Longin, C.F.H. Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale. Theor. Appl. Genet. 2016, 129, 1901–1913. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Zhang, D.B. Molecular Control of Male Fertility for Crop Hybrid Breeding. Trends Plant Sci. 2018, 23, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.T.; Ye, J.L.; Niu, F.Q.; Feng, Y.; Song, X.Y. Identification and verification of genes related to pollen development and male sterility induced by high temperature in the thermo-sensitive genic male sterile wheat line. Planta 2021, 253, 83. [Google Scholar] [CrossRef] [PubMed]
- Okada, A.; Arndell, T.; Borisjuk, N.; Sharma, N.; Watson-Haigh, N.S.; Tucker, E.J.; Baumann, U.; Langridge, P.; Whitford, R. CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnol. J. 2019, 17, 1905–1913. [Google Scholar] [CrossRef]
- Liu, J.; Xia, C.; Dong, H.X.; Liu, P.; Yang, R.Z.; Zhang, L.C.; Liu, X.; Jia, J.Z.; Kong, X.Y.; Sun, J.Q. Wheat male-sterile 2 reduces ROS levels to inhibit anther development by deactivating ROS modulator 1. Mol. Plant 2022, 15, 1428–1439. [Google Scholar] [CrossRef]
- Zhou, D.; Zou, T.; Zhang, K.X.; Xiong, P.P.; Zhou, F.X.; Chen, H.; Li, G.W.; Zheng, K.Y.; Han, Y.H.; Peng, K.; et al. DEAP1 encodes a fasciclin-like arabinogalactan protein required for male fertility in rice. J. Integr. Plant Biol. 2022, 64, 1430–1447. [Google Scholar] [CrossRef]
- Cigan, A.M.; Singh, M.; Benn, G.; Feigenbutz, L.; Kumar, M.; Cho, M.J.; Svitashev, S.; Young, J. Targeted mutagenesis of a conserved anther-expressed P450 gene confers male sterility in monocots. Plant Biotechnol. J. 2017, 15, 379–389. [Google Scholar] [CrossRef]
- Ashraf, M.F.; Peng, G.Q.; Liu, Z.L.; Noman, A.; Alamri, S.; Hashem, M.; Qari, S.H.; Mahmoud Al Zoubi, O. Molecular Control and Application of Male Fertility for Two-Line Hybrid Rice Breeding. Int. J. Mol. Sci. 2020, 21, 7868. [Google Scholar] [CrossRef]
- Bai, J.F.; Wang, Y.K.; Liu, Z.H.; Guo, H.Y.; Zhang, F.T.; Guo, L.P.; Yuan, S.H.; Duan, W.J.; Li, Y.M.; Tan, Z.G.; et al. Global survey of alternative splicing and gene modules associated with fertility regulation in a thermosensitive genic male sterile wheat. J. Exp. Bot. 2022, 73, 2157–2174. [Google Scholar] [CrossRef]
- Yu, B.; Liu, L.T.; Wang, T. Deficiency of very long chain alkanes biosynthesis causes humidity-sensitive male sterility via affecting pollen adhesion and hydration in rice. Plant Cell Environ. 2019, 42, 3340–3354. [Google Scholar] [CrossRef]
- Chen, H.Q.; Zhang, Z.G.; Ni, E.D.; Lin, J.W.; Peng, G.Q.; Huang, J.L.; Zhu, L.Y.; Deng, L.; Yang, F.F.; Luo, Q.; et al. HMS1 interacts with HMS1I to regulate very-long-chain fatty acid biosynthesis and the humidity-sensitive genic male sterility in rice (Oryza sativa). New Phytol. 2020, 225, 2077–2093. [Google Scholar] [CrossRef] [PubMed]
- Ru, Z.G.; Zhang, L.P.; Hu, T.Z.; Liu, H.Y.; Yang, Q.K.; Weng, M.L.; Wang, B.; Zhao, C.P. Genetic analysis and chromosome mapping of a thermo-sensitive genic male sterile gene in wheat. Euphytica 2015, 201, 321–327. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, M.; Yang, Y.Z.; Li, J.; Zhu, L.Y.; Jiang, D.G.; Dong, J.F.; Liu, Q.J.; Gu, L.F.; Zhou, L.Y.; et al. RNase ZS1 processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice. Nat. Commun. 2014, 5, 4884. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Albertsen, M.C.; Cigan, A.M. Male Fertility Genes in Bread Wheat (Triticum aestivum L.) and Their Utilization for Hybrid Seed Production. Int. J. Mol. Sci. 2021, 22, 8157. [Google Scholar] [CrossRef]
- Fernández-Gómez, J.; Wilson, Z.A. A barley PHD finger transcription factor that confers male sterility by affecting tapetal development. Plant Biotechnol. J. 2014, 12, 765–777. [Google Scholar] [CrossRef]
- Fernández-Gómez, J.; Talle, B.; Wilson, Z.A. Increased expression of the MALE STERILITY1 transcription factor gene results in temperature-sensitive male sterility in barley. J. Exp. Bot. 2020, 71, 6328–6339. [Google Scholar] [CrossRef]
- Muñoz-Amatriaín, M.; Svensson, J.T.; Castillo, A.M.; Cistué, L.; Close, T.J.; Vallés, M.P. Transcriptome analysis of barley anthers: Effect of mannitol treatment on microspore embryogenesis. Physiol. Plant 2006, 127, 551–560. [Google Scholar] [CrossRef]
- Liu, H.R.; Li, G.; Yang, X.J.; Kuijer, H.N.J.; Liang, W.Q.; Zhang, D.B. Transcriptome profiling reveals phase-specific gene expression in the developing barley inflorescence. Crop J. 2020, 8, 71–86. [Google Scholar] [CrossRef]
- Shi, T.; Dimitrov, I.; Zhang, Y.L.; Tax, F.E.; Yi, J.; Gou, X.P.; Li, J. Accelerated rates of protein evolution in barley grain and pistil biased genes might be legacy of domestication. Plant Mol. Biol. 2015, 89, 253–261. [Google Scholar] [CrossRef]
- Kirby, E.J.M.; Appleyard, M. Wheat Breeding; Chapman and Hall: London, UK, 1987; pp. 287–311. [Google Scholar]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhan, C.; Huang, S.; Xu, Q.; Tang, T.; Wang, Y.; Luo, J.; Zeng, X. Resistance to Powdery Mildew in Qingke Involves the Accumulation of Aromatic Phenolamides Through Jasmonate-Mediated Activation of Defense-Related Genes. Front. Plant Sci. 2022, 13, 900345. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Sun, Y.J.; Fu, M.; Ang, Y.; Zhu, L.; Wei, L.N.; He, Y.; Zeng, H.L. Combined analysis of transcriptome and metabolome reveals that sugar, lipid, and phenylpropane metabolism are essential for male fertility in temperature-induced male sterile rice. Front. Plant Sci. 2022, 13, 945105. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Zhang, Z.; Cao, J. Pollen wall development: The associated enzymes and metabolic pathways. Plant Biol. 2013, 15, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; De Palma, J.; Oane, R.; Gamuyao, R.; Luo, M.; Chaudhury, A.; Hervé, P.; Xue, Q.; Bennett, J. OsTDL1A binds to the LRR domain of rice receptor kinase MSP1, and is required to limit sporocyte numbers. Plant J. 2008, 54, 375–387. [Google Scholar] [CrossRef]
- Hong, L.L.; Tang, D.; Shen, Y.; Hu, Q.; Wang, K.J.; Li, M.; Lu, T.G.; Cheng, Z.K. MIL2 (MICROSPORELESS2) regulates early cell differentiation in the rice anther. New Phytol. 2012, 196, 402–413. [Google Scholar] [CrossRef]
- Wang, C.J.R.; Nan, G.L.; Kelliher, T.; Timofejeva, L.; Vernoud, V.; Golubovskaya, I.N.; Harper, L.; Egger, R.; Walbot, V.; Cande, W.Z. Maize multiple archesporial cells 1 (mac1), an ortholog of rice TDL1A, modulates cell proliferation and identity in early anther development. Development 2012, 139, 2594–2603. [Google Scholar] [CrossRef]
- Xue, Z.Y.; Xu, X.; Zhou, Y.; Wang, X.N.; Zhang, Y.C.; Liu, D.; Zhao, B.B.; Duan, L.X.; Qi, X.Q. Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice. Nat. Commun. 2018, 9, 604. [Google Scholar] [CrossRef]
- Kolesnikova, M.D.; Wilson, W.K.; Lynch, D.A.; Obermeyer, A.C.; Matsuda, S.P.T. Arabidopsis camelliol C synthase evolved from enzymes that make pentacycles. Org. Lett. 2007, 9, 5223–5226. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.F.; Xiong, X.C.; Dong, H.; Qi, X.Q. Genome-wide investigation and transcriptional profiling of the oxidosqualene cyclase (OSC) genes in wheat (Triticum aestivum). J. Syst. Evol. 2022, 60, 1378–1392. [Google Scholar] [CrossRef]
- Virmani, S.S.; Ilyas-Ahmed, M. Environment-sensitive genic male sterility (EGMS) in crops. Adv. Agron. 2001, 72, 139–195. [Google Scholar] [CrossRef]
- Wu, L.Y.; Jing, X.H.; Zhang, B.L.; Chen, S.J.; Xu, R.; Duan, P.G.; Zou, D.N.; Huang, S.J.; Zhou, T.B.; An, C.C.; et al. A natural allele of OsMS1 responds to temperature changes and confers thermosensitive genic male sterility. Nat. Commun. 2022, 13, 2055. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.S.; Li, Z.W.; Wu, S.W.; Wan, X.Y. The essential roles of sugar metabolism for pollen development and male fertility in plants. Crop J. 2021, 9, 1278–1290. [Google Scholar] [CrossRef]
- Wan, X.Y.; Wu, S.W.; Li, Z.W.; An, X.L.; Tian, Y.H. Lipid Metabolism: Critical Roles in Male Fertility and Other Aspects of Reproductive Development in Plants. Mol. Plant 2020, 13, 955–983. [Google Scholar] [CrossRef] [PubMed]
- Kretzschmar, T.; Burla, B.; Lee, Y.; Martinoia, E.; Nagy, R. Functions of ABC transporters in plants. Essays Biochem. 2011, 50, 145–160. [Google Scholar] [CrossRef]
- Wan, X.Y.; Wu, S.W.; Li, Z.W.; Dong, Z.Y.; An, X.L.; Ma, B.; Tian, Y.H.; Li, J.P. Maize Genic Male-Sterility Genes and Their Applications in Hybrid Breeding: Progress and Perspectives. Mol. Plant 2019, 12, 321–342. [Google Scholar] [CrossRef]
- Kalaiyarasi, R.; Vaidyanathan, P. Cytological screening of rice TGMS lines. Plant Breed. 2003, 122, 334–338. [Google Scholar] [CrossRef]
- Abe, I.; Prestwich, G.D. Molecular cloning, characterization, and functional expression of rat oxidosqualene cyclase cDNA. Proc. Natl. Acad. Sci. USA 1995, 92, 9274–9278. [Google Scholar] [CrossRef]
- Poralla, K.; Hewelt, A.; Prestwich, G.D.; Abe, I.; Reipen, I.; Sprenger, G. A specific amino acid repeat in squalene and oxidosqualene cyclases. Trends Biochem. Sci. 1994, 19, 157–158. [Google Scholar] [CrossRef] [PubMed]
- Mertens, J.; Pollier, J.; Vanden-Bossche, R.; Lopez-Vidriero, I.; Franco-Zorrilla, J.M.; Goossens, A. The bHLH Transcription Factors TSAR1 and TSAR2 Regulate Triterpene Saponin Biosynthesis in Medicago truncatula. Plant Physiol. 2016, 170, 194–210. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, S.R.; Dwivedi, V.; Rai, A.; Pal, S.; Shasany, A.K.; Nagegowda, D.A. A WRKY transcription factor from Withania somnifera regulates triterpenoid withanolide accumulation and biotic stress tolerance through modulation of phytosterol and defense pathways. New Phytol. 2017, 215, 1115–1131. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Luo, T.; Guo, X.Q.; Zou, X.; Zhou, D.H.; Afrin, S.; Li, G.; Zhang, Y.; Zhang, R.; Luo, Z.Y. PgMYB2, a MeJA-Responsive Transcription Factor, Positively Regulates the Dammarenediol Synthase Gene Expression in Panax Ginseng. Int. J. Mol. Sci. 2019, 20, 2219. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Liu, X.F.; Yu, X.; Wang, F.S.; Long, J.H.; Shen, W.X.; Jiang, D.; Zhao, X.C. The MYB transcription factor CiMYB42 regulates limonoids biosynthesis in citrus. BMC Plant Biol. 2020, 20, 254. [Google Scholar] [CrossRef] [PubMed]
No. | Gene Name | Hordeum vulgare | Oryza sativa | Triticum aestivum |
---|---|---|---|---|
1 | PMS1 | HORVU.MOREX.r3.5HG0460900 | Os11g0142500 | TraesCS5A02G131300 TraesCS5B02G133500 TraesCS5D02G139800 |
2 | OsTMS18 | HORVU.MOREX.r3.1HG0051660 | Os10g0524500 | TraesCS1A02G187500 TraesCS1B02G195300 TraesCS1D02G189200 |
3 | TMS5 | HORVU.MOREX.r3.6HG0578870 | Os02g0214300 | TraesCS6A02G184600 TraesCS6B02G211800 TraesCS6D02G170400 |
4 | TMS9-1 | HORVU.MOREX.r3.5HG0485710 | Os09g0449000 | TraesCS5A02G233600 TraesCS5B02G232100 TraesCS5D02G240500 |
5 | TMS2 | HORVU.MOREX.r3.2HG0187560 | Os07g0452500 | TraesCS4A02G211000 TraesCS2B02G420500 TraesCS3D02G052200 |
6 | OsPDCD5 | HORVU.MOREX.r3.1HG0079230 | Os05g0547850 | TraesCS1A02G368100 TraesCS1B02G387000 TraesCS1D02G374000 |
7 | CSA | HORVU.MOREX.r3.3HG0256690 | Os01g0274800 | TraesCS3A02G187800 TraesCS3B02G217100 TraesCS3D02G191400 |
8 | OSMYOXIB | HORVU.MOREX.r3.6HG0629580 | Os02g0816900 | TraesCS6A02G390800 TraesCS6B02G431400 TraesCS6D02G377100 |
9 | OsOSC12 | HORVU.MOREX.r3.7HG0634780 | Os08g0223900 | TraesCS4A02G495100 TraesCS7D02G004000 TraesCSU02G191900 |
10 | HMS1 | HORVU.MOREX.r3.4HG0395960 | Os03g0220100 | TraesCS4A02G065300 TraesCS4D02G242200 TraesCS1B02G436300 |
11 | OsHMS1I | HORVU.MOREX.r3.2HG0191470 | Os04g0611200 | TraesCS2A02G426000 TraesCS2B02G446300 TraesCS2D02G424100 |
12 | OsTDF1 | HORVU.MOREX.r3.4HG0384200 | Os03g0296000 | TraesCS4A02G113000 TraesCS4B02G191200 TraesCS4D02G192400 |
13 | bHLH142 | HORVU.MOREX.r3.7HG0654120 | Os05g0139100 | TraesCS7A02G117100 TraesCS7B02G014500 TraesCS7D02G113100 |
14 | Udt1 | HORVU.MOREX.r3.2HG0136970 | Os07g0549600 | TraesCS2A02G212200 TraesCS2B02G237300 TraesCS2D02G218100 |
15 | Roc3 | HORVU.MOREX.r3.1HG0053250 | Os10g0575600 | TraesCS1A02G193400 TraesCS1B02G208400 TraesCS1D02G197300 |
16 | OsCrll3 | HORVU.MOREX.r3.3HG0306540 | Os05g0417000 | TraesCS3A02G402300 TraesCS3B02G435700 TraesCS3D02G397200 |
17 | CYP704B2 | Hordeum_vulgare_newGene_3892 | Os03g0168600 | TraesCS4A02G019400 TraesCS4B02G284700 TraesCS4D02G283400 |
18 | OsGELP110 | HORVU.MOREX.r3.5HG0463140 | Os11g0129500 | TraesCS5A02G141800 TraesCS5B02G140600 TraesCS5D02G150300 |
19 | OsGPAT3 | HORVU.MOREX.r3.4HG0417370 | Os12g0563000 | TraesCS4A02G171600 TraesCSU02G250600 TraesCS4D02G143600 |
20 | SAP 62 | HORVU.MOREX.r3.4HG0390010 | Os03g0263500 | TraesCS4A02G088700 TraesCS4B02G215500 TraesCS4D02G216000 |
21 | CYP703A3 | HORVU.MOREX.r3.7HG0726310 | Os08g0152400 | TraesCS7A02G309300 TraesCS7B02G209300 TraesCS7D02G306000 |
22 | OsMS2 | HORVU.MOREX.r3.4HG0403060 | Os03g0167600 | TraesCS4A02G020500 TraesCS4B02G283200 TraesCS4D02G282000 |
23 | OsC4 | HORVU.MOREX.r3.7HG0686920 | Os09g0525500 | TraesCS7A02G269700 TraesCS7B02G167900 TraesCS7D02G270200 |
24 | sqv-2 | HORVU.MOREX.r3.3HG0298160 | Os05g0427200 | TraesCS3A02G389200 TraesCS3B02G419800 TraesCS3D02G380700 |
25 | OsGRX19 | HORVU.MOREX.r3.2HG0153120 | Os07g0151100 | TraesCS2A02G251700 TraesCS2B02G271600 TraesCS2D02G252500 |
26 | OsTDL1A | HORVU.MOREX.r3.1HG0027890 | Os12g0472500 | TraesCS1A02G118900 TraesCS1B02G138400 TraesCS1D02G119800 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, D.; Xu, Z.; Feng, B.; Zhou, Q.; Fan, X.; Wang, T. Identification and Cloning of a Putative Male Fertility Gene Encoding an Oxidosqualene Cyclase in Qingke. Agronomy 2023, 13, 1292. https://doi.org/10.3390/agronomy13051292
Lin D, Xu Z, Feng B, Zhou Q, Fan X, Wang T. Identification and Cloning of a Putative Male Fertility Gene Encoding an Oxidosqualene Cyclase in Qingke. Agronomy. 2023; 13(5):1292. https://doi.org/10.3390/agronomy13051292
Chicago/Turabian StyleLin, Dian, Zhibin Xu, Bo Feng, Qiang Zhou, Xiaoli Fan, and Tao Wang. 2023. "Identification and Cloning of a Putative Male Fertility Gene Encoding an Oxidosqualene Cyclase in Qingke" Agronomy 13, no. 5: 1292. https://doi.org/10.3390/agronomy13051292
APA StyleLin, D., Xu, Z., Feng, B., Zhou, Q., Fan, X., & Wang, T. (2023). Identification and Cloning of a Putative Male Fertility Gene Encoding an Oxidosqualene Cyclase in Qingke. Agronomy, 13(5), 1292. https://doi.org/10.3390/agronomy13051292