Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = high-speed shaft bearing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2636 KiB  
Review
Review on Tribological and Vibration Aspects in Mechanical Bearings of Electric Vehicles: Effect of Bearing Current, Shaft Voltage, and Electric Discharge Material Spalling Current
by Rohan Lokhande, Sitesh Kumar Mishra, Deepak Ronanki, Piyush Shakya, Vimal Edachery and Lijesh Koottaparambil
Lubricants 2025, 13(8), 349; https://doi.org/10.3390/lubricants13080349 - 5 Aug 2025
Viewed by 69
Abstract
Electric motors play a decisive role in electric vehicles by converting electrical energy into mechanical motion across various drivetrain components. However, failures in these motors can interrupt the motor function, with approximately 40% of these failures stemming from bearing issues. Key contributors to [...] Read more.
Electric motors play a decisive role in electric vehicles by converting electrical energy into mechanical motion across various drivetrain components. However, failures in these motors can interrupt the motor function, with approximately 40% of these failures stemming from bearing issues. Key contributors to bearing degradation include shaft voltage, bearing current, and electric discharge material spalling current, especially in motors powered by inverters or variable frequency drives. This review explores the tribological and vibrational aspects of bearing currents, analyzing their mechanisms and influence on electric motor performance. It addresses the challenges faced by electric vehicles, such as high-speed operation, elevated temperatures, electrical conductivity, and energy efficiency. This study investigates the origins of bearing currents, damage linked to shaft voltage and electric discharge material spalling current, and the effects of lubricant properties on bearing functionality. Moreover, it covers various methods for measuring shaft voltage and bearing current, as well as strategies to alleviate the adverse impacts of bearing currents. This comprehensive analysis aims to shed light on the detrimental effects of bearing currents on the performance and lifespan of electric motors in electric vehicles, emphasizing the importance of tribological considerations for reliable operation and durability. The aim of this study is to address the engineering problem of bearing failure in inverter-fed EV motors by integrating electrical, tribological, and lubrication perspectives. The novelty lies in proposing a conceptual link between lubricant breakdown and damage morphology to guide mitigation strategies. The study tasks include literature review, analysis of bearing current mechanisms and diagnostics, and identification of technological trends. The findings provide insights into lubricant properties and diagnostic approaches that can support industrial solutions. Full article
(This article belongs to the Special Issue Tribology of Electric Vehicles)
Show Figures

Figure 1

22 pages, 12545 KiB  
Article
Denoised Improved Envelope Spectrum for Fault Diagnosis of Aero-Engine Inter-Shaft Bearing
by Danni Li, Longting Chen, Hanbin Zhou, Jinyuan Tang, Xing Zhao and Jingsong Xie
Appl. Sci. 2025, 15(15), 8270; https://doi.org/10.3390/app15158270 - 25 Jul 2025
Viewed by 233
Abstract
The inter-shaft bearing is an important component of aero-engine rotor systems. It works between a high-pressure rotor and a low-pressure rotor. Effective fault diagnosis of it is significant for an aero-engine. The casing vibration signals can promptly and intuitively reflect changes in the [...] Read more.
The inter-shaft bearing is an important component of aero-engine rotor systems. It works between a high-pressure rotor and a low-pressure rotor. Effective fault diagnosis of it is significant for an aero-engine. The casing vibration signals can promptly and intuitively reflect changes in the operational health status of an aero-engine’s support system. However, affected by a complex vibration transmission path and vibration of the dual-rotor, the intrinsic vibration information of the inter-shaft bearing is faced with strong noise and a dual-frequency excitation problem. This excitation is caused by the wide span of vibration source frequency distribution that results from the quite different rotational speeds of the high-pressure rotor and low-pressure rotor. Consequently, most existing fault diagnosis methods cannot effectively extract inter-shaft bearing characteristic frequency information from the casing signal. To solve this problem, this paper proposed the denoised improved envelope spectrum (DIES) method. First, an improved envelope spectrum generated by a spectrum subtraction method is proposed. This method is applied to solve the multi-source interference with wide-band distribution problem under dual-frequency excitation. Then, an improved adaptive-thresholding approach is subsequently applied to the resultant subtracted spectrum, so as to eliminate the influence of random noise in the spectrum. An experiment on a public run-to-failure bearing dataset validates that the proposed method can effectively extract an incipient bearing fault characteristic frequency (FCF) from strong background noise. Furthermore, the experiment on the inter-shaft bearing of an aero-engine test platform validates the effectiveness and superiority of the proposed DIES method. The experimental results demonstrate that this proposed method can clearly extract fault-related information from dual-frequency excitation interference. Even amid strong background noise, it precisely reveals the inter-shaft bearing’s fault-related spectral components. Full article
Show Figures

Figure 1

22 pages, 10008 KiB  
Article
Design and Testing of a Device to Investigate Dynamic Performance of Aero-Engine Rotor–Stator Rubbing Dynamics
by Qinqin Mu, Qun Yan, Peng Sun, Yonghui Chen, Jiaqi Chang and Shiyu Huo
Eng 2025, 6(7), 162; https://doi.org/10.3390/eng6070162 - 17 Jul 2025
Viewed by 215
Abstract
To analyze the wear performance induced by rotor–stator rubbing in an aero-engine sealing structure under authentic operating conditions, a transonic rotor system with double bearing is constructed. This system incorporates the disk, shaft, blades, joint bolts, and auxiliary support structure. The system was [...] Read more.
To analyze the wear performance induced by rotor–stator rubbing in an aero-engine sealing structure under authentic operating conditions, a transonic rotor system with double bearing is constructed. This system incorporates the disk, shaft, blades, joint bolts, and auxiliary support structure. The system was evaluated in terms of its critical speed, vibration characteristics, component strength under operational conditions, and response characteristics in abnormal extreme scenarios. A ball screw-type feeding system is employed to achieve precise rotor–stator rubbing during rotation by controlling the coating feed. Additionally, a quartz lamp heating system is used to apply thermal loads to coating specimens, and the appropriate heat insulation and cooling measures are implemented. Furthermore, a high-frequency rubbing force test platform is developed to capture the key characteristics caused by rubbing. The test rig can conduct response tests of the system with rotor–stator rubbing and abrasion tests with tip speeds reaching 425 m/s, feed rates ranging from 2 to 2000 μm/s, and heating temperatures up to 1200 °C. Test debugging has confirmed these specifications and successfully executed rubbing tests, which demonstrate stability throughout the process and provide reliable rubbing force test results. This designed test rig and analysis methodology offers valuable insights for developing high-speed rotating machinery. Full article
Show Figures

Figure 1

32 pages, 5640 KiB  
Article
Computational Analysis of Aerodynamic Blade Load Transfer to the Powertrain of a Direct-Drive Multi-MW Wind Turbine
by Magnus Bichan, Pablo Jaen-Sola, Firdaus Muhammad-Sukki and Nazmi Sellami
Machines 2025, 13(7), 575; https://doi.org/10.3390/machines13070575 - 2 Jul 2025
Viewed by 256
Abstract
This paper details the development of a full turbine model and ensuing aero-servo-elastic analysis of the International Energy Agency’s 15MW Reference Wind Turbine. This model provides the means to obtain realistic turbine performance data, of which normal and tangential blade loads are extracted [...] Read more.
This paper details the development of a full turbine model and ensuing aero-servo-elastic analysis of the International Energy Agency’s 15MW Reference Wind Turbine. This model provides the means to obtain realistic turbine performance data, of which normal and tangential blade loads are extracted and applied to a simplified drivetrain model developed expressly to quantify the shaft eccentricities caused by aerodynamic loading, thus determining the impact of aerodynamic loading on the generator structure. During this process, a method to determine main bearing stiffness values is presented, and values for the IEA-15MW-RWT obtained. It was found that wind speeds in the region of turbine cut-out induce shaft eccentricities as high as 56%, and that tangential loading has a significant contribution to shaft eccentricities, increasing deflection at the generator area by as much as 106% at high windspeeds, necessitating its inclusion. During a subsequent generator structure optimisation, the shaft eccentricities caused by the loading scenarios examined in this paper were found to increase the necessary mass of the rotor structure by 40%, to meet the reduced airgap clearance. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

15 pages, 5561 KiB  
Article
A Sensorless Speed Estimation Method for PMSM Supported by AMBs Based on High-Frequency Square Wave Signal Injection
by Lei Gong, Yu Li, Dali Dai, Wenjuan Luo, Pai He and Jingwen Chen
Electronics 2025, 14(8), 1644; https://doi.org/10.3390/electronics14081644 - 18 Apr 2025
Viewed by 385
Abstract
Active magnetic bearings (AMBs) are a class of electromechanical equipment that effectively integrate Magnetic Bearing technology with PMSM technology, particularly for applications involving high-power and high-speed permanent magnet motors. However, as the rotor operates in a suspended state, the motor’s trajectory changes continuously. [...] Read more.
Active magnetic bearings (AMBs) are a class of electromechanical equipment that effectively integrate Magnetic Bearing technology with PMSM technology, particularly for applications involving high-power and high-speed permanent magnet motors. However, as the rotor operates in a suspended state, the motor’s trajectory changes continuously. The installation of a speed sensor poses a risk of collisions with the shaft, which inevitably leads to rotor damage due to imbalance, shaft wear, or other mechanical effects. Consequently, for the rotor control system of PMSM, it is crucial to adopt a sensorless speed estimation method to achieve high-performance speed and position closed-loop control. This study uses the rotor system of a 75 kW AMB high-speed motor as a case study to provide a detailed analysis of the principles of high-frequency square wave signal injection (HFSWSII) and current signal injection for speed estimation. The high-frequency current response signal is derived, and a speed observer is designed based on signal extraction and processing methods. Subsequently, a speed estimation model for PMSM is constructed based on HFSWSII, and the issue of “filter bandwidth limitations and lagging effects in signal processing” within the observer is analyzed. A scheme based on the high-frequency pulse array current injection method is then proposed to enhance the observer’s performance. Finally, to assess the system’s anti-interference capability as well as the motor’s static and dynamic tracking performance, its dynamic behavior is tested under conditions of increasing and decreasing speed and load. Simulation and experimental results demonstrate that the PMSM control system based on HFSWSII achieves accurate speed estimation and shows excellent static and dynamic performance. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

18 pages, 7965 KiB  
Article
Research on the Lubrication State of the Contact Interface Under the Tilt and Skew State of the Roller of the Aviation Bearing
by Lina Zhou, Xiaofeng Yang, Zhigang Luo, Jingjing Zhang, Zhen Li and Xiaodong Wang
Lubricants 2025, 13(4), 174; https://doi.org/10.3390/lubricants13040174 - 10 Apr 2025
Viewed by 577
Abstract
The lubrication behavior and mechanical characteristics of the main bearing area of an aero-engine main shaft bearing determine the reliability and life of the main shaft bearing. In aero-engine main shaft bearings, the lubricant not only plays the role of lubrication but also [...] Read more.
The lubrication behavior and mechanical characteristics of the main bearing area of an aero-engine main shaft bearing determine the reliability and life of the main shaft bearing. In aero-engine main shaft bearings, the lubricant not only plays the role of lubrication but also affects the dynamic characteristics of the bearing; therefore, if the lubricant drag force is insufficient, it will lead to rolling body slipping. Slipping not only affects the reliability of the bearing operation but also will make the temperature of the contact area instantaneously increase, leading to the occurrence of gluing, scraping and other lubrication failure phenomena in the main bearing area. A lubricant under the shear conditions of traction characteristics is actually the external manifestation of rheological properties. Rheological properties are one of the elastic fluid power lubrication theories and are an important part of the study. Elasto-hydrodynamic lubrication theory of the oil film pressure, film thickness and temperature and solid domains interact to form a thermal–fluid–solid coupling relationship; this coupling relationship affects the main bearing area of the lubrication behavior and mechanical properties, thus affecting the lubrication state of the bearings and dynamic characteristics. With the continuous improvement of aero-engine performance requirements for main shaft bearings, it is of great significance to carry out a coupling study of the lubrication behavior and mechanical properties of the bearing contact zone under heavy load, high speed and high temperature conditions to improve the service performance, reliability and life of the bearings. Full article
Show Figures

Figure 1

33 pages, 11404 KiB  
Review
Review on Key Development of Magnetic Bearings
by Tong Wu and Weiyu Zhang
Machines 2025, 13(2), 113; https://doi.org/10.3390/machines13020113 - 30 Jan 2025
Cited by 3 | Viewed by 3234
Abstract
A magnetic suspension bearing is a device that suspends the rotating shaft in a balanced position by magnetic force, thereby eliminating the friction between the rotor and the stator. Different from traditional bearing support methods, magnetic bearings show significant advantages in terms of [...] Read more.
A magnetic suspension bearing is a device that suspends the rotating shaft in a balanced position by magnetic force, thereby eliminating the friction between the rotor and the stator. Different from traditional bearing support methods, magnetic bearings show significant advantages in terms of speed, accuracy, and loss. Because there is no contact, magnetic bearings enable high-speed operation, precise control, and zero friction. Magnetic bearings, with their excellent performance, are widely applied in fields such as industrial production, flywheel energy storage, and aerospace. However, with the continuous growth of the demand for high-performance bearings and the deepening of the concept of low-carbon and environmental protection, breakthroughs in the key technologies of magnetic bearings are urgently needed. In this paper, relevant research on magnetic bearings is summarized. Magnetic bearings are classified according to the different ways in which they generate suspension forces. Research on the topological structure design, mathematical modeling, and control strategies of the magnetic bearing system is covered. The aim is to provide readers and researchers with a comprehensive overview of the key technologies of magnetic bearings from a new perspective. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

16 pages, 2646 KiB  
Article
Research on the Accumulative Damage of Flywheels Due to In-Space Charging Effects
by Dong Tian, Yanjun Feng, Hongbo Su, Xiao Zeng, Gang Liu, Yenan Liu and Jing He
Aerospace 2025, 12(2), 98; https://doi.org/10.3390/aerospace12020098 - 28 Jan 2025
Viewed by 785
Abstract
High-speed rotating flywheel bearings, designed for space applications, generate a high-resistance hydrodynamic lubrication film, which isolates the rotor, transforming it into a conductor. This phenomenon introduces a novel failure mode—flywheel bearing electrical damage caused by space charging effects. This paper first reviews the [...] Read more.
High-speed rotating flywheel bearings, designed for space applications, generate a high-resistance hydrodynamic lubrication film, which isolates the rotor, transforming it into a conductor. This phenomenon introduces a novel failure mode—flywheel bearing electrical damage caused by space charging effects. This paper first reviews the sources of common shaft voltages in flywheels and the mechanisms of electrical damage and improves the principle of deep charge causing shaft voltages in flywheel bearings, proposing that surface charge is another source of shaft voltages. The quantified analysis model of flywheel bearing electrical damage in relation to rotational speed and high-energy electron flux is derived, indicating that the damage caused by space charge–discharge to the bearing is of small magnitude and only becomes apparent after long-term accumulation, thus being easily overlooked. Based on the causal chain of electrical damage, a correlation analysis model consistent with physical principles is constructed, and the correlation between on-orbit anomalies of the flywheel and high-energy electron flux is confirmed through the use of big data. Preliminary experiments are conducted to validate all of the research results. Finally, suggestions are given for the reliable design, application, and testing of flywheels. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

15 pages, 11357 KiB  
Article
Catastrophic Failure Analysis of a Wind Turbine Gearbox by the Finite Element Method and Fracture Analysis
by Jairo Aparecido Martins and Estaner Claro Romão
Designs 2025, 9(1), 4; https://doi.org/10.3390/designs9010004 - 5 Jan 2025
Viewed by 1653
Abstract
The wind turbine gearbox, used as a multiplier, is one of the main components directly related to a wind turbine’s efficiency and lifespan. Therefore, strict control of the gearbox and its manufacturing processes and even minor improvements in this component strongly and positively [...] Read more.
The wind turbine gearbox, used as a multiplier, is one of the main components directly related to a wind turbine’s efficiency and lifespan. Therefore, strict control of the gearbox and its manufacturing processes and even minor improvements in this component strongly and positively impact energy production/generation over time. Since only some papers in the literature analyze the mechanical aspect of wind turbines, focusing on some parts in depth, this paper fills the gap by offering an analysis of the gearbox component under the highest amount of stress, namely relating to the sun shaft, as well as a more holistic analysis of the main gear drives, its components, and the lubrification system. Thus, this work diagnoses the fracture mechanics of a 1600 kW gearbox to identify the main reason for the fracture and how the chain of events took place, leading to catastrophic failure. The diagnoses involved numerical simulation (finite element analysis—FEA) and further analysis of the lubrication system, bearings, planetary stage gears, helical stage gears, and the high-speed shaft. In conclusion, although the numerical simulation showed high contact stresses on the sun shaft teeth, the region with the unexpectedly nucleated crack was the tip of the tooth. The most likely factors that led to premature failure were the missed lubrication for the planetary bearings, a lack of cleanliness in regard to the raw materials of the gears (voids found), and problems with the sun shaft heat treatment. With the sun gear’s shaft, planet bearings, and planet gears broken into pieces, those small and large pieces dropped into the oil, between the gears, and into the tooth ring, causing the premature and catastrophic gearbox failure. Full article
(This article belongs to the Special Issue Design and Analysis of Offshore Wind Turbines)
Show Figures

Figure 1

49 pages, 96138 KiB  
Article
Experimental Study on the Effects of Controllable Parameters on the Healthy Operation of SF-2A Material Water-Lubricated Stern Bearing in Multi-Point Ultra-Long Shaft Systems of Ships
by Xingshan Chang, Jie Liu, Xinping Yan, Feng Sun, Hanhua Zhu and Chengmin Wang
J. Mar. Sci. Eng. 2025, 13(1), 14; https://doi.org/10.3390/jmse13010014 - 26 Dec 2024
Cited by 1 | Viewed by 1478
Abstract
Effective control of the health operating condition of multi-support, ultra-long shaft system water-lubricated stern bearings is crucial for supporting the intelligent maintenance and health management of ships. This study investigates the failure modes of water-lubricated stern bearings and focuses on the critical failure [...] Read more.
Effective control of the health operating condition of multi-support, ultra-long shaft system water-lubricated stern bearings is crucial for supporting the intelligent maintenance and health management of ships. This study investigates the failure modes of water-lubricated stern bearings and focuses on the critical failure modes of abnormal wear and high-temperature meltdown to analyze the mechanisms and influencing factors of these failures. It discusses the conditions for healthy operation of water-lubricated stern bearings, as well as methods for controlling lubrication and temperature rise. Based on this, controllable parameters for the healthy operation of water-lubricated stern bearings were selected, an experimental rig was constructed, and experiments were conducted using SF-2A material water-lubricated bearings. The experimental results indicate that by controlling parameters such as shaft rotational speed, inlet lubrication water temperature, clear-water lubrication, sediment-laden-water lubrication, bearing specific pressure, and the surface morphology of the bearing liner, the velocity characteristics, lubrication characteristics, and temperature rise characteristics of the bearings can be effectively altered. The sensitivity of the lubrication and temperature rise characteristics of SF-2A material water-lubricated stern bearings to controllable parameters varies under different environmental conditions. The study finds that precise control of these parameters can improve the operating condition and reliability of water-lubricated bearings. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 14789 KiB  
Article
RTCA-Net: A New Framework for Monitoring the Wear Condition of Aero Bearing with a Residual Temporal Network under Special Working Conditions and Its Interpretability
by Tongguang Yang, Xingyuan Huang, Yongjian Zhang, Jinglan Li, Xianwen Zhou and Qingkai Han
Mathematics 2024, 12(17), 2687; https://doi.org/10.3390/math12172687 - 29 Aug 2024
Cited by 1 | Viewed by 859
Abstract
The inter-shaft bearing is the core component of a high-pressure rotor support system of a high-thrust aero engine. One of the most challenging tasks for a PHM is monitoring its working condition. However, considering that in the bearing rotor system of a high-thrust [...] Read more.
The inter-shaft bearing is the core component of a high-pressure rotor support system of a high-thrust aero engine. One of the most challenging tasks for a PHM is monitoring its working condition. However, considering that in the bearing rotor system of a high-thrust aero engine bearings are prone to wear failure due to unbalanced or misaligned faults of the rotor system, especially in harsh environments, such as those at high operating loads and high rotation speeds, bearing wear can easily evolve into serious faults. Compared with aero engine fault diagnosis and RUL prediction, relatively little research has been conducted on bearing condition monitoring. In addition, considering how to evaluate future performance states with limited time series data is a key problem. At the same time, the current deep neural network model has the technical challenge of poor interpretability. In order to fill the above gaps, we developed a new framework of a residual space–time feature fusion focusing module named RTCA-Net, which focuses on solving the key problem. It is difficult to accurately monitor the wear state of aero engine inter-shaft bearings under special working conditions in practical engineering. Specifically, firstly, a residual space–time structure module was innovatively designed to capture the characteristic information of the metal dust signal effectively. Secondly, a feature-focusing module was designed. By adjusting the change in the weight coefficient during training, the RTCA-Net framework can select the more useful information for monitoring the wear condition of inter-shaft bearings. Finally, the experimental dataset of metal debris was verified and compared with seven other methods, such as the RTC-Net. The results showed that the proposed RTCA-Net framework has good generalization, superiority, and credibility. Full article
Show Figures

Figure 1

17 pages, 6758 KiB  
Article
Experimental Research on Dynamic Characteristics of a Multi-Disc Rotor System Supported by Aerostatic Bearings
by Zhimin Su, Jianbo Zhang, Yimou Cai and Dongjiang Han
Lubricants 2024, 12(5), 151; https://doi.org/10.3390/lubricants12050151 - 27 Apr 2024
Viewed by 1312
Abstract
Gas bearings have the advantages of small friction loss, wide applicable speed range, no pollution, etc., and have important application prospects in micro and small high-speed rotating machinery. However, due to its compressibility and low viscosity, its dynamic stability in high-speed rotating machinery [...] Read more.
Gas bearings have the advantages of small friction loss, wide applicable speed range, no pollution, etc., and have important application prospects in micro and small high-speed rotating machinery. However, due to its compressibility and low viscosity, its dynamic stability in high-speed rotating machinery is the key to constraining its development. The experimental study of shaft system dynamics is the main means to explore the mechanism of rotor behavior. On the test platform of dynamic characteristics of multi-disc rotor system supported by aerostatic bearings, experimental research on the nonlinear dynamic characteristics of a rotor system was carried out, and nonlinear vibration test and analysis methods, such as axial orbits, bifurcation diagrams, and spectral characteristics, were adopted, and vibration phenomena, including the critical rotational speed accumulating energy and low-frequency accumulating energy, were presented and the vibration characteristics of bearing fracture faults were presented. The bearing supply pressure and rubber damping pad were introduced as a method to suppress the low-frequency vibration of the aerostatic bearing rotor system, and its vibration-reduction effect was verified by experiments. The above results can provide technical support for vibration control and fault diagnosis of rotor systems supported by aerostatic bearings. Full article
(This article belongs to the Special Issue Gas Lubrication and Dry Gas Seal)
Show Figures

Figure 1

16 pages, 7757 KiB  
Article
Novel Structure of Shield Ring to Reduce Shaft Voltage and Improve Cooling Performance of Interior Permanent Magnet Synchronous Motor
by Jun-Kyu Kang, Jun-Hyeok Heo, Su-Hwan Kim and Jin Hur
Electronics 2024, 13(8), 1535; https://doi.org/10.3390/electronics13081535 - 17 Apr 2024
Cited by 3 | Viewed by 1461
Abstract
The voltage of the battery system is increased to increase the efficiency of the electric motor drive system. Additionally, the space vector pulse width modulation (SVPWM) technique is used to ensure high controllability. However, high-voltage and high-speed PWM switching controls for system efficiency [...] Read more.
The voltage of the battery system is increased to increase the efficiency of the electric motor drive system. Additionally, the space vector pulse width modulation (SVPWM) technique is used to ensure high controllability. However, high-voltage and high-speed PWM switching controls for system efficiency generate high common mode voltage (CMV), and shaft voltage is induced in the bearing. This results in a shortened bearing life and potential damage. Therefore, this paper proposes a method to reduce the shaft voltage of the motor through a novel hybrid shield ring structure. It also analyzes how to improve the cooling performance of the motor using a shield ring. First, the parasitic capacitance inside the motor is analyzed. Then, the shaft voltage reduction technology is analyzed according to the material of the shield ring. Finally, experiments validate the proposed method. Additionally, the temperature characteristics of the main part of the motor are analyzed through an experiment in consideration of the shield ring. Full article
Show Figures

Figure 1

15 pages, 4244 KiB  
Article
Improved Synchronous Sampling and Its Application in High-Speed Railway Bearing Damage Detection
by Kun Wang, Yukun Huang, Baoqiang Zhang, Huageng Luo, Xiang Yu, Dawei Chen and Zhiqiang Zhang
Machines 2024, 12(2), 101; https://doi.org/10.3390/machines12020101 - 1 Feb 2024
Cited by 2 | Viewed by 1769
Abstract
Synchronous analysis is one of the most effective and practical techniques in rotating machinery diagnostics, especially in cases with variable speed operations. A modern analog-to-digital convertor (ADC) usually digitizes an analog signal to an equal time interval data series. Synchronous resampling converts the [...] Read more.
Synchronous analysis is one of the most effective and practical techniques in rotating machinery diagnostics, especially in cases with variable speed operations. A modern analog-to-digital convertor (ADC) usually digitizes an analog signal to an equal time interval data series. Synchronous resampling converts the data series from an equal time interval data series to an equal shaft rotation angle interval data series. This conversion is usually achieved in the digital domain with the aid of shaft speed information, through either direct measurement or identification from a measured vibration signal, which is a time-consuming process. In order to improve the computational efficiency as well as the data processing accuracy, in this paper, a fast synchronous time-point calculation method based on an inverse function interpolation procedure is proposed. By identifying the inverse function of the instantaneous phase with respect to time, the calculation process of synchronous time points is optimized, which results in improved calculation efficiency and accuracy. These advantages are demonstrated by numerical simulations as well as experimental verifications. The numerical simulation results show that the proposed method can improve calculation speed by about five times. The synchronous analysis based on the proposed method was applied to a bearing fault detection in a high-speed rail carriage, which demonstrated the advantages of the proposed algorithm in improving the signal-to-noise ratio (SNR) for bearing damage feature extraction. Full article
Show Figures

Figure 1

18 pages, 5510 KiB  
Article
Challenges of Large Converter-Fed Synchronous Machines for Variable-Speed Pumped Hydro Storage
by Stefan Polster, Johannes Deschler, Herwig Renner, Aurelie Bocquel and Martin Janssen
Energies 2023, 16(22), 7506; https://doi.org/10.3390/en16227506 - 9 Nov 2023
Cited by 5 | Viewed by 2573
Abstract
The green energy transition of electrical energy production is leading to an increasing share of total energy production for volatile renewable energy sources, mainly wind and solar power. To handle this volatile production, flexible and efficient energy storage is required. The development of [...] Read more.
The green energy transition of electrical energy production is leading to an increasing share of total energy production for volatile renewable energy sources, mainly wind and solar power. To handle this volatile production, flexible and efficient energy storage is required. The development of high-power converters has enabled the generation of variable-speed pumped hydro storage power plants, combining the so-far-unequalled energy storage capacity of classical pumped-storage hydro power plants and the recently increased operation requirements. The introduction of large-scale converters has led to new challenges in the overall design of power plant systems. This paper intended to take a closer look at a large-scale converter-fed synchronous generator, especially the distribution of the current and voltage harmonics caused by the converter in the implemented generation system. Thereby, holistic design considerations for an ideal loss distribution as well as possible measures to limit the effects of harmonic coupling at the generator shaft and bearings are discussed. Furthermore, basic considerations of harmonic emission to the connected network are described. These topics are addressed by analyzing on-site measurements at an 85 MVA converter-fed synchronous generator with a voltage source inverter, underpinned with the theoretical background. Full article
Show Figures

Figure 1

Back to TopTop