Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = high-frequency electromagnetic transmitter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4009 KB  
Article
Design and Theoretical Analysis of a Hexagonal-Stacked MISO Electric Resonant Coupling Wireless Power Transfer Coupler
by Hong-Guk Bae and Sang-Wook Park
Electronics 2025, 14(17), 3568; https://doi.org/10.3390/electronics14173568 - 8 Sep 2025
Viewed by 464
Abstract
This study presents the design of an optimal Electric Resonant Coupling Wireless Power Transfer (ER-WPT) coupler intended for multiple-input multiple-output (MIMO) systems. The proposed coupler features a hexagonal-stacked structure optimized for electric field coupling and consists of three transmitters and one receiver. Analysis [...] Read more.
This study presents the design of an optimal Electric Resonant Coupling Wireless Power Transfer (ER-WPT) coupler intended for multiple-input multiple-output (MIMO) systems. The proposed coupler features a hexagonal-stacked structure optimized for electric field coupling and consists of three transmitters and one receiver. Analysis of the electromagnetic characteristics in this 3-to-1 configuration can be extended to larger arrays. Theoretical analysis based on a practical equivalent circuit (PEC) model, which incorporates loss elements from measurement, is validated through comparison with 3D full-wave simulations and experimental results. Across three representative receiver positions, the summed transmission coefficient of the MISO structure reaches up to 0.90, while the PEC model agrees with measurements within a maximum deviation of 0.09, confirming high accuracy. Furthermore, the proposed structure demonstrates stable resonance characteristics near 6.78 MHz with reduced frequency shifts under different receiver positions. The key contributions of this work are the proposal of an efficient hexagonal-stacked MISO ER-WPT coupler and a validated equivalent circuit modeling approach that reflects real-world losses, providing a reliable basis for future multi-transmitter/multi-receiver Wireless Power Transfer systems. Full article
Show Figures

Figure 1

22 pages, 8935 KB  
Article
Miniaturizing Controlled-Source EM Transmitters for Urban Underground Surveys: A Bipolar Square-Wave Inverter Approach with SiC-MOSFETs
by Zhongping Wu, Kuiyuan Zhang, Rongbo Zhang, Zucan Lin, Meng Wang, Yongqing Wang and Qisheng Zhang
Sensors 2025, 25(13), 4183; https://doi.org/10.3390/s25134183 - 4 Jul 2025
Viewed by 500
Abstract
This paper presents a compact, high-efficiency electromagnetic transmitter for Controlled-source Audio-frequency Magnetotelluric (CSAMT) applications, operating in the 10–100 kHz range. A novel bipolar square-wave inverter topology is proposed, which directly modulates the transformer’s secondary-side AC output, eliminating conventional rectification and filtering stages. This [...] Read more.
This paper presents a compact, high-efficiency electromagnetic transmitter for Controlled-source Audio-frequency Magnetotelluric (CSAMT) applications, operating in the 10–100 kHz range. A novel bipolar square-wave inverter topology is proposed, which directly modulates the transformer’s secondary-side AC output, eliminating conventional rectification and filtering stages. This design reduces system losses (simulated efficiency > 90%) and achieves an approximately 40% reduction in both volume and weight. The power stage uses a full-bridge bipolar inverter topology with SiC-MOSFETs, combined with a high-frequency transformer for voltage gain. Simulation, laboratory testing, and EMI evaluation confirm stable square-wave generation and full compliance with EN55032 Class A standards. Field validation with a CSAMT receiver demonstrates effective signal transmission and high-resolution subsurface imaging, thereby improving the efficiency and portability of urban geophysical exploration. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

14 pages, 4889 KB  
Article
Design and Analysis of Ultra-Thin Broadband Transparent Absorber Based on ITO Film
by Zibin Weng, Yahong Li, Youqian Su, Zechen Li, Jingnan Guo, Ziming Lv and Chen Liang
Micromachines 2025, 16(6), 653; https://doi.org/10.3390/mi16060653 - 29 May 2025
Viewed by 692
Abstract
In this paper, we design an ultra-thin broadband transparent absorber based on indium tin oxide (ITO) film, and we choose polymethyl methacrylate (PMMA) high-transmittance dielectric sheet instead of the traditional dielectric sheet and polyethylene glycol terephthalate (PET) as the ITO film substrate. Simulation [...] Read more.
In this paper, we design an ultra-thin broadband transparent absorber based on indium tin oxide (ITO) film, and we choose polymethyl methacrylate (PMMA) high-transmittance dielectric sheet instead of the traditional dielectric sheet and polyethylene glycol terephthalate (PET) as the ITO film substrate. Simulation results indicate that the absorber achieves more than 90% absorption for positively incident electromagnetic waves in the broadband range of 5–21.15 GHz with a fractional bandwidth (FBW) of 123.5% and a thickness of 6.3 mm (0.105 λL, where λL is the wavelength at the lowest frequency). Meanwhile, this paper introduces the interference theory to explain the broadband absorption mechanism of the absorber, which makes up for the defect that the equivalent circuit model (ECM) method cannot analyze the oblique incidence electromagnetic wave. This paper also compares the HFSS simulation results, ECM theoretical values, and interference theoretical values under positively incident electromagnetic waves to clarify the advantages of interference theory in the design of wave absorbers. Full article
Show Figures

Figure 1

28 pages, 15114 KB  
Article
Performance Evaluation and Calibration of Electromagnetic Field (EMF) Area Monitors Using a Multi-Wire Transverse Electromagnetic (MWTEM) Transmission Line
by Renzo Azaro, Roberto Franchelli and Alessandro Gandolfo
Sensors 2025, 25(9), 2920; https://doi.org/10.3390/s25092920 - 5 May 2025
Viewed by 718
Abstract
The exposure levels generated by environmental electromagnetic field (EMF) sources can be measured and monitored by employing EMF area monitors. The operating spectrum of environmental EMF sources is not limited to high frequencies (f > 30 MHz) but also extends to low [...] Read more.
The exposure levels generated by environmental electromagnetic field (EMF) sources can be measured and monitored by employing EMF area monitors. The operating spectrum of environmental EMF sources is not limited to high frequencies (f > 30 MHz) but also extends to low frequencies (f < 30 MHz), where sources associated, for example, with radio transmitters typically generate non-negligible field contributions. For this reason, professional EMF area monitors can be equipped with different field sensors, properly calibrated according to standardized procedures. Because low-frequency electric fields are very sensitive to environmental boundary conditions, equipping an EMF area monitor with electric field sensors, previously calibrated as stand-alone devices, can lead to measurement errors due to field perturbations introduced by the physical structure of the area monitor itself. This paper describes the activities carried out to assess the performance of an EMF area monitor in simulated realistic conditions and calibrate it in the 300 kHz–20 MHz frequency band. The activities were conducted using a multi-wire transverse electromagnetic (MWTEM) transmission line as a controlled electric field source, with dimensions suitable for exposure of the entire structure of the EMF area monitor. In view of using this approach to calibrate the area monitors as a whole instead of the individual sensors, the uniformity of the electric field generated by the available MWTEM transmission line was analyzed in detail both numerically and experimentally. Finally, the results of the evaluation and calibration of an area monitor are reported and discussed. Full article
(This article belongs to the Special Issue Electromagnetic Sensing and Its Applications)
Show Figures

Figure 1

10 pages, 2124 KB  
Article
Multifunctional Hierarchical Metamaterials: Synergizing Visible-Laser-Infrared Camouflage with Thermal Management
by Shenglan Wu, Hao Huang, Zhenyong Huang, Chunhui Tian, Lina Guo, Yong Liu and Shuang Liu
Photonics 2025, 12(4), 387; https://doi.org/10.3390/photonics12040387 - 16 Apr 2025
Cited by 1 | Viewed by 1433
Abstract
With the rapid development of multispectral detection technology, realizing the synergistic camouflage and thermal management of materials in multi-band has become a major challenge. In this paper, a multifunctional radiation-selective hierarchical metamaterial (RSHM) is designed to realize the modulation of optical properties in [...] Read more.
With the rapid development of multispectral detection technology, realizing the synergistic camouflage and thermal management of materials in multi-band has become a major challenge. In this paper, a multifunctional radiation-selective hierarchical metamaterial (RSHM) is designed to realize the modulation of optical properties in a wide spectral range through the delicate design of microstructures and nanostructures. In the atmospheric windows of 3–5 μm and 8–14 μm, the emissivity of the material is as low as 0.14 and 0.25, which can effectively suppress the radiation characteristics of the target in the infrared band, thus realizing efficient infrared stealth. Simultaneously, it exhibits high emissivity in the 2.5–3 μm (up to 0.80) and 5–8 μm (up to 0.98) bands, significantly improving thermal radiation efficiency and enabling active thermal management. Notably, RSHM achieves low reflectivity at 1.06 μm (0.13) and 1.55 μm (0.005) laser wavelengths, as well as in the 8–14 μm (0.06) band, substantially improving laser stealth performances. Additionally, it maintains high transmittance in the visible light range, ensuring excellent visual camouflage effects. Furthermore, the RSHM demonstrates exceptional incident angle and polarization stability, maintaining robust performances even under complex detection conditions. This design is easy to expand relative to other frequency bands of the electromagnetic spectrum and holds significant potential for applications in military camouflage, energy-efficient buildings, and optical devices. Full article
Show Figures

Figure 1

12 pages, 1099 KB  
Communication
Compressive Wideband Spectrum Sensing Aided Intelligence Transmitter Design
by Lizhi Qin, Yuming Chen, Leli Zhong and Hongzhi Zhao
Sensors 2025, 25(8), 2400; https://doi.org/10.3390/s25082400 - 10 Apr 2025
Viewed by 680
Abstract
In order to realize robust communication in complicated interference electromagnetic environments, an intelligent transmitter design is proposed in this paper, where an auxiliary wideband receiver senses the electromagnetic distribution information in a wide bandwidth range to decide the optimal working frequency. One of [...] Read more.
In order to realize robust communication in complicated interference electromagnetic environments, an intelligent transmitter design is proposed in this paper, where an auxiliary wideband receiver senses the electromagnetic distribution information in a wide bandwidth range to decide the optimal working frequency. One of the key issues is suppressing the self-interference of high-power transmitter signals to the co-platform wideband sensing receiver. Due to the multipath effect of the self-interference channel, perfect time synchronization of self-interference signals is not achievable, which reduces the interference cancelation performance of the co-platform. Therefore, this paper investigates the impact of time synchronization errors on the self-interference cancellation performance of the Nyquist folding receiver (NYFR)-based system. First, a self-interference cancellation architecture based on NYFR is proposed to support the realization of real-time wideband spectrum sensing. Secondly, closed-form expressions for the residual interference power and the self-interference cancellation performance are derived, and the impact of reference signal sampling errors on the self-interference cancellation performance is also analyzed. Theoretical analysis and simulation results show that the NYFR-based self-interference cancellation performance decreases with increasing time synchronization errors and folding multiples, and the system is especially sensitive to time synchronization errors. Moreover, frequency detection simulations show that, under an SI-to-NCS power ratio of 0 dB, the proposed interference cancellation scheme improves the frequency detection probability by approximately 80%. The research results provide a theoretical reference for the compressed sensing-aided intelligent transmitter realization. Full article
(This article belongs to the Special Issue AI-Based 5G/6G Communications)
Show Figures

Figure 1

15 pages, 11135 KB  
Article
Resilient Communication for Software Defined Radio: Machine Reasoning and Electromagnetic Spectrum Evaluation
by Sergey Edward Lyshevski, Richard Buckley and Christopher Feuerstein
Sensors 2025, 25(6), 1826; https://doi.org/10.3390/s25061826 - 14 Mar 2025
Viewed by 2707
Abstract
This paper investigates evaluation methodologies and machine reasoning schemes to analyze dynamic electromagnetic spectrum. We research practical and scalable classification of radio frequency signals across high frequency, very high frequency, ultra high frequency and super high frequency bands. The multi-band software defined radio, [...] Read more.
This paper investigates evaluation methodologies and machine reasoning schemes to analyze dynamic electromagnetic spectrum. We research practical and scalable classification of radio frequency signals across high frequency, very high frequency, ultra high frequency and super high frequency bands. The multi-band software defined radio, software defined mobile networks, and global navigation system receivers accomplish reconfigurable communication. Resilient communication, as well as high-fidelity analysis of extreme and congested electromagnetic spectra, are open problems due to challenges in classification of interference, distortions and adaptive jamming from spatially distributed transmitters and jammers. This paper documents high-fidelity characterization and dynamically reconfigured machine reasoning schemes to ensure the cognitive capabilities of communication systems. Low-fidelity experimental studies substantiate the spectrum evaluation methodology and demonstrate results. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

18 pages, 9244 KB  
Article
A Novel Chipless Hybrid RFID Sensor for Metal Crack Detection
by Yamini Devidas Kotriwar, Mahmoodul Haq and Yiming Deng
Appl. Sci. 2025, 15(5), 2303; https://doi.org/10.3390/app15052303 - 21 Feb 2025
Viewed by 1295
Abstract
RFID technology has been widely researched and used for structural health applications because of its compact, wireless, and scalable nature. This technology is divided into chipped and chipless sensors. Chipped sensors are costly due to their chipped tags, have narrowband operations, and contribute [...] Read more.
RFID technology has been widely researched and used for structural health applications because of its compact, wireless, and scalable nature. This technology is divided into chipped and chipless sensors. Chipped sensors are costly due to their chipped tags, have narrowband operations, and contribute to shortcomings in detection capability. Chipless tags provide real-time monitoring of cracks in harsh environments like high-temperature areas and high electromagnetic interference areas. This paper presents a design of a novel chipless hybrid circular-hexagon sensor that uses the frequency signature-based method for metal crack detection and characterization using wideband frequency. This sensor is small in size (16 mm × 16 mm × 1.4 mm) and easily mountable in hard-to-reach areas. It is a low-cost, passive chipless sensor that can wirelessly monitor the cracks in metallic structures. The radar cross-section of the chipless tag shows a shift in the resonant frequency of the tag under crack and no crack conditions. Key contributions of this work are that through simulations and experimental investigation, the tag is shown to be able to detect mm-scale cracks, validating the concept and correlating the presence and size of the cracks based on the shift in resonant frequencies in which a pair of Vivaldi antennas are used as a transmitter and receiver to connect to the VNA. The designed small sensor tag is tested in a benchtop setup with no prior calibration, imitating the real-time environment conditions for crack detection. Full article
(This article belongs to the Special Issue Progress in Nondestructive Testing and Evaluation)
Show Figures

Figure 1

13 pages, 7405 KB  
Article
Study on Electromagnetic Focusing with Fully Phase-Adjustable High Transmittance Metasurface
by Zhaoxuan Zhu and Xin Zhou
Electronics 2025, 14(4), 669; https://doi.org/10.3390/electronics14040669 - 9 Feb 2025
Viewed by 1130
Abstract
Electromagnetic beam focusing is usually controlled by phase. However, metasurfaces can effectively achieve phase control. This paper investigates electromagnetic focusing technology based on high-transmittance metasurfaces. Firstly, a high-transmittance metasurface unit was designed with an operating frequency of 10 GHz, a transmittance of over [...] Read more.
Electromagnetic beam focusing is usually controlled by phase. However, metasurfaces can effectively achieve phase control. This paper investigates electromagnetic focusing technology based on high-transmittance metasurfaces. Firstly, a high-transmittance metasurface unit was designed with an operating frequency of 10 GHz, a transmittance of over 80%, and a phase shift of 360°. Then, based on the phase compensation and lens focusing theory, a highly transparent metasurface array for electromagnetic focusing was obtained. Finally, through simulation verification, the half power bandwidth reached 10°, with a transmission efficiency of 43.2% @ 800 mm, and the feasibility of focusing was verified through the experiments. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

13 pages, 3573 KB  
Article
Design and Analysis of Dual-Band Metasurface Filter for Pulse Waves Based on Capacitive Nonlinear Circuits
by Wenliang Tian, Lingling Yang, Bin Cai, Yongzhi Cheng, Fu Chen, Hui Luo and Xiangcheng Li
Electronics 2025, 14(3), 603; https://doi.org/10.3390/electronics14030603 - 4 Feb 2025
Cited by 19 | Viewed by 1153
Abstract
In this paper, a novel dual-band metasurface filter (MSF) designed for accurately differentiating pulse waves (PWs) and continuous waves (CWs) is proposed, which is based on a complementary cross resonator (CSR) structure adhered on a dielectric substrate integrated with a capacitive nonlinear circuit. [...] Read more.
In this paper, a novel dual-band metasurface filter (MSF) designed for accurately differentiating pulse waves (PWs) and continuous waves (CWs) is proposed, which is based on a complementary cross resonator (CSR) structure adhered on a dielectric substrate integrated with a capacitive nonlinear circuit. The unit cell of the designed dual-band MSF comprises two identical CSR structures: one of the capacitive nonlinear circuits is configured in parallel with a capacitor (C1) within one CSR structure. These structures loaded with nonlinear circuits are fabricated on a dielectric substrate. The simulation outcomes reveal that, for normally incident CWs with an input power of 10 dBm, the transmittance of the designed dual-band MSF reaches as high as 97.1% at 2.0 GHz and 93.9% at 3.45 GHz. In contrast, when it comes to 50 ns short PWs, the transmittance remains consistently below 6% throughout the entire frequency range from 1 GHz to 5 GHz. In addition, the transmittance of the dual-band MSF for normally incident PWs increases significantly as the pulse width widens at the aforementioned two discrete frequencies. The ensuing simulation data corroborates that within the input power range of −15 to 15 dBm, the transmittance difference between CWs and PWs of the dual-band MSF first rises and then falls as the input power increases. Specifically, when the input power is specified as 10 dBm and the angle of oblique incidence ranges from 0° to 60°, in the context of TE and TM modes, the transmittance of CWs exceeds 80% around both 2.0 GHz and 3.45 GHz, while that of PWs remains below 15%. Finally, the effects of resistance and capacitance on the transmittance of the dual-band MSF for the incident PWs and CWs are also studied. The dual-band MSF proposed herein showcases its potential applications in wireless communication as well as in the realm of anti-electromagnetic interference. The electromagnetic (EM) waveform modulation in the frequency band of 1–5 GHz has great development prospects in low-frequency working fields such as radar antennas and EM protection. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

12 pages, 9780 KB  
Article
A Dual-Bandpass Frequency Selective Absorber with Wide-Angle Oblique Incidence
by Yong-Xing Che, Qiang Sun, Xue-Mei Du and Yong-Ling Ban
Materials 2025, 18(3), 473; https://doi.org/10.3390/ma18030473 - 21 Jan 2025
Cited by 1 | Viewed by 1148
Abstract
This study proposes a frequency-selective absorber (FSA) with dual passbands and wide-angle oblique incidence. The design consists of a circuit analog (CA) sheet and a dual-bandpass frequency selective surface (FSS) sheet, both embedded in dielectric slabs separated by a foam spacer. The CA [...] Read more.
This study proposes a frequency-selective absorber (FSA) with dual passbands and wide-angle oblique incidence. The design consists of a circuit analog (CA) sheet and a dual-bandpass frequency selective surface (FSS) sheet, both embedded in dielectric slabs separated by a foam spacer. The CA sheet unit cell is based on a tripole loaded with multiple shorted transmission lines and lumped resistors. In this way, the performance of the CA sheet is equivalent to a resistive sheet in a low-frequency band and a transparent sheet in two high-frequency bands. By comprehensively designing the CA sheet and the dual-bandpass FSS sheet, we created an FSA structure that exhibits microwave absorption in the band from 2.6 GHz to 9.2 GHz with a reflectivity lower than −10 dB. It also possesses transmission in the 12.2–15.1 GHz and 30.6–31.5 GHz bands, with a transmittance greater than −3 dB in both. In addition, the FSA structure provides a stable transmission response of up to 60° of oblique incidence and absorption performance of up to 45° of oblique incidence in TE and TM polarization. A 400 × 400 mm flat FSA sample was fabricated, was measured, and is discussed. The experimental results are consistent with the simulation results, proving that the proposed FSA design holds great potential for applications in dual-frequency low-scattering radomes with high curvature and multi-directional electromagnetic interference suppression. Full article
(This article belongs to the Special Issue Terahertz Materials and Technologies in Materials Science)
Show Figures

Figure 1

12 pages, 3991 KB  
Article
Reducing Antenna Leakage in Quasi-Monostatic Satellite Radar Using Planar Metamaterials
by Mohammad Reza Khalvati and Dominique Bovey
Aerospace 2024, 11(12), 1037; https://doi.org/10.3390/aerospace11121037 - 19 Dec 2024
Cited by 1 | Viewed by 1295
Abstract
In an autonomous robotic space debris removal mission, an essential sensor used for navigation is an FMCW radar designed for close-range relative navigation. To achieve the required range performance, minimizing RF leakage between the transmitter (Tx) and receiver (Rx) antennas is essential for [...] Read more.
In an autonomous robotic space debris removal mission, an essential sensor used for navigation is an FMCW radar designed for close-range relative navigation. To achieve the required range performance, minimizing RF leakage between the transmitter (Tx) and receiver (Rx) antennas is essential for the accurate detection of the range and velocity of the targeted space debris. Antennas positioned above the metallic satellite front face are highly susceptible to RF leakage, primarily caused by surface current propagation and lateral waves traveling parallel to the platform. This study presents two lightweight, single-layer planar metamaterials—a novel compact electromagnetic bandgap (EBG) and a non-uniform high-impedance surface (HIS)—optimized to suppress both surface waves and interact with space waves within the 9.3–9.8 GHz frequency range. These designs address strict size, weight, and power (SWaP) constraints while ensuring compatibility with extreme space conditions and resistance to mechanical shocks. Experimental validation indicates that a minimum Tx/Rx isolation improvement of 10 dB is achieved using the HIS, and 20 dB is achieved using the EBG across the radar’s operational bandwidth (5%). Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

12 pages, 2446 KB  
Article
Deformation-Induced Electromagnetic Reconfigurable Square Ring Kirigami Metasurfaces
by Xuanqing Fan, Zijian Pan, Yunfan Zhu, Min Li, Yunpeng Ma and Yuhang Li
Micromachines 2024, 15(12), 1493; https://doi.org/10.3390/mi15121493 - 13 Dec 2024
Cited by 2 | Viewed by 1241
Abstract
The continuous expansion of wireless communication application scenarios demands the active tuning of electromagnetic (EM) metamaterials, which is essential for their flexible adaptation to complex EM environments. However, EM reconfigurable systems based on intricate designs and smart materials often exhibit limited flexibility and [...] Read more.
The continuous expansion of wireless communication application scenarios demands the active tuning of electromagnetic (EM) metamaterials, which is essential for their flexible adaptation to complex EM environments. However, EM reconfigurable systems based on intricate designs and smart materials often exhibit limited flexibility and incur high manufacturing costs. Inspired by mechanical metastructures capable of switching between multistable configurations under repeated deformation, we propose a planar kirigami frequency selective surface (FSS) that enables mechanical control of its resonant frequency. This FSS is composed of periodically arranged copper square-ring resonators embedded in a kirigami-structured ecoflex substrate. Through simple tensile deformation, the shapes and positions of the square-ring resonators on the kirigami substrate are altered, resulting in changes to the coupling between capacitance and inductance, thereby achieving active tuning. Combining EM finite element simulations and transmittance measurements, we demonstrate that biaxial mechanical stretching allows for continuous adjustment of the FSS resonant frequency and −10 dB bandwidth. Additionally, the FSS exhibits excellent polarization and incident angle stability. Structural parameterization of the square-ring kirigami FSS was conducted to elucidate the deformation–electromagnetic coupling mechanism underlying the active tuning. These insights provide a foundation for guiding the application of square-ring kirigami FSS in various practical engineering domains. Full article
(This article belongs to the Special Issue Metamaterials for Sensing Applications)
Show Figures

Figure 1

14 pages, 12507 KB  
Article
Broadband Millimeter-Wave Front-End Module Design Considerations in FD-SOI CMOS vs. GaN HEMTs
by Clint Sweeney, Donald Y. C. Lie, Jill C. Mayeda and Jerry Lopez
Appl. Sci. 2024, 14(23), 11429; https://doi.org/10.3390/app142311429 - 9 Dec 2024
Viewed by 2072
Abstract
Millimeter-wave (mm-Wave) phased array systems need to meet the transmitter (Tx) equivalent isotropic radiated power (EIRP) requirement, and that depends mainly on the design of two key sub-components: (1) the antenna array and (2) the Tx power amplifier (PA) in the front-end-modules (FEMs). [...] Read more.
Millimeter-wave (mm-Wave) phased array systems need to meet the transmitter (Tx) equivalent isotropic radiated power (EIRP) requirement, and that depends mainly on the design of two key sub-components: (1) the antenna array and (2) the Tx power amplifier (PA) in the front-end-modules (FEMs). Simulations using an electromagnetic (EM) solver carried out in Cadence AWR with AXIEM suggest that for two uniform square patch antenna arrays at 24 GHz, the 4 element array has ~6 dB lower antenna gain and twice the half power beam width (HPBW) compared to the 16 element array. We also present measurements and post-layout parasitic-extracted (PEX) EM simulation data taken on two broadband mm-Wave PAs designed in our lab that cover the key portions of the fifth-generation (5G) FR2-band (i.e., 24.25–52.6 GHz) that lies between the super-high-frequency (SHF, i.e., 3–30 GHz) band and the extremely-high-frequency (EHF, i.e., 30–300 GHz) band: one designed in a 22 nm fully depleted silicon on insulator (FD-SOI) CMOS process, and the other in an advanced 40 nm Gallium Nitride (GaN) high-electron-mobility transistor (HEMT) process. The FD-SOI PA achieves saturated output power (POUT,SAT) of ~14 dBm and peak power-added efficiency (PAE) of ~20% with ~14 dB of gain and 3 dB bandwidth (BW) from ~19.1 to 46.5 GHz in measurement, while the GaN PA achieves measured POUT,SAT of ~24 dBm and peak PAE of ~20% with ~20 dB gain and 3 dB BW from ~19.9 to 35.2 GHz. The PAs’ measured data are in good agreement with the PEX EM simulated data, and 3rd Watt-level GaN PA design data are also presented, but with simulated PEX EM data only. Assuming each antenna element will be driven by one FEM and each phased array targets the same 65 dBm EIRP, millimeter wave (mm-Wave) antenna arrays using the Watt-level GaN PAs and FEMs are expected to achieve roughly 2× wider HPBW with 4× reduction in the array size compared with the arrays using Si FEMs, which shall alleviate the thorny mm-Wave line-of-sight (LOS)-blocking problems significantly. Full article
Show Figures

Figure 1

27 pages, 12606 KB  
Article
Dynamic Wireless Charging of Electric Vehicles Using PV Units in Highways
by Tamer F. Megahed, Diaa-Eldin A. Mansour, Donart Nayebare, Mohamed F. Kotb, Ahmed Fares, Ibrahim A. Hameed and Haitham El-Hussieny
World Electr. Veh. J. 2024, 15(10), 463; https://doi.org/10.3390/wevj15100463 - 12 Oct 2024
Cited by 5 | Viewed by 7946
Abstract
Transitioning from petrol or gas vehicles to electric vehicles (EVs) poses significant challenges in reducing emissions, lowering operational costs, and improving energy storage. Wireless charging EVs offer promising solutions to wired charging limitations such as restricted travel range and lengthy charging times. This [...] Read more.
Transitioning from petrol or gas vehicles to electric vehicles (EVs) poses significant challenges in reducing emissions, lowering operational costs, and improving energy storage. Wireless charging EVs offer promising solutions to wired charging limitations such as restricted travel range and lengthy charging times. This paper presents a comprehensive approach to address the challenges of wireless power transfer (WPT) for EVs by optimizing coupling frequency and coil design to enhance efficiency while minimizing electromagnetic interference (EMI) and heat generation. A novel coil design and adaptive hardware are proposed to improve power transfer efficiency (PTE) by defining the optimal magnetic resonant coupling WPT and mitigating coil misalignment, which is considered a significant barrier to the widespread adoption of WPT for EVs. A new methodology for designing and arranging roadside lanes and facilities for dynamic wireless charging (DWC) of EVs is introduced. This includes the optimization of transmitter coils (TCs), receiving coils (RCs), compensation circuits, and high-frequency inverters/converters using the partial differential equation toolbox (pdetool). The integration of wireless charging systems with smart grid technology is explored to enhance energy distribution and reduce peak load issues. The paper proposes a DWC system with multiple segmented transmitters integrated with adaptive renewable photovoltaic (PV) units and a battery system using the utility main grid as a backup. The design process includes the determination of the required PV array capacity, station battery sizing, and inverters/converters to ensure maximum power point tracking (MPPT). To validate the proposed system, it was tested in two scenarios: charging a single EV at different speeds and simultaneously charging two EVs over a 1 km stretch with a 50 kW system, achieving a total range of 500 km. Experimental validation was performed through real-time simulation and hardware tests using an OPAL-RT platform, demonstrating a power transfer efficiency of 90.7%, thus confirming the scalability and feasibility of the system for future EV infrastructure. Full article
(This article belongs to the Special Issue Wireless Power Transfer Technology for Electric Vehicles)
Show Figures

Figure 1

Back to TopTop