Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = high-fidelity quantum gates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1572 KB  
Article
Pulse-Driven Spin Paradigm for Noise-Aware Quantum Classification
by Carlos Riascos-Moreno, Andrés Marino Álvarez-Meza and German Castellanos-Dominguez
Computers 2025, 14(11), 475; https://doi.org/10.3390/computers14110475 - 1 Nov 2025
Viewed by 820
Abstract
Quantum machine learning (QML) integrates quantum computing with classical machine learning. Within this domain, QML-CQ classification tasks, where classical data is processed by quantum circuits, have attracted particular interest for their potential to exploit high-dimensional feature maps, entanglement-enabled correlations, and non-classical priors. Yet, [...] Read more.
Quantum machine learning (QML) integrates quantum computing with classical machine learning. Within this domain, QML-CQ classification tasks, where classical data is processed by quantum circuits, have attracted particular interest for their potential to exploit high-dimensional feature maps, entanglement-enabled correlations, and non-classical priors. Yet, practical realizations remain constrained by the Noisy Intermediate-Scale Quantum (NISQ) era, where limited qubit counts, gate errors, and coherence losses necessitate frugal, noise-aware strategies. The Data Re-Uploading (DRU) algorithm has emerged as a strong NISQ-compatible candidate, offering universal classification capabilities with minimal qubit requirements. While DRU has been experimentally demonstrated on ion-trap, photonic, and superconducting platforms, no implementations exist for spin-based quantum processing units (QPU-SBs), despite their scalability potential via CMOS-compatible fabrication and recent demonstrations of multi-qubit processors. Here, we present a pulse-level, noise-aware DRU framework for spin-based QPUs, designed to bridge the gap between gate-level models and realistic spin-qubit execution. Our approach includes (i) compiling DRU circuits into hardware-proximate, time-domain controls derived from the Loss–DiVincenzo Hamiltonian, (ii) explicitly incorporating coherent and incoherent noise sources through pulse perturbations and Lindblad channels, (iii) enabling systematic noise-sensitivity studies across one-, two-, and four-spin configurations via continuous-time simulation, and (iv) developing a noise-aware training pipeline that benchmarks gate-level baselines against spin-level dynamics using information-theoretic loss functions. Numerical experiments show that our simulations reproduce gate-level dynamics with fidelities near unity while providing a richer error characterization under realistic noise. Moreover, divergence-based losses significantly enhance classification accuracy and robustness compared to fidelity-based metrics. Together, these results establish the proposed framework as a practical route for advancing DRU on spin-based platforms and motivate future work on error-attentive training and spin–quantum-dot noise modeling. Full article
Show Figures

Figure 1

17 pages, 838 KB  
Article
High-Fidelity Operations on Silicon Donor Qubits Using Dynamical Decoupling Gates
by Jing Cheng, Shihang Zhang, Banghong Guo, Huanwen Xie and Peihao Huang
Entropy 2025, 27(8), 805; https://doi.org/10.3390/e27080805 - 28 Jul 2025
Viewed by 1097
Abstract
Dynamic decoupling (DD) can suppress decoherence caused by environmental noise, while in hybrid system it also hinders coherent manipulation between qubits. We realized the universal high-fidelity quantum gate set and the preparation of Bell states using dynamical decoupling gates (DD gates) in a [...] Read more.
Dynamic decoupling (DD) can suppress decoherence caused by environmental noise, while in hybrid system it also hinders coherent manipulation between qubits. We realized the universal high-fidelity quantum gate set and the preparation of Bell states using dynamical decoupling gates (DD gates) in a silicon-based phosphorus-doped (Si:P) system, effectively resolving the contradiction between decoherence protection and manipulation of qubits. The simulation results show that the fidelity of the universal quantum gate set are all above 99%, and the fidelity of Bell state preparation is over 96%. This work realized the compatibility between coherent protection and high-fidelity manipulation of quantum states, provided a reliable theoretical support for high-fidelity quantum computing. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

27 pages, 958 KB  
Article
AQEA-QAS: An Adaptive Quantum Evolutionary Algorithm for Quantum Architecture Search
by Yaochong Li, Jing Zhang, Rigui Zhou, Yi Qu and Ruiqing Xu
Entropy 2025, 27(7), 733; https://doi.org/10.3390/e27070733 - 8 Jul 2025
Cited by 1 | Viewed by 1482
Abstract
Quantum neural networks (QNNs) represent an emerging technology that uses a quantum computer for neural network computations. The QNNs have demonstrated potential advantages over classical neural networks in certain tasks. As a core component of a QNN, the parameterized quantum circuit (PQC) plays [...] Read more.
Quantum neural networks (QNNs) represent an emerging technology that uses a quantum computer for neural network computations. The QNNs have demonstrated potential advantages over classical neural networks in certain tasks. As a core component of a QNN, the parameterized quantum circuit (PQC) plays a crucial role in determining the QNN’s overall performance. However, quantum circuit architectures designed manually based on experience or using specific hardware structures can suffer from inefficiency due to the introduction of redundant quantum gates, which amplifies the impact of noise on system performance. Recent studies have suggested that the advantages of quantum evolutionary algorithms (QEAs) in terms of precision and convergence speed can provide an effective solution to quantum circuit architecture-related problems. Currently, most QEAs adopt a fixed rotation mode in the evolution process, and a lack of an adaptive updating mode can cause the QEAs to fall into a local optimum and make it difficult for them to converge. To address these problems, this study proposes an adaptive quantum evolution algorithm (AQEA). First, an adaptive mechanism is introduced to the evolution process, and the strategy of combining two dynamic rotation angles is adopted. Second, to prevent the fluctuations of the population’s offspring, the elite retention of the parents is used to ensure the inheritance of good genes. Finally, when the population falls into a local optimum, a quantum catastrophe mechanism is employed to break the current population state. The experimental results show that compared with the QNN structure based on manual design and QEA search, the proposed AQEA can reduce the number of network parameters by up to 20% and increase the accuracy by 7.21%. Moreover, in noisy environments, the AQEA-optimized circuit outperforms traditional circuits in maintaining high fidelity, and its excellent noise resistance provides strong support for the reliability of quantum computing. Full article
(This article belongs to the Special Issue Quantum Information and Quantum Computation)
Show Figures

Figure 1

14 pages, 2030 KB  
Article
Analysis of Dissipation Mechanisms for Cesium Rydberg Atoms in Magic-Wavelength Optical Trap
by Shaofeng Fan, Yang Liu, Wenyuan Liu, Yang Zhao, Yijun Li and Jiandong Bai
Photonics 2025, 12(2), 138; https://doi.org/10.3390/photonics12020138 - 8 Feb 2025
Viewed by 2302
Abstract
A magic optical dipole trap (ODT) can confine atoms in the ground state and a highly excited state with the same light shifts, resulting in a long-range coherent lifetime between them, which plays an important role in high-fidelity quantum logic gates, multi-body physics [...] Read more.
A magic optical dipole trap (ODT) can confine atoms in the ground state and a highly excited state with the same light shifts, resulting in a long-range coherent lifetime between them, which plays an important role in high-fidelity quantum logic gates, multi-body physics and other quantum information. Here, we use a sum-over-states model to calculate the dynamic polarizabilities of the 6S1/2 ground state and 46S1/2 Rydberg state of Cs atoms and identify corresponding magic wavelengths and magic detunings for trapping the two states in the range of 900–1950 nm. Then, we analyze the robustness of the magic condition and the feasibility of the experimental operation. Furthermore, we estimate the trapping lifetime of Cs Rydberg atoms by considering different dissipation mechanisms, such as photon scattering and photoionization in the magic ODT. The photoexcitation and photoionization of Cs atoms under the action of three-step laser pulses are calculated by the rate equation. The presented results for magic-wavelength ODTs are of great significance for quantum information and quantum computing based on Rydberg atoms. Full article
(This article belongs to the Special Issue Optical Quantum System)
Show Figures

Figure 1

37 pages, 3343 KB  
Review
Quantum Computing: Navigating the Future of Computation, Challenges, and Technological Breakthroughs
by Qurban A. Memon, Mahmoud Al Ahmad and Michael Pecht
Quantum Rep. 2024, 6(4), 627-663; https://doi.org/10.3390/quantum6040039 - 16 Nov 2024
Cited by 33 | Viewed by 37618
Abstract
Quantum computing stands at the precipice of technological revolution, promising unprecedented computational capabilities to tackle some of humanity’s most complex problems. The field is highly collaborative and recent developments such as superconducting qubits with increased scaling, reduced error rates, and improved cryogenic infrastructure, [...] Read more.
Quantum computing stands at the precipice of technological revolution, promising unprecedented computational capabilities to tackle some of humanity’s most complex problems. The field is highly collaborative and recent developments such as superconducting qubits with increased scaling, reduced error rates, and improved cryogenic infrastructure, trapped-ion qubits with high-fidelity gates and reduced control hardware complexity, and photonic qubits with exploring room-temperature quantum computing are some of the key developments pushing the field closer to demonstrating real-world applications. However, the path to realizing this promise is fraught with significant obstacles across several key platforms, including sensitivity to errors, decoherence, scalability, and the need for new materials and technologies. Through an exploration of various quantum systems, this paper highlights both the potential and the challenges of quantum computing and discusses the essential role of middleware, quantum hardware development, and the strategic investments required to propel the field forward. With a focus on overcoming technical hurdles through innovation and interdisciplinary research, this review underscores the transformative impact quantum computing could have across diverse sectors. Full article
Show Figures

Figure 1

17 pages, 630 KB  
Article
Quantum-Based Maximum Likelihood Detection in MIMO-NOMA Systems for 6G Networks
by Helen Urgelles, David Garcia-Roger and Jose F. Monserrat
Quantum Rep. 2024, 6(4), 533-549; https://doi.org/10.3390/quantum6040036 - 22 Oct 2024
Cited by 5 | Viewed by 3795
Abstract
As wireless networks advance toward the Sixth Generation (6G), which will support highly heterogeneous scenarios and massive data traffic, conventional computing methods may struggle to meet the immense processing demands in a resource-efficient manner. This paper explores the potential of quantum computing (QC) [...] Read more.
As wireless networks advance toward the Sixth Generation (6G), which will support highly heterogeneous scenarios and massive data traffic, conventional computing methods may struggle to meet the immense processing demands in a resource-efficient manner. This paper explores the potential of quantum computing (QC) to address these challenges, specifically by enhancing the efficiency of Maximum-Likelihood detection in Multiple-Input Multiple-Output (MIMO) Non-Orthogonal Multiple Access (NOMA) communication systems, an essential technology anticipated for 6G. The study proposes the use of the Quantum Approximate Optimization Algorithm (QAOA), a variational quantum algorithm known for providing quantum advantages in certain combinatorial optimization problems. While current quantum systems are not yet capable of managing millions of physical qubits or performing high-fidelity, long gate sequences, the results indicate that QAOA is a promising QC approach for radio signal processing tasks. This research provides valuable insights into the potential transformative impact of QC on future wireless networks. This sets the stage for discussions on practical implementation challenges, such as constrained problem sizes and sensitivity to noise, and opens pathways for future research aimed at fully harnessing the potential of QC for 6G and beyond. Full article
(This article belongs to the Special Issue Exclusive Feature Papers of Quantum Reports in 2024–2025)
Show Figures

Figure 1

12 pages, 4146 KB  
Article
Infidelity Analysis of Digital Counter-Diabatic Driving in Simple Two-Qubit System
by Ouyang Lei
Entropy 2024, 26(10), 877; https://doi.org/10.3390/e26100877 - 19 Oct 2024
Cited by 1 | Viewed by 1448
Abstract
Digitized counter-diabatic (CD) optimization algorithms have been proposed and extensively studied to enhance performance in quantum computing by accelerating adiabatic processes while minimizing energy transitions. While adding approximate counter-diabatic terms can initially introduce adiabatic errors that decrease over time, Trotter errors from decomposition [...] Read more.
Digitized counter-diabatic (CD) optimization algorithms have been proposed and extensively studied to enhance performance in quantum computing by accelerating adiabatic processes while minimizing energy transitions. While adding approximate counter-diabatic terms can initially introduce adiabatic errors that decrease over time, Trotter errors from decomposition approximation persist. On the other hand, increasing the high-order nested commutators for CD terms may improve adiabatic errors but could also introduce additional Trotter errors. In this article, we examine the two-qubit model to explore the interplay between approximate CD, adiabatic errors, Trotter errors, coefficients, and commutators. Through these analyses, we aim to gain insights into optimizing these factors for better fidelity, a shallower circuit depth, and a reduced gate number in near-term gate-based quantum computing. Full article
(This article belongs to the Special Issue Quantum Computing for Complex Dynamics, 2nd Edition)
Show Figures

Figure 1

20 pages, 931 KB  
Article
Synergistic Dynamical Decoupling and Circuit Design for Enhanced Algorithm Performance on Near-Term Quantum Devices
by Yanjun Ji and Ilia Polian
Entropy 2024, 26(7), 586; https://doi.org/10.3390/e26070586 - 10 Jul 2024
Cited by 4 | Viewed by 2707
Abstract
Dynamical decoupling (DD) is a promising technique for mitigating errors in near-term quantum devices. However, its effectiveness depends on both hardware characteristics and algorithm implementation details. This paper explores the synergistic effects of dynamical decoupling and optimized circuit design in maximizing the performance [...] Read more.
Dynamical decoupling (DD) is a promising technique for mitigating errors in near-term quantum devices. However, its effectiveness depends on both hardware characteristics and algorithm implementation details. This paper explores the synergistic effects of dynamical decoupling and optimized circuit design in maximizing the performance and robustness of algorithms on near-term quantum devices. By utilizing eight IBM quantum devices, we analyze how hardware features and algorithm design impact the effectiveness of DD for error mitigation. Our analysis takes into account factors such as circuit fidelity, scheduling duration, and hardware-native gate set. We also examine the influence of algorithmic implementation details, including specific gate decompositions, DD sequences, and optimization levels. The results reveal an inverse relationship between the effectiveness of DD and the inherent performance of the algorithm. Furthermore, we emphasize the importance of gate directionality and circuit symmetry in improving performance. This study offers valuable insights for optimizing DD protocols and circuit designs, highlighting the significance of a holistic approach that leverages both hardware features and algorithm design for the high-quality and reliable execution of near-term quantum algorithms. Full article
(This article belongs to the Special Issue Quantum Computing in the NISQ Era)
Show Figures

Figure 1

18 pages, 5463 KB  
Article
Suppression of Crosstalk in Quantum Circuit Based on Instruction Exchange Rules and Duration
by Zhijin Guan, Renjie Liu, Xueyun Cheng, Shiguang Feng and Pengcheng Zhu
Entropy 2023, 25(6), 855; https://doi.org/10.3390/e25060855 - 26 May 2023
Cited by 3 | Viewed by 3231
Abstract
Crosstalk is the primary source of noise in quantum computing equipment. The parallel execution of multiple instructions in quantum computation causes crosstalk, which causes coupling between signal lines and mutual inductance and capacitance between signal lines, destroying the quantum state and causing the [...] Read more.
Crosstalk is the primary source of noise in quantum computing equipment. The parallel execution of multiple instructions in quantum computation causes crosstalk, which causes coupling between signal lines and mutual inductance and capacitance between signal lines, destroying the quantum state and causing the program to fail to execute correctly. Overcoming crosstalk is a critical prerequisite for quantum error correction and large-scale fault-tolerant quantum computing. This paper provides an approach for suppressing crosstalk in quantum computers based on multiple instruction exchange rules and duration. Firstly, for the majority of the quantum gates that can be executed on quantum computing devices, a multiple instruction exchange rule is proposed. The multiple instruction exchange rule reorders quantum gates in quantum circuits and separates double quantum gates with high crosstalk on quantum circuits. Then, time stakes are inserted based on the duration of different quantum gates, and quantum gates with high crosstalk are carefully separated in the process of quantum circuit execution by quantum computing equipment to reduce the influence of crosstalk on circuit fidelity. Several benchmark experiments verify the proposed method’s effectiveness. In comparison to previous techniques, the proposed method improves fidelity by 15.97% on average. Full article
(This article belongs to the Special Issue Quantum Machine Learning 2022)
Show Figures

Figure 1

16 pages, 1111 KB  
Article
Optimized Unconventional Geometric Gates in Superconducting Circuits
by Yueheng Liu and Xinding Zhang
Appl. Sci. 2023, 13(6), 4041; https://doi.org/10.3390/app13064041 - 22 Mar 2023
Viewed by 2050
Abstract
Nonadiabatic Abelian geometric quantum computation has been extensively studied, due to its fast manipulation and inherent noise resistance. However, to obtain the pure geometric phase, the quantum state is required to evolve along some special paths to eliminate the dynamical phase. This leads [...] Read more.
Nonadiabatic Abelian geometric quantum computation has been extensively studied, due to its fast manipulation and inherent noise resistance. However, to obtain the pure geometric phase, the quantum state is required to evolve along some special paths to eliminate the dynamical phase. This leads to increasing evolution time and weakened gate robustness. The unconventional geometric quantum computation is an effective way to solve the above problems. Here, we propose a general approach to realize the unconventional geometric computation. Then, we discuss the effect of the ratio of geometric phase to dynamic phase on the performance of quantum gates. The results show that the selection of ratio corresponds to different quantum gate robustness. Therefore, we can optimize the ratio to get higher-fidelity quantum gates. At last, we construct the ratio-optimized quantum gates in a superconducting circuit and test its robustness. The fidelities of the T-gate, Hadamard H-gate, and controlled phase gate can be obtained as 99.98%, 99.95%, and 99.85%, respectively. Therefore, our scheme provides a promising way to realize large-scale fault-tolerant quantum computation in superconducting circuits. Full article
(This article belongs to the Special Issue Superconducting Quantum Computing and Devices)
Show Figures

Figure 1

19 pages, 3452 KB  
Article
Investigating the Individual Performances of Coupled Superconducting Transmon Qubits
by Halima Giovanna Ahmad, Caleb Jordan, Roald van den Boogaart, Daan Waardenburg, Christos Zachariadis, Pasquale Mastrovito, Asen Lyubenov Georgiev, Domenico Montemurro, Giovanni Piero Pepe, Marten Arthers, Alessandro Bruno, Francesco Tafuri, Oleg Mukhanov, Marco Arzeo and Davide Massarotti
Condens. Matter 2023, 8(1), 29; https://doi.org/10.3390/condmat8010029 - 21 Mar 2023
Cited by 5 | Viewed by 7880
Abstract
The strong requirement for high-performing quantum computing led to intensive research on novel quantum platforms in the last decades. The circuital nature of Josephson-based quantum superconducting systems powerfully supports massive circuital freedom, which allowed for the implementation of a wide range of qubit [...] Read more.
The strong requirement for high-performing quantum computing led to intensive research on novel quantum platforms in the last decades. The circuital nature of Josephson-based quantum superconducting systems powerfully supports massive circuital freedom, which allowed for the implementation of a wide range of qubit designs, and an easy interface with the quantum processing unit. However, this unavoidably introduces a coupling with the environment, and thus to extra decoherence sources. Moreover, at the time of writing, control and readout protocols mainly use analogue microwave electronics, which limit the otherwise reasonable scalability in superconducting quantum circuits. Within the future perspective to improve scalability by integrating novel control energy-efficient superconducting electronics at the quantum stage in a multi-chip module, we report on an all-microwave characterization of a planar two-transmon qubits device, which involves state-of-the-art control pulses optimization. We demonstrate that the single-qubit average gate fidelity is mainly limited by the gate pulse duration and the quality of the optimization, and thus does not preclude the integration in novel hybrid quantum-classical superconducting devices. Full article
Show Figures

Figure 1

12 pages, 2261 KB  
Article
Demonstration of the Holonomically Controlled Non-Abelian Geometric Phase in a Three-Qubit System of a Nitrogen Vacancy Center
by Shaman Bhattacharyya and Somnath Bhattacharyya
Entropy 2022, 24(11), 1593; https://doi.org/10.3390/e24111593 - 2 Nov 2022
Cited by 3 | Viewed by 2376
Abstract
The holonomic approach to controlling (nitrogen-vacancy) NV-center qubits provides an elegant way of theoretically devising universal quantum gates that operate on qubits via calculable microwave pulses. There is, however, a lack of simulated results from the theory of holonomic control of quantum registers [...] Read more.
The holonomic approach to controlling (nitrogen-vacancy) NV-center qubits provides an elegant way of theoretically devising universal quantum gates that operate on qubits via calculable microwave pulses. There is, however, a lack of simulated results from the theory of holonomic control of quantum registers with more than two qubits describing the transition between the dark states. Considering this, we have been experimenting with the IBM Quantum Experience technology to determine the capabilities of simulating holonomic control of NV-centers for three qubits describing an eight-level system that produces a non-Abelian geometric phase. The tunability of the geometric phase via the detuning frequency is demonstrated through the high fidelity (~85%) of three-qubit off-resonant holonomic gates over the on-resonant ones. The transition between the dark states shows the alignment of the gate’s dark state with the qubit’s initial state hence decoherence of the multi-qubit system is well-controlled through a π/3 rotation. Full article
(This article belongs to the Special Issue Quantum Computing for Complex Dynamics)
Show Figures

Figure 1

11 pages, 339 KB  
Article
Digital Quantum Simulation and Circuit Learning for the Generation of Coherent States
by Ruilin Liu, Sebastián V. Romero, Izaskun Oregi, Eneko Osaba, Esther Villar-Rodriguez and Yue Ban
Entropy 2022, 24(11), 1529; https://doi.org/10.3390/e24111529 - 25 Oct 2022
Cited by 4 | Viewed by 3016
Abstract
Coherent states, known as displaced vacuum states, play an important role in quantum information processing, quantum machine learning, and quantum optics. In this article, two ways to digitally prepare coherent states in quantum circuits are introduced. First, we construct the displacement operator by [...] Read more.
Coherent states, known as displaced vacuum states, play an important role in quantum information processing, quantum machine learning, and quantum optics. In this article, two ways to digitally prepare coherent states in quantum circuits are introduced. First, we construct the displacement operator by decomposing it into Pauli matrices via ladder operators, i.e., creation and annihilation operators. The high fidelity of the digitally generated coherent states is verified compared with the Poissonian distribution in Fock space. Secondly, by using Variational Quantum Algorithms, we choose different ansatzes to generate coherent states. The quantum resources—such as numbers of quantum gates, layers and iterations—are analyzed for quantum circuit learning. The simulation results show that quantum circuit learning can provide high fidelity on learning coherent states by choosing appropriate ansatzes. Full article
(This article belongs to the Special Issue Quantum Control and Quantum Computing)
Show Figures

Figure 1

13 pages, 3297 KB  
Article
Realization of Quantum Swap Gate and Generation of Entangled Coherent States
by Ziqiu Zhang, Xi Jiang and Shiqing Tang
Symmetry 2022, 14(9), 1951; https://doi.org/10.3390/sym14091951 - 19 Sep 2022
Cited by 4 | Viewed by 3333
Abstract
The cross fusion of quantum mechanics and information science forms quantum information science. Quantum logic gates and quantum entanglement are very important building blocks in quantum information processing. In this paper, we propose one-step schemes for realizing quantum swap gates and generating two-mode [...] Read more.
The cross fusion of quantum mechanics and information science forms quantum information science. Quantum logic gates and quantum entanglement are very important building blocks in quantum information processing. In this paper, we propose one-step schemes for realizing quantum swap gates and generating two-mode entangled coherent states via circuit QED. In our scheme, due to the adiabatic elimination of the excited state of the qutrit under the condition of large detuning, the decoherence of the spontaneous emission of the qutrit can be ignored. The fidelity of the quantum swap gate remains at a very high level. In addition, we also explore the nonclassical properties of two-mode entangled coherent states prepared in our scheme by addressing the second-order correlation function and intermodal squeezing. In particular, two classes of entangled coherent states demonstrate distinct entanglement and nonclassical behavior. Full article
(This article belongs to the Special Issue Advances in Quantum Information)
Show Figures

Figure 1

12 pages, 2671 KB  
Article
Implementation of Photonic Phase Gate and Squeezed States via a Two-Level Atom and Bimodal Cavity
by Shiqing Tang, Xi Jiang, Xinwen Wang and Xingdong Zhao
Photonics 2022, 9(8), 583; https://doi.org/10.3390/photonics9080583 - 18 Aug 2022
Cited by 1 | Viewed by 2628
Abstract
We propose a theoretical model for realizing a photonic two-qubit phase gate in cavity QED using a one-step process. The fidelity and probability of success of the conditional quantum phase gate is very high in the presence of cavity decay. Our scheme only [...] Read more.
We propose a theoretical model for realizing a photonic two-qubit phase gate in cavity QED using a one-step process. The fidelity and probability of success of the conditional quantum phase gate is very high in the presence of cavity decay. Our scheme only employs one two-level atom, and thus is much simpler than other schemes involving multi-level atoms. This proposal can also be applied to generate two-mode squeezed states; therefore, we give three examples, i.e., the two-mode squeezed vacuum state, two-mode squeezed odd coherent state, and two-mode squeezed even coherent state, to estimate the variance of Duan’s criterion when taking into account cavity decay. It is shown that the variance is smaller than 2 for the three squeezed states in most cases. Furthermore, we utilize logarithmic negativity to measure the entanglement, and find that these squeezed states have very high degrees of entanglement. Full article
(This article belongs to the Special Issue Quantum Optics: Science and Applications)
Show Figures

Figure 1

Back to TopTop