Pulse-Driven Spin Paradigm for Noise-Aware Quantum Classification
Abstract
1. Introduction
- –
- Pulse-level compilation of DRU circuits: We translate gate-level DRU operations into hardware-proximate, time-domain controls consistent with the Loss–DiVincenzo (LD) Hamiltonian [26], employing the flexible parametrization of exchange interactions and external fields to enable pulse shaping, amplitude/phase modulation, and alignment with experimentally constrained spin-qubit controls.
- –
- Explicit modeling of device imperfections: CN is incorporated through stochastic and systematic perturbations on control amplitudes, while incoherent QN is captured using Lindblad-type dissipation channels [43], permitting continuous-time simulation that better reflect realistic device dynamics.
- –
- Spin-specific simulation environment: The framework supports systematic parameter sweeps over control variables and Hamiltonian parameters, enabling quantitative studies of noise sensitivity across one-, two-, and four-spin configurations. Our simulations demonstrate fidelities near unity with gate-level dynamics while providing richer insight into error propagation at the pulse level.
- –
- Noise-aware training and benchmarking: We implement a training pipeline that benchmarks gate-level baselines [44] against spin-QPU pulse-level simulations under varying noise regimes. Information-theoretic loss functions, including von Neumann and Rényi divergences, are shown to enhance classification robustness compared to standard fidelity-based objectives. Classifier evaluation with AUC [42] confirms improved performance in noisy environments.
2. Related Work
2.1. Gate-to-Pulse Level Approaches in DRU Compilation
2.2. Simulation Frameworks for Noisy Pulse-Level Compilation
2.3. Performance Studies of DRU Under Noisy Conditions
- –
- –
- –
3. Materials and Methods
3.1. Data Re-Uploading for Quantum Classification
3.2. Fundamentals of the Quantum Processing Unit-Spin-Based (QPU-SB)
3.3. Quantum and Coherence Noise Modeling
3.4. Spin-Based Data Re-Uploading Framework
3.4.1. Single Layer Model
3.4.2. Two-Qubit CZ Gate
3.4.3. Four-Qubit CZ4 Gate
3.4.4. CNOT Decomposition and Hardware Mapping
4. Experimental Set-Up
4.1. Tested Dataset
4.2. Training Details and Baselines
- –
- For a single qubit and two classes, we use and .
- –
- When extending to three classes, the states are defined as , , and .
- –
- For four classes, we adopt , , , and .
- –
- For two-qubit circuits, the states corresponding to two classes are and ,
- –
- While for three classes we use , , and .
- –
- Finally, for four-qubit encodings, we select and for two classes, and extend to for three-class configurations.
5. Results and Discussion
5.1. Pulse and Fidelity Compilation
5.2. Noise Modeling Results
5.3. Quantum Classification Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elsayed, N.; Maida, A.S.; Bayoumi, M. A review of quantum computer energy efficiency. In Proceedings of the 2019 IEEE Green Technologies Conference (GreenTech), Lafayette, LA, USA, 3–6 April 2019; pp. 1–3. [Google Scholar]
- Schmidhuber, A.; O’Donnell, R.; Kothari, R.; Babbush, R. Quartic Quantum Speedups for Planted Inference. Phys. Rev. X 2025, 15, 021077. [Google Scholar] [CrossRef]
- Jain, S.; Ziauddin, J.; Leonchyk, P.; Yenkanchi, S.; Geraci, J. Quantum and classical machine learning for the classification of non-small-cell lung cancer patients. SN Appl. Sci. 2020, 2, 1088. [Google Scholar] [CrossRef]
- Alaminos, D.; Salas, M.B.; Fernández-Gámez, M.A. Quantum computing and deep learning methods for GDP growth forecasting. Comput. Econ. 2022, 59, 803–829. [Google Scholar] [CrossRef]
- Kookani, A.; Mafi, Y.; Kazemikhah, P.; Aghababa, H.; Fouladi, K.; Barati, M. SpookyNet: Advancement in Quantum System Analysis through Convolutional Neural Networks for Detection of Entanglement. arXiv 2023, arXiv:2309.03890. [Google Scholar]
- Sajjan, M.; Li, J.; Selvarajan, R.; Sureshbabu, S.H.; Kale, S.S.; Gupta, R.; Singh, V.; Kais, S. Quantum machine learning for chemistry and physics. Chem. Soc. Rev. 2022, 51, 6475–6573. [Google Scholar] [CrossRef]
- Huang, B.; Symonds, N.O.; von Lilienfeld, O.A. Quantum machine learning in chemistry and materials. In Handbook of Materials Modeling: Methods: Theory and Modeling; Springer International Publishing: Cham, Switzerland, 2020; pp. 1883–1909. [Google Scholar]
- Mitarai, K.; Negoro, M.; Kitagawa, M.; Fujii, K. Quantum circuit learning. Phys. Rev. A 2018, 98, 032309. [Google Scholar] [CrossRef]
- Schuld, M.; Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 2019, 122, 040504. [Google Scholar] [CrossRef] [PubMed]
- Cerezo, M.; Verdon, G.; Huang, H.Y.; Cincio, Ł.; Coles, P.J. Challenges and opportunities in quantum machine learning. Nat. Comput. Sci. 2022, 2, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Muser, T.; Zapusek, E.; Belis, V.; Reiter, F. Provable advantages of kernel-based quantum learners and quantum preprocessing based on Grover’s algorithm. arXiv 2023, arXiv:2309.14406. [Google Scholar] [CrossRef]
- Xiao, T.; Zhai, X.; Huang, J.; Fan, J.; Zeng, G. Quantum deep generative prior with programmable quantum circuits. Commun. Phys. 2024, 7, 276. [Google Scholar] [CrossRef]
- Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Bharti, K.; Cervera-Lierta, A.; Kyaw, T.H.; Haug, T.; Alperin-Lea, S.; Anand, A.; Degroote, M.; Heimonen, H.; Kottmann, J.S.; Menke, T.; et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 2022, 94, 015004. [Google Scholar] [CrossRef]
- Jerbi, S.; Fiderer, L.J.; Poulsen Nautrup, H.; Kübler, J.M.; Briegel, H.J.; Dunjko, V. Quantum machine learning beyond kernel methods. Nat. Commun. 2023, 14, 517. [Google Scholar] [CrossRef]
- Pérez-Salinas, A.; Cervera-Lierta, A.; Gil-Fuster, E.; Latorre, J.I. Data re-uploading for a universal quantum classifier. Quantum 2020, 4, 226. [Google Scholar] [CrossRef]
- Wootters, W.K.; Zurek, W.H. A single quantum cannot be cloned. Nature 1982, 299, 802–803. [Google Scholar] [CrossRef]
- Dutta, T.; Pérez-Salinas, A.; Phua Sing Cheng, J.; Latorre, J.I.; Mukherjee, M. Single-qubit universal classifier implemented on an ion-trap quantum device. Phys. Rev. A 2022, 106, 012411. [Google Scholar] [CrossRef]
- Mauser, M.F.; Four, S.; Predl, L.M.; Albiero, R.; Ceccarelli, F.; Osellame, R.; Petersen, P.; Dakić, B.; Agresti, I.; Walther, P. Experimental data re-uploading with provable enhanced learning capabilities. arXiv 2025, arXiv:2507.05120. [Google Scholar] [CrossRef]
- Tolstobrov, A.; Fedorov, G.; Sanduleanu, S.; Kadyrmetov, S.; Vasenin, A.; Bolgar, A.; Kalacheva, D.; Lubsanov, V.; Dorogov, A.; Zotova, J.; et al. Hybrid quantum learning with data reuploading on a small-scale superconducting quantum simulator. Phys. Rev. A 2024, 109, 012411. [Google Scholar] [CrossRef]
- Periyasamy, M.; Meyer, N.; Ufrecht, C.; Scherer, D.D.; Plinge, A.; Mutschler, C. Incremental data-uploading for full-quantum classification. In Proceedings of the 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), Broomfield, CO, USA, 18–23 September 2022; pp. 31–37. [Google Scholar]
- Stone, D.G.; Bradac, C. Machine and quantum learning for diamond-based quantum applications. Mater. Quantum Technol. 2023, 3, 012001. [Google Scholar] [CrossRef]
- Boykin, P.O.; Mor, T.; Roychowdhury, V.; Vatan, F.; Vrijen, R. Algorithmic cooling and scalable NMR quantum computers. Proc. Natl. Acad. Sci. USA 2002, 99, 3388–3393. [Google Scholar] [CrossRef]
- Sangtawesin, S.; Brundage, T.O.; Atkins, Z.J.; Petta, J.R. Highly tunable formation of nitrogen-vacancy centers via ion implantation. Appl. Phys. Lett. 2014, 105, 063107. [Google Scholar] [CrossRef]
- De Michielis, M.; Ferraro, E.; Prati, E.; Hutin, L.; Bertrand, B.; Charbon, E.; Ibberson, D.J.; Gonzalez-Zalba, M.F. Silicon spin qubits from laboratory to industry. J. Phys. D: Appl. Phys. 2023, 56, 363001. [Google Scholar] [CrossRef]
- Loss, D.; DiVincenzo, D.P. Quantum computation with quantum dots. Phys. Rev. A 1998, 57, 120. [Google Scholar] [CrossRef]
- Mills, A.R.; Guinn, C.R.; Gullans, M.J.; Sigillito, A.J.; Feldman, M.M.; Nielsen, E.; Petta, J.R. Two-qubit silicon quantum processor with operation fidelity exceeding 99%. Sci. Adv. 2022, 8, eabn5130. [Google Scholar] [CrossRef]
- Watson, T.; Philips, S.; Kawakami, E.; Ward, D.; Scarlino, P.; Veldhorst, M.; Savage, D.; Lagally, M.; Friesen, M.; Coppersmith, S.; et al. A programmable two-qubit quantum processor in silicon. Nature 2018, 555, 633–637. [Google Scholar] [CrossRef]
- Chan, K.W.; Sahasrabudhe, H.; Huang, W.; Wang, Y.; Yang, H.C.; Veldhorst, M.; Hwang, J.C.; Mohiyaddin, F.A.; Hudson, F.E.; Itoh, K.M.; et al. Exchange coupling in a linear chain of three quantum-dot spin qubits in silicon. Nano Lett. 2021, 21, 1517–1522. [Google Scholar] [CrossRef]
- Philips, S.G.; Mądzik, M.T.; Amitonov, S.V.; de Snoo, S.L.; Russ, M.; Kalhor, N.; Volk, C.; Lawrie, W.I.; Brousse, D.; Tryputen, L.; et al. Universal control of a six-qubit quantum processor in silicon. Nature 2022, 609, 919–924. [Google Scholar] [CrossRef]
- Cho, Y.; Beck, K.M.; Castelli, A.R.; Wendt, K.A.; Evert, B.; Reagor, M.J.; DuBois, J.L. Direct pulse-level compilation of arbitrary quantum logic gates on superconducting qutrits. arXiv 2023, arXiv:2303.04261. [Google Scholar] [CrossRef]
- Berberich, J.; Fink, D.; Holm, C. Robustness of quantum algorithms against coherent control errors. arXiv 2023, arXiv:2303.00618. [Google Scholar] [CrossRef]
- Herrmann, N.; Akhtar, M.; Arya, D.; Doherty, M.W.; Macha, P.; Preis, F.; Prestel, S.; Walker, M.L. First quantum machine learning applications on an on-site room-temperature quantum computer. arXiv 2023, arXiv:quant-ph/2312.11673. [Google Scholar] [CrossRef]
- Li, B.; Ahmed, S.; Saraogi, S.; Lambert, N.; Nori, F.; Pitchford, A.; Shammah, N. Pulse-level noisy quantum circuits with QuTiP. Quantum 2022, 6, 630. [Google Scholar] [CrossRef]
- Lasek, A.; Lepage, H.V.; Zhang, K.; Ferrus, T.; Barnes, C.H. Pulse-controlled qubit in semiconductor double quantum dots. arXiv 2023, arXiv:2303.04823. [Google Scholar] [CrossRef] [PubMed]
- Bergholm, V.; Izaac, J.; Schuld, M.; Gogolin, C.; Ahmed, S.; Ajith, V.; Alam, M.S.; Alonso-Linaje, G.; AkashNarayanan, B.; Asadi, A.; et al. Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv 2018, arXiv:1811.04968. [Google Scholar]
- Alexander, T.; Kanazawa, N.; Egger, D.J.; Capelluto, L.; Wood, C.J.; Javadi-Abhari, A.; McKay, D.C. Qiskit pulse: Programming quantum computers through the cloud with pulses. Quantum Sci. Technol. 2020, 5, 044006. [Google Scholar] [CrossRef]
- Vepsäläinen, A.; Paraoanu, G.S. Simulating spin chains using a superconducting circuit: Gauge invariance, superadiabatic transport, and broken time-reversal symmetry. Adv. Quantum Technol. 2020, 3, 1900121. [Google Scholar] [CrossRef]
- Last, T.; Samkharadze, N.; Eendebak, P.; Versluis, R.; Xue, X.; Sammak, A.; Brousse, D.; Loh, K.; Polinder, H.; Scappucci, G.; et al. Quantum Inspire: QuTech’s platform for co-development and collaboration in quantum computing. In Proceedings of the Novel Patterning Technologies for Semiconductors, MEMS/NEMS and MOEMS 2020, SPIE, San Jose, CA, USA, 24–27 February 2020; Volume 11324, pp. 49–59. [Google Scholar]
- Molina, D.E.; Hamilton, K. Noise Robustness of Data Re-Uploading Quantum Classifiers. In Proceedings of the 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), Bellevue, WA, USA, 2–6 October 2023; Volume 2, pp. 395–396. [Google Scholar]
- Wach, N.L.; Rudolph, M.S.; Jendrzejewski, F.; Schmitt, S. Data re-uploading with a single qudit. arXiv 2023, arXiv:2302.13932. [Google Scholar] [CrossRef]
- Valverde-Albacete, F.J.; Peláez-Moreno, C. 100% classification accuracy considered harmful: The normalized information transfer factor explains the accuracy paradox. PLoS ONE 2014, 9, e84217. [Google Scholar] [CrossRef]
- Linden, O.; May, V. Quantum master equation, Lindblad-type of dissipation and temperature dependent Monte Carlo wave-function propagation. Eur. Phys. J. D-At. Mol. Opt. Plasma Phys. 2000, 12, 473–485. [Google Scholar] [CrossRef]
- Schetakis, N.; Aghamalyan, D.; Griffin, P.; Boguslavsky, M. Review of some existing QML frameworks and novel hybrid classical–quantum neural networks realising binary classification for the noisy datasets. Sci. Rep. 2022, 12, 11927. [Google Scholar] [CrossRef]
- Ono, T.; Roga, W.; Wakui, K.; Fujiwara, M.; Miki, S.; Terai, H.; Takeoka, M. Demonstration of a Bosonic Quantum Classifier with Data Reuploading. Phys. Rev. Lett. 2023, 131, 13601. [Google Scholar] [CrossRef]
- Smith, R.S.; Curtis, M.J.; Zeng, W.J. A practical quantum instruction set architecture. arXiv 2016, arXiv:1608.03355. [Google Scholar]
- Fingerhuth, M.; Babej, T.; Wittek, P. Open source software in quantum computing. PLoS ONE 2018, 13, e0208561. [Google Scholar] [CrossRef] [PubMed]
- Steiger, D.S.; Häner, T.; Troyer, M. ProjectQ: An open source software framework for quantum computing. Quantum 2018, 2, 49. [Google Scholar] [CrossRef]
- Gokhale, P.; Javadi-Abhari, A.; Earnest, N.; Shi, Y.; Chong, F.T. Optimized quantum compilation for near-term algorithms with openpulse. In Proceedings of the 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Virtual, 17–21 October 2020; pp. 186–200. [Google Scholar]
- Easom-Mccaldin, P.; Bouridane, A.; Belatreche, A.; Jiang, R. On depth, robustness and performance using the data re-uploading single-qubit classifier. IEEE Access 2021, 9, 65127–65139. [Google Scholar] [CrossRef]
- Alam, M.; Ghosh, S. QNet: A scalable and noise-resilient quantum neural network architecture for noisy intermediate-scale quantum computers. Front. Phys. 2022, 9, 702. [Google Scholar] [CrossRef]
- Berberich, J.; Fink, D.; Pranjić, D.; Tutschku, C.; Holm, C. Training robust and generalizable quantum models. arXiv 2023, arXiv:2311.11871. [Google Scholar] [CrossRef]
- Schetakis, N.; Aghamalyan, D.; Boguslavsky, M.; Griffin, P. Binary classifiers for noisy datasets: A comparative study of existing quantum machine learning frameworks and some new approaches. arXiv 2021, arXiv:2111.03372. [Google Scholar] [CrossRef]
- Pérez-Salinas, A.; López-Núñez, D.; García-Sáez, A.; Forn-Díaz, P.; Latorre, J.I. One qubit as a Universal Approximant. Phys. Rev. A 2021, 104, 012405. [Google Scholar] [CrossRef]
- Yu, Z.; Yao, H.; Li, M.; Wang, X. Power and limitations of single-qubit native quantum neural networks. arXiv 2022, arXiv:2205.07848. [Google Scholar] [CrossRef]
- Burkard, G.; Ladd, T.D.; Pan, A.; Nichol, J.M.; Petta, J.R. Semiconductor spin qubits. Rev. Mod. Phys. 2023, 95, 025003. [Google Scholar] [CrossRef]
- Zeuch, D.; Hassler, F.; Slim, J.J.; DiVincenzo, D.P. Exact rotating wave approximation. Ann. Phys. 2020, 423, 168327. [Google Scholar] [CrossRef]
- Naus, H.W.L.; Versluis, R. Semi-analytical RWA formalism to solve Schrödinger equations for multi-qubit systems with resonator couplings. arXiv 2017, arXiv:1707.02862. [Google Scholar]
- Johansson, J.R.; Nation, P.D.; Nori, F. QuTiP: An open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 2012, 183, 1760–1772. [Google Scholar] [CrossRef]
- Fan, H.; Roychowdhury, V.; Szkopek, T. Optimal two-qubit quantum circuits using exchange interactions. Phys. Rev. A 2005, 72, 052323. [Google Scholar] [CrossRef]
- DiVincenzo, D.P.; Bacon, D.; Kempe, J.; Burkard, G.; Whaley, K.B. Universal Quantum Computation with the Exchange Interaction. Phys. Rev. A 2000, 61, 062301. [Google Scholar] [CrossRef] [PubMed]
- Fanchini, F.F.; de Jesus Napolitano, R.; Çakmak, B.; Caldeira, A.O. Protecting the √SWAP operation from general and residual errors by continuous dynamical decoupling. arXiv 2015, arXiv:1504.00592. [Google Scholar] [CrossRef]
- Schwartzman-Nowik, Z.; Shirizly, L.; Landa, H. Modeling error correction with Lindblad dynamics and approximate channels. arXiv 2025, arXiv:2402.16727. [Google Scholar] [CrossRef]
- Murphy, K.P. Probabilistic Machine Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Manzano, D. A short introduction to the Lindblad master equation. AIP Adv. 2020, 10, 025106. [Google Scholar] [CrossRef]
- Boulant, N.; Havel, T.F.; Pravia, M.A.; Cory, D.G. A robust method for estimating the Lindblad operators of a dissipative quantum process from measurements of the density operator at multiple time points. arXiv 2002, arXiv:quant-ph/0211046. [Google Scholar] [CrossRef]
- Marquardt, F. Introduction to dissipation and decoherence in quantum systems. arXiv 2008, arXiv:0809.4403. [Google Scholar] [CrossRef]
- Ithier, G.; Collin, E.; Joyez, P.; Meeson, P.J.; Vion, D.; Esteve, D.; Chiarello, F.; Shnirman, A.; Makhlin, Y.; Schön, G.; et al. Decoherence in a superconducting quantum bit circuit. Phys. Rev. B 2005, 72, 134519. [Google Scholar] [CrossRef]
- Gambetta, J.; Motzoi, F.; Merkel, S.T.; Wilhelm, F.K. Building logical qubits in a superconducting quantum computing system. Phys. Rev. Lett. 2017, 119, 180501. [Google Scholar] [CrossRef]
- Lambert, N.; Giguère, E.; Menczel, P.; Li, B.; Hopf, P.; Suárez, G.; Gali, M.; Lishman, J.; Gadhvi, R.; Agarwal, R.; et al. QuTiP 5: The Quantum Toolbox in Python. arXiv 2024, arXiv:2412.04705. [Google Scholar]
- Möttönen, M.; Vartiainen, J.J. Decompositions of general quantum gates. In Trends in Quantum Computing Research; Amazon: Seattle, WA, USA, 2006; p. 149. [Google Scholar]
- Tomal, S.; Shafin, A.A.; Afaf, A.; Bhattacharjee, D. Quantum Convolutional Neural Network: A Hybrid Quantum-Classical Approach for Iris Dataset Classification. arXiv 2024, arXiv:2410.16344. [Google Scholar] [CrossRef]
- PennyLane. PennyLane Documentation. 2024. Available online: https://docs.pennylane.ai/en/stable/code/api/pennylane.AdamOptimizer.html (accessed on 1 July 2025).
- Liang, Y.C.; Yeh, Y.H.; Mendonça, P.E.; Teh, R.Y.; Reid, M.D.; Drummond, P.D. Quantum fidelity measures for mixed states. Rep. Prog. Phys. 2019, 82, 076001. [Google Scholar] [CrossRef]
- Aminpour, S.; Banad, M.; Sharif, S. Strategic Data Re-Uploads: A Pathway to Improved Quantum Classification Data Re-Uploading Strategies for Improved Quantum Classifier Performance. Available online: https://arxiv.org/abs/2405.09377 (accessed on 15 May 2024).
- Vahapoglu, E.; Slack-Smith, J.; Leon, R.C.; Lim, W.H.; Hudson, F.; Day, T.; Cifuentes, J.; Tanttu, T.; Yang, C.H.; Saraiva, A.; et al. Coherent control of electron spin qubits in silicon using a global field. Npj Quantum Inf. 2022, 8, 126. [Google Scholar] [CrossRef]
- Berta, M.; Fawzi, O.; Tomamichel, M. On variational expressions for quantum relative entropies. Lett. Math. Phys. 2017, 107, 2239–2265. [Google Scholar] [CrossRef]
- Perrier, E.; Youssry, A.; Ferrie, C. QDataSet, quantum datasets for machine learning. Sci. Data 2022, 9, 582. [Google Scholar] [CrossRef]
- Veldhorst, M.; Hwang, J.; Yang, C.; Leenstra, A.; de Ronde, B.; Dehollain, J.; Muhonen, J.; Hudson, F.; Itoh, K.M.; Morello, A.T.; et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 2014, 9, 981–985. [Google Scholar] [CrossRef]
- Mastriani, M. Quantum splitting of multi-qubit gates. Opt. Quantum Electron. 2024, 56, 336. [Google Scholar] [CrossRef]
- Bartkiewicz, K.; Gneiting, C.; Černoch, A.; Jiráková, K.; Lemr, K.; Nori, F. Experimental kernel-based quantum machine learning in finite feature space. Sci. Rep. 2020, 10, 12356. [Google Scholar] [CrossRef] [PubMed]
- Japkowicz, N.; Shah, M. Performance evaluation in machine learning. In Machine Learning in Radiation Oncology: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2015; pp. 41–56. [Google Scholar]
- Pernice, A.; Helm, J.; Strunz, W.T. System–environment correlations and non-Markovian dynamics. J. Phys. B: At. Mol. Opt. Phys. 2012, 45, 154005. [Google Scholar] [CrossRef]
- Levi, N.; Feldman, O.; Rosenzweig, Y.; Groswasser, D.; Elgarat, A.; Gal-Katizri, M.; Folman, R. Quantum control of Nitrogen-Vacancy spin in Diamonds: Towards matter-wave interferometry with massive objects. arXiv 2025, arXiv:2508.15504. [Google Scholar]
- Wang, Z.J.; Dechant, D.; Patel, Y.J.; Tura, J. Mitigating shot noise in local overlapping quantum tomography with semidefinite programming. Phys. Rev. A 2025, 111, 052444. [Google Scholar] [CrossRef]
- Scriva, G.; Astrakhantsev, N.; Pilati, S.; Mazzola, G. Challenges of variational quantum optimization with measurement shot noise. arXiv 2024, arXiv:2308.00044v2. [Google Scholar] [CrossRef]













| State | ||||||
|---|---|---|---|---|---|---|
| 1.0000 | 1.0000 | 1.0000 | ||||
| 1.0000 | 1.0000 | 1.0000 | ||||
| 1.0000 | 1.0000 | 1.0000 | ||||
| Mean ± SD | 1.0000 | 1.0000 | 1.0000 | |||
| Configuration | Best (Rank) | Second (Rank) | Friedman | p-Value |
|---|---|---|---|---|
| VN (1.91) | Rényi (2.31) | 112.7 | ||
| VN (2.23) | Rényi (2.91) | 38.54 | ||
| Rényi (2.36) | Fidelity (2.68) | 106.8 | ||
| Rényi (2.28) | VN (2.34) | 77.47 | ||
| VN (2.28) | Rényi (2.58) | 70.83 | ||
| VN (2.11) | Fidelity (2.76) | 58.36 | ||
| VN (2.18) | Rényi (2.61) | 83.03 | ||
| VN (2.18) | Rényi (2.64) | 87.47 | ||
| VN (2.22) | Rényi (2.67) | 90.13 | ||
| Rényi (2.02) | VN (2.37) | 86.77 | ||
| VN (2.25) | Rényi (2.41) | 74.05 | ||
| VN (2.32) | Trace (2.57) | 21.29 | ||
| VN (1.95) | Fidelity (2.82) | 144.8 | ||
| Rényi (2.30) | VN (2.58) | 86.92 | ||
| VN (2.39) | Trace (2.84) | 7.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riascos-Moreno, C.; Álvarez-Meza, A.M.; Castellanos-Dominguez, G. Pulse-Driven Spin Paradigm for Noise-Aware Quantum Classification. Computers 2025, 14, 475. https://doi.org/10.3390/computers14110475
Riascos-Moreno C, Álvarez-Meza AM, Castellanos-Dominguez G. Pulse-Driven Spin Paradigm for Noise-Aware Quantum Classification. Computers. 2025; 14(11):475. https://doi.org/10.3390/computers14110475
Chicago/Turabian StyleRiascos-Moreno, Carlos, Andrés Marino Álvarez-Meza, and German Castellanos-Dominguez. 2025. "Pulse-Driven Spin Paradigm for Noise-Aware Quantum Classification" Computers 14, no. 11: 475. https://doi.org/10.3390/computers14110475
APA StyleRiascos-Moreno, C., Álvarez-Meza, A. M., & Castellanos-Dominguez, G. (2025). Pulse-Driven Spin Paradigm for Noise-Aware Quantum Classification. Computers, 14(11), 475. https://doi.org/10.3390/computers14110475

