Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = high pressure steam condensation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2810 KiB  
Article
Thermodynamic Analysis of Nuclear Power Plants with External Steam Superheating
by Vladimir Kindra, Mikhail Ostrovsky, Igor Maksimov, Roman Zuikin and Nikolay Rogalev
Energies 2025, 18(9), 2317; https://doi.org/10.3390/en18092317 - 30 Apr 2025
Viewed by 540
Abstract
Increasing the efficiency and capacity of nuclear power units is a promising direction for the development of power generation systems. Unlike thermal power plants, nuclear power plants operate at relatively low temperatures of the steam working fluid. Due to this, the thermodynamic efficiency [...] Read more.
Increasing the efficiency and capacity of nuclear power units is a promising direction for the development of power generation systems. Unlike thermal power plants, nuclear power plants operate at relatively low temperatures of the steam working fluid. Due to this, the thermodynamic efficiency of such schemes remains relatively low today. The temperature of steam and the efficiency of nuclear power units can be increased by integrating external superheating of the working fluid into the schemes of steam turbine plants. This paper presents the results of a thermodynamic analysis of thermal schemes of NPPs integrated with hydrocarbon-fueled plants. Schemes with a remote combustion chamber, a boiler unit and a gas turbine plant are considered. It has been established that superheating fresh steam after the steam generator is an effective superheating solution due to the utilization of heat from the exhaust gases of the GTU using an afterburner. Furthermore, there is a partial replacement of high- and low-pressure heaters in the regeneration system, with gas heaters for condensate and steam superheating after the steam generator for water-cooled and liquid-metal reactor types. An increase in the net efficiency of the hybrid NPP is observed by 8.49 and 5.11%, respectively, while the net electric power increases by 93.3 and 76.7%. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

14 pages, 2636 KiB  
Article
A Similarity Theory-Based Study on Natural Convection Condensation Boundary Layer Characteristics of Vertical Walls
by Jialei Liu, Yuqing Chen, Haifeng Gu, Yinxing Zhang, Wei Wang and Hongguang Xiao
Processes 2025, 13(4), 1050; https://doi.org/10.3390/pr13041050 - 1 Apr 2025
Viewed by 510
Abstract
To address the challenge of heat transfer enhancement in the condensation of steam with non-condensable gases on a vertical wall under natural convection conditions, an improved boundary layer model with coupled multi-physics field was proposed in this paper, and traditional theoretical limitations were [...] Read more.
To address the challenge of heat transfer enhancement in the condensation of steam with non-condensable gases on a vertical wall under natural convection conditions, an improved boundary layer model with coupled multi-physics field was proposed in this paper, and traditional theoretical limitations were broken through by innovations. The particle swarm optimization algorithm was first introduced into the solution of the condensation boundary layer, and the convergence difficulty in the laminar–turbulent transition region under infinite boundary conditions was overcome. A coupled momentum–energy–mass equation system that simultaneously considered temperature–concentration dual-driven gravity terms and liquid film drag–suction dual effects was established, and higher computational efficiency and accuracy were achieved. A new mechanism where the concentration boundary layer dominated heat transfer resistance under the coupled action of the Prandtl number (Pr) and Schmidt number (Sc) was revealed. Experimental validation demonstrated that a prediction error of less than 5% was exhibited by the model under typical operating conditions of passive containment cooling systems (pressures of 1.5–4.5 atm and subcooling temperatures of 14–36 °C), and a theoretical tool for high-precision condensation heat transfer design was provided. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

22 pages, 10682 KiB  
Article
Insight into the Microscopic Interactions Among Steam, Non-Condensable Gases, and Heavy Oil in Steam and Gas Push Processes: A Molecular Dynamics Simulation Study
by Jiuning Zhou, Xiyan Wang, Xiaofei Sun and Zifei Fan
Energies 2025, 18(1), 125; https://doi.org/10.3390/en18010125 - 31 Dec 2024
Cited by 1 | Viewed by 742
Abstract
The SAGP (steam and gas push) process is an effective enhanced oil recovery (EOR) method for heavy oil reservoirs. Understanding the microscopic interactions among steam, non-condensable gasses (NCGs), and heavy oil under reservoir conditions in SAGP processes is important for their EOR applications. [...] Read more.
The SAGP (steam and gas push) process is an effective enhanced oil recovery (EOR) method for heavy oil reservoirs. Understanding the microscopic interactions among steam, non-condensable gasses (NCGs), and heavy oil under reservoir conditions in SAGP processes is important for their EOR applications. In this study, molecular simulations were performed to investigate the microscopic interactions among steam, NCG, and heavy oil under reservoir conditions in SAGP processes. In addition, the microscopic EOR mechanisms during SAGP processes and the effects of operational parameters (NCG type, NCG–steam mole ratio, temperature, and pressure) were discussed. The results show that the diffusion and dissolution of CH4 molecules and the extraction of steam molecules cause the molecules of saturates with light molecular weights in the oil globules to stretch and gradually detach from one another, resulting in the swelling of heavy oil. Compared with N2, CH4 has a stronger ability to diffuse and dissolve in heavy oil, swell the heavy oil, and reduce the density and viscosity of heavy oil. For this reason, compared with cases where N2 is used, SAGP processes perform better when CH4 is used, indicating that CH4 can be used as the injected NCG in the SAGP process to improve heavy oil recovery. As the NCG–steam mole ratio and injection pressure increase, the diffusion and solubility abilities of CH4 in heavy oil increase, enabling CH4 to perform better in swelling the heavy oil and reducing the density and viscosity of heavy oil. Hence, increasing the NCG–steam mole ratio and injection pressure is helpful in improving the performance of SAGP processes in heavy oil reservoirs. However, the NCG–steam mole ratio and injection pressure should be reasonably determined based on actual field conditions because excessively high NCG–steam mole ratios and injection pressures lead to higher operation costs. Increasing the temperature is favorable for increasing the diffusion coefficient of CH4 in heavy oil, swelling heavy oil, and reducing the oil density and viscosity. However, high temperatures can result in intensified thermal motion of CH4 molecules, reduce the interaction energy between CH4 molecules and heavy oil molecules, and increase the difference in the Hildebrand solubility parameter between heavy oil and CH4–steam mixtures, which is unfavorable for the dissolution of CH4 in heavy oil. This study can help readers deeply understand the microscopic interactions among steam, NCG, and heavy oil under reservoir conditions in SAGP processes and its results can provide valuable information for the actual application of SAGP processes in enhancing heavy oil recovery. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

27 pages, 7019 KiB  
Article
Thermodynamic Analysis and Optimization of Power Cycles for Waste Heat Recovery
by Igor Maksimov, Vladimir Kindra, Andrey Vegera, Andrey Rogalev and Nikolay Rogalev
Energies 2024, 17(24), 6375; https://doi.org/10.3390/en17246375 - 18 Dec 2024
Cited by 4 | Viewed by 1349
Abstract
Improvement of energy efficiency in technological processes at industrial enterprises is one of the key areas of energy saving. Reduction of energy costs required for the production of energy-intensive products can be achieved through the utilization of waste heat produced by high-temperature thermal [...] Read more.
Improvement of energy efficiency in technological processes at industrial enterprises is one of the key areas of energy saving. Reduction of energy costs required for the production of energy-intensive products can be achieved through the utilization of waste heat produced by high-temperature thermal furnace units. Generation of electric power based on the waste heat using power cycles with working fluids that are not conventional for large power engineering, may become a promising energy saving trend. In this paper, thermodynamic analysis and optimization of power cycles for the purposes of waste heat recovery are performed. The efficiency of combining several power cycles was also evaluated. It has been established that the combination of the Brayton recompression cycle on supercritical carbon dioxide with the organic Rankine cycle using R124 allows for greater electrical power than steam-power cycles with three pressure circuits under conditions where the gas temperature is in the range of 300–550 °C and the cooling temperature of is up to 80 °C. Additionally, when cooling gases with a high sulfur and moisture content to 150 °C, the combined cycle has greater electrical power at gas temperatures of 330 °C and above. At enterprises where the coolant has a high content of sulfur compounds or moisture and deep cooling of gases will lead to condensation, for example, at petrochemical and non-ferrous metallurgy enterprises, the use of combined cycles can ensure a utilization efficiency of up to 45%. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

11 pages, 4899 KiB  
Article
Recovering Low-Grade Heat from Flue Gas in a Coal-Fired Thermal Power Unit
by Linbin Huang, Guoqing Chen, Xiang Xu, Rui Tan, Xinglong Gao, Haifeng Zhang and Jie Yu
Energies 2024, 17(20), 5204; https://doi.org/10.3390/en17205204 - 19 Oct 2024
Cited by 1 | Viewed by 1325
Abstract
To achieve the goals of carbon peaking and carbon neutrality, the retrofitting of existing coal-fired power plants is crucial to achieving energy-saving and emission reduction goals. A conventional recovery system of waste heat typically occurs downstream of the air preheater, where the energy [...] Read more.
To achieve the goals of carbon peaking and carbon neutrality, the retrofitting of existing coal-fired power plants is crucial to achieving energy-saving and emission reduction goals. A conventional recovery system of waste heat typically occurs downstream of the air preheater, where the energy quality in flue gas is low, resulting in limited coal-saving benefits. This study proposes a scheme involving a flue gas exchanger bypassing the air preheater and low-temperature economizers, which is used to transfer the waste heat from flue gas to primary and secondary air (System I). Additionally, a heat pump can be introduced to provide supplementary energy for primary and secondary air, as well as the condensate from the steam turbine (System II). The coal consumption rate and exergy efficiency are used to evaluate the two schemes. The results show that both waste heat recovery systems can increase the power output of the coal-fired unit by recovering waste heat. System II can boost power output by approximately 13.98 MW. The power increase in both waste heat recovery systems show a declining trend as the unit load decreases. This increased power is primarily attributed to the medium- and low-pressure cylinders, while the contributions from ultra-high-pressure and high-pressure cylinders are negligible. The increased power output for the medium-pressure cylinder ranges from approximately 3.49 to 3.58 MW, while the low-pressure cylinder has an increased power output of around 10.10 to 10.19 MW. The coal consumption rate is decreased from 250.3 g/(kW·h) to 247.5 g/(kW·h) under a full load condition for both systems, which can be augmented at lower load conditions. System II outperforms System I at 30% load condition, achieving a reduced coal consumption rate of 3.36 g/(kW·h). System I has an exergy efficiency of 40%, while System II shows a higher efficiency of 44%. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

13 pages, 3714 KiB  
Article
Study on Thermal Chamber Expansion of VH-SAGD Process Using CO2-Inducing Effect for Heavy Oil Reservoirs
by Haojun Xie, Shiming Zhang, Guanghuan Wu and Wei Li
Processes 2024, 12(10), 2260; https://doi.org/10.3390/pr12102260 - 16 Oct 2024
Cited by 2 | Viewed by 1171
Abstract
In heavy oil thermal recovery processes, higher pressure usually leads to low dryness and expansion difficulty for the injected steam in thermal recovery processes, which will result in lower oil recovery and more carbon emissions. This paper proposed a new CO2-inducing [...] Read more.
In heavy oil thermal recovery processes, higher pressure usually leads to low dryness and expansion difficulty for the injected steam in thermal recovery processes, which will result in lower oil recovery and more carbon emissions. This paper proposed a new CO2-inducing method to accelerate the steam chamber expansion, based on a core flooding experiment and numerical simulation. First, the CO2 showed significant viscosity reduction at high pressure in the PVT test. In the core flooding experiment, the CO2 provided strong flow conductivity in porous media for the thermal flooding, as the CO2 pre-injection restrained the steam condensation. Using the CO2-inducing method, CO2 pre-injection before steam built a fast flow channel in a relatively higher permeability layer and reduced the thermal injection pressure by about 1.0~2.4 MPa. As a result, the steam overlap around the injection wells became slower and the gravity drainage process was able to heat and displace the heavy oil above the channel. Furthermore, the CO2 gas trapped at the top reduced heat loss by about 12.4%. The field numerical simulation showed that this new method improved thermal recovery by 7.5% and reduced CO2 emissions by about 18 million kg/unit for the whole process. This method changes the conventional thermal expansion direction by CO2 inducing effect and fundamentally reduces heat loss, which provides significant advantages in low-carbon EOR. Full article
Show Figures

Figure 1

30 pages, 2612 KiB  
Article
A Reduced-Order Model of a Nuclear Power Plant with Thermal Power Dispatch
by Roger Lew, Bikash Poudel, Jaron Wallace and Tyler L. Westover
Energies 2024, 17(17), 4298; https://doi.org/10.3390/en17174298 - 28 Aug 2024
Cited by 2 | Viewed by 1457
Abstract
This paper presents reduced-order modeling of thermal power dispatch (TPD) from a pressurized water reactor (PWR) for providing heat to nearby heat consuming industrial processes that seek to take advantage of nuclear heat to reduce carbon emissions. The reactor model includes the neutronics [...] Read more.
This paper presents reduced-order modeling of thermal power dispatch (TPD) from a pressurized water reactor (PWR) for providing heat to nearby heat consuming industrial processes that seek to take advantage of nuclear heat to reduce carbon emissions. The reactor model includes the neutronics of the reactor core, thermal–hydraulics of the primary coolant cycle, and a three-lump model of the steam generator (SG). The secondary coolant cycle is represented with quasi-steady state mass and energy balance equations. The secondary cycle consists of a steam extraction system, high-pressure and low-pressure turbines, moisture separator and reheater, high-pressure and low-pressure feedwater heaters, deaerator, feedwater and condensate pumps, and a condenser. The steam produced by the SG is distributed between the turbines and the extraction steam line (XSL) that delivers steam to nearby industrial processes, such as production of clean hydrogen. The reduced-order simulator is verified by comparing predictions with results from separate validated steady-state and transient full-scope PWR simulators for TPD levels between 0% and 70% of the rated reactor power. All simulators indicate that the flow rate of steam in the main steam line and turbine systems decrease with increasing TPD, which causes a reduction in PWR electric power generation. The results are analyzed to assess the impact of TPD on system efficiency and feedwater flow control. Due to the simplicity of the proposed reduced-order model, it can be scaled to represent a PWR of any size with a few parametric changes. In the future, the proposed reduced-order model will be integrated into a power system model in a digital real-time simulator (DRTS) and physical hardware-in-the-loop simulations. Full article
(This article belongs to the Special Issue Advances in Nuclear Power for Integrated Energy Systems)
Show Figures

Figure 1

13 pages, 8131 KiB  
Article
Study on Flow Heat Transfer and Particle Deposition Characteristics in a Kettle Reboiler
by Xue Liu, Qi Sun, Hui Tang, Wei Peng, Mingbao Zhang, Gang Zhao and Tairan Fu
Energies 2024, 17(16), 4183; https://doi.org/10.3390/en17164183 - 22 Aug 2024
Viewed by 1668
Abstract
A kettle reboiler uses the latent heat from the condensation of high-temperature and high-pressure steam in the tube to produce low-pressure saturated steam in the outer shell. The deposition of particles on the tube may change the boiling heat transfer mode from nucleate [...] Read more.
A kettle reboiler uses the latent heat from the condensation of high-temperature and high-pressure steam in the tube to produce low-pressure saturated steam in the outer shell. The deposition of particles on the tube may change the boiling heat transfer mode from nucleate boiling to natural convection, thereby deteriorating the heat transfer performance of the kettle reboiler. Therefore, it is very important to explore the deposition characteristics of particles in the kettle reboiler. In this study, the RPI boiling model based on the Euler–Euler method is used to analyze the water boiling process on the surface of the tube bundle. The DRW model and critical adhesion velocity model based on the Euler–Lagrangian method are used to calculate the motion of particles during the boiling process and the deposition (rebound) behavior. The results show that the boiling of liquid water enhances the local flow velocity of the fluid, so that the maximum flow velocity appears around the near-wall region. The local high-speed flow disperses the particles in the wake flow of the tube bundle, which inhibits the impact of particles on the wall. As the particle size increases, the wall adhesion and fluid drag on the particles are weakened, and the gravity effect gradually becomes dominant, increasing the residence time of the particles in the tube bundle and the frequency of particle impact on the wall. The particle deposition ratio first decreases and then increases. Ultimately, most particles will be deposited in the low-speed area at the end of the tube bundle. Full article
(This article belongs to the Special Issue Heat Transfer and Multiphase Flow)
Show Figures

Figure 1

14 pages, 3076 KiB  
Article
Design and Thermodynamic Analysis of Waste Heat-Driven Liquid Metal–Water Binary Vapor Power Plant Onboard Ship
by Haydar Kepekci and Cuneyt Ezgi
J. Mar. Sci. Eng. 2024, 12(8), 1400; https://doi.org/10.3390/jmse12081400 - 15 Aug 2024
Viewed by 1082
Abstract
Day after day, stricter environmental regulations and rising operating costs and fuel prices are forcing the shipping industry to find more effective ways of designing and operating energy-efficient ships. One of the ways to produce electricity efficiently is to create a waste heat-driven [...] Read more.
Day after day, stricter environmental regulations and rising operating costs and fuel prices are forcing the shipping industry to find more effective ways of designing and operating energy-efficient ships. One of the ways to produce electricity efficiently is to create a waste heat-driven liquid metal–water binary vapor power plant. The liquid metal Rankine cycle systems could be considered topping cycles. Liquid metal binary cycles share characteristics like those of the steam Rankine power plants. They have the potential for high conversion efficiency, they will likely produce lower-cost power in plants of large capacity rather than small, and they will operate more efficiently at design capacity rather than at partial load. As a result, liquid metal topping cycles may find application primarily as base-load plants onboard ships. In this study, a waste heat-driven liquid metal–water binary vapor power plant onboard a ship is designed and thermodynamically analyzed. The waste heat onboard the vessel is the exhaust gas of the LM2500 marine gas turbine. Mercury and Cesium are selected as liquid metals in the topping cycle, while water is used in the bottoming cycle in binary power plants. Engineering Equation Solver (EES) software (V11.898) is used to perform analyses. For the turbine inlet temperature of 550 °C, while the total net work output of the binary cycle system is calculated to be 104.84 kJ/kg liquid metal and 1740.29 kJ/kg liquid metal for mercury and cesium, respectively, the efficiency of the binary cycle system is calculated to be 31.9% and 26.3% for mercury and cesium as liquid metal, respectively. This study shows that the binary cycle has a thermal efficiency of 26.32% and 31.91% for cesium and mercury, respectively, depending on liquid metal condensing pressure, and a binary cycle thermal efficiency of 25.9% and 30.9% for cesium and mercury, respectively, depending on liquid metal turbine inlet temperature, and these are possible with marine engine waste heat-driven liquid metal–water binary vapor cycles. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

15 pages, 4709 KiB  
Article
Improving Thermal Efficiency and Reducing Emissions with CO2 Injection during Late Stage SAGD Development
by Qi Jiang, Yang Liu, Ying Zhou, Zhongyuan Wang, Yuning Gong, Guanchen Jiang, Siyuan Huang and Chunsheng Yu
Processes 2024, 12(6), 1166; https://doi.org/10.3390/pr12061166 - 6 Jun 2024
Cited by 3 | Viewed by 1938
Abstract
The steam assisted gravity drainage (SAGD) process requires high energy input to maintain the continuous expansion of the steam chamber for achieving high oil recovery. In the late stage of SAGD operation where the oil rate is low and the heat loss is [...] Read more.
The steam assisted gravity drainage (SAGD) process requires high energy input to maintain the continuous expansion of the steam chamber for achieving high oil recovery. In the late stage of SAGD operation where the oil rate is low and the heat loss is high from a mature steam chamber, maintaining steam chamber pressure with a lower steam injection is the key to maintaining the economic oil-to-steam ratio (OSR). Both laboratory studies and field tests have demonstrated the effectiveness of adding a non-condensable gas (NCG) to the SAGD steam chamber for improving the overall thermal efficiency. In this study, a multi-well reservoir model was built based on the detailed geological description from an operating SAGD project area, which contains thick pay and top water. Grounded with the history matching of more than 20 years of production using CSS (cyclic steam stimulation) and SAGD as follow-up process, the model was applied to optimize the operating strategies for the late stage of SAGD production. The results from this study demonstrated that the co-injection of steam with CO2 or the injection of CO2 only has potential to improve the OSR and reduce emissions by more than 50% through the improvement in steam-saving and the storage of CO2. The results from reservoir modeling indicate that, with the current volume of a steam chamber and an operating pressure of 4.0 MPa, about 55 sm3 of CO2 could be sequestrated and utilized for producing 1.0 m3 of oil from this reservoir through the replacement of a steam injection with CO2 in the late stage of SAGD operation. Full article
(This article belongs to the Special Issue Process Technologies for Heavy Oils and Residua Upgradings)
Show Figures

Figure 1

25 pages, 8124 KiB  
Article
Study of Condensation during Direct Contact between Steam and Water in Pressure-Relief Tank
by Shasha Yin, Yingjie Wang, Yuan Yuan and Bei Li
Energies 2024, 17(11), 2772; https://doi.org/10.3390/en17112772 - 5 Jun 2024
Viewed by 1998
Abstract
Direct contact condensation (DCC) is a phenomenon observed when steam interacts with subcooled water, exhibiting higher heat and mass transfer rates compared to wall condensation. It has garnered significant interest across industries such as nuclear, chemical, and power due to its advantageous characteristics. [...] Read more.
Direct contact condensation (DCC) is a phenomenon observed when steam interacts with subcooled water, exhibiting higher heat and mass transfer rates compared to wall condensation. It has garnered significant interest across industries such as nuclear, chemical, and power due to its advantageous characteristics. In the context of pressure-relief tanks, understanding and optimizing the DCC process are critical for safety and efficiency. The efficiency of pressure-relief tanks depends on the amount of steam condensed per unit of time, which directly affects their operational parameters and design. This study focuses on investigating the direct gas–liquid contact condensation process in pressure-relief tanks using computational fluid dynamics (CFD). Through experimental validation and a sensitivity analysis, the study provides insights into the influence of inlet steam parameters and basin temperature on the steam plume characteristics. Furthermore, steady-state and transient calculation models are developed to simulate the behaviour of the pressure-relief tank, providing valuable data for safety analysis and design optimization. There is a relatively high-pressure area in the upper part of the bubble hole of the pressure-relief tube, and the value increases as it is closer to the holes. The steam velocity in the bubbling hole near the 90° elbow position is higher. This study contributes to the understanding of steam condensation dynamics in pressure-relief tanks. When the steam emission and pressure are fixed, the equilibrium temperature increases linearly as the initial temperature increases (where a = 1, b = 20 in y = a x+ b correlation), the equilibrium pressure increases nearly exponentially, and the equilibrium gas volume decreases. When the steam emission and initial temperature are fixed, the equilibrium temperature does not change as the steam discharge pressure increases. The correlations between the predicted equilibrium parameters and the inlet steam parameters and tank temperature provide valuable insights for optimizing a pressure-relief tank design and improving the operational safety in diverse industrial contexts. Full article
(This article belongs to the Special Issue Optimal Design and Analysis of Advanced Nuclear Reactors)
Show Figures

Figure 1

18 pages, 13419 KiB  
Article
Techno-Economic and Environmental Impact Analysis of a 50 MW Solar-Powered Rankine Cycle System
by Abdulrazzak Akroot and Abdullah Sultan Al Shammre
Processes 2024, 12(6), 1059; https://doi.org/10.3390/pr12061059 - 22 May 2024
Cited by 6 | Viewed by 1743
Abstract
The interest in combined heat and solar power (CHP) systems has increased due to the growing demand for sustainable energy with low carbon emissions. An effective technical solution to address this requirement is using a parabolic trough solar collector (PTC) in conjunction with [...] Read more.
The interest in combined heat and solar power (CHP) systems has increased due to the growing demand for sustainable energy with low carbon emissions. An effective technical solution to address this requirement is using a parabolic trough solar collector (PTC) in conjunction with a Rankine cycle (RC) heat engine. The solar-powered Rankine cycle (SPRC) system is a renewable energy technology that can be relied upon for its high efficiency and produces clean energy output. This study describes developing a SPRC system specifically for electricity generation in Aden, Yemen. The system comprises parabolic trough collectors, a thermal storage tank, and a Rankine cycle. A 4E analysis of this system was theoretically investigated, and the effects of various design conditions, namely the boiler’s pinch point temperature and steam extraction from the high-pressure turbine, steam extraction from the intermediate-pressure turbine, and condenser temperature, were studied. Numerical simulations showed that the system produces a 50 MW net. The system’s exergetic and energy efficiencies are 30.7% and 32.4%. The planned system costs 2509 USD/h, the exergoeconomic factor is 79.43%, and the system’s energy cost is 50.19 USD/MWh. The system has a 22.47 kg/MWh environmental carbon footprint. It is also observed that the performance of the cycle is greatly influenced by climatic circumstances. Raising the boiler’s pinch point temperature decreases the system’s performance and raises the environmental impact. Full article
(This article belongs to the Special Issue Energy Storage Systems and Thermal Management)
Show Figures

Figure 1

19 pages, 7945 KiB  
Article
Numerical Simulation on Two-Phase Ejector with Non-Condensable Gas
by Yinghua Chai, Yuansheng Lin, Qi Xiao, Chonghai Huang, Hanbing Ke and Bangming Li
Energies 2024, 17(6), 1341; https://doi.org/10.3390/en17061341 - 11 Mar 2024
Cited by 3 | Viewed by 1330
Abstract
The two-phase ejector is a simple and compact pressure boosting device and widely used in ejector steam-generator water feeding systems and core emergency cooling systems. The direct contact condensation of water and steam is the key process of a two-phase ejector. Usually, the [...] Read more.
The two-phase ejector is a simple and compact pressure boosting device and widely used in ejector steam-generator water feeding systems and core emergency cooling systems. The direct contact condensation of water and steam is the key process of a two-phase ejector. Usually, the high-temperature and high-pressure steam will inevitably induce non-condensable gases. The existence of non-condensable gases will reduce the condensation heat transfer rate between steam and water, and harm the equipment. This study carried out 3D numerical simulations of a two-phase ejector based on an inhomogeneous multiphase model. The steam inlet pressure and the non-condensable gas mass fraction rang in 0.6–2.9 MPa and 1–10%, respectively. The heat and mass transfer characteristics were analyzed under different conditions. The results show that the heat transfer coefficient and plume penetration length increased with the steam inlet pressure. Non-condensable gas prevents direct contact condensation between the steam and water. The non-condensable gas mass fraction rises from 1% to 10%, the heat transfer between steam and water deteriorates, and leads to a lower heat transfer coefficient. Full article
(This article belongs to the Special Issue Advances in Numerical Modeling of Multiphase Flow and Heat Transfer)
Show Figures

Figure 1

17 pages, 11530 KiB  
Article
Construction of a Numerical Model for Flow Flash Evaporation with Non-Condensable Gas
by Wei Wang, Bingrui Li, Xin Wang, Bingxi Li and Yong Shuai
Appl. Sci. 2023, 13(21), 11638; https://doi.org/10.3390/app132111638 - 24 Oct 2023
Cited by 2 | Viewed by 2235
Abstract
Flash evaporation processes are widely used in petroleum, food, chemical, power, and other industries to separate products or extract heat. The liquid is often entrained by non-condensing gas components. This study develops a multiphase, multicomponent, and pressure-driven phase-change-coupled model to numerically study water [...] Read more.
Flash evaporation processes are widely used in petroleum, food, chemical, power, and other industries to separate products or extract heat. The liquid is often entrained by non-condensing gas components. This study develops a multiphase, multicomponent, and pressure-driven phase-change-coupled model to numerically study water flash evaporation with non-condensing CO2. The model includes the mass, momentum, energy, volume of fluid (VOF), species transport, turbulence (RNG k-ε), modified phase-change Lee, and non-condensing CO2 release governing equations. The steam generation rate and mechanism for pure water and different concentrations of CO2 are considered. The results show that the numerical model can accurately predict the flash evaporation process and has high accuracy compared with the experimental data. Both the dissolved and entrained CO2 that are released can severely disturb the flow field, leading to an increase in the steam generation rate. Under a 1–10% volume concentration of dissolved CO2 and 0.0661–0.1688% mass concentration of entrained CO2, the maximum increase ratio of steam generation can reach 20%. Full article
Show Figures

Figure 1

24 pages, 3628 KiB  
Article
Technical-Economic Analysis of Energy Efficiency Solutions for the Industrial Steam System of a Natural Gas Processing Plant
by Mohsen Salimi, Majid Amidpour, Mohammad Ali Moradi, Marjan Hajivand, Ebrahim Siahkamari and Mehrzad Shams
Sustainability 2023, 15(20), 14995; https://doi.org/10.3390/su152014995 - 18 Oct 2023
Cited by 1 | Viewed by 4421
Abstract
Steam, which is primarily employed as a heat transfer medium in process plants, is one of the most widely utilized energy carriers in the industrial sector. One of the factors that affects the cost of steam is how well the condensate collection, steam [...] Read more.
Steam, which is primarily employed as a heat transfer medium in process plants, is one of the most widely utilized energy carriers in the industrial sector. One of the factors that affects the cost of steam is how well the condensate collection, steam supply, and return systems of industrial steam systems perform. In a case study, the steam systems of a natural gas processing plant were simulated. The amount of demineralized water loss and, consequently, the identification of various solutions to improve the system were analyzed. The whole steam system was simulated using the MEASUR software platform (v 1.2), and by placing the operational information of the steam system, it was possible to create a baseline for the system, model saving solutions, and finally, provide a technical and economic evaluation of the solutions. Due to the high loss of steam condensate in the SRU steam system (more than 3000 kg per hour), solutions to improve the energy efficiency of the SRU steam system in the form of a maximum recovery of steam condensate (replacement of defective steam traps, redesign of the low-pressure condensate collection network, and high-pressure waste condensate collection) were evaluated with two price assumptions of current energy prices and real prices (the energy saving value of one cubic meter of natural gas is equal to 13 cents). The results show that, for current prices, the investment return period will be between 11.8 and 3.8 months. Moreover, in the main steam system of the refinery (unit 9200), there are three solutions: replacing and repairing defective steam traps, installing an expansion turbine instead of a steam pressure relief valve (PRV), and other solutions (including increasing boiler efficiency, automatic control of the boiler, and energy recovery boiler blowdown) under two price assumptions, the current and real prices of natural gas and demineralized water, were evaluated, and the modeling results show that the investment return period for each of the above solutions at the current prices is 10.2, 186, and 13.3, respectively. The investment return period is based on assuming real fuel and BFW prices are equal to 2.0, 37.6, and 1.7, respectively. Full article
(This article belongs to the Special Issue New Technologies for Waste Heat Recovery)
Show Figures

Figure 1

Back to TopTop