Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = high and low temperature cycle deformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 8148 KiB  
Article
Effect of Temperature on the Low-Cycle Fatigue Behavior of Polycrystalline TiAl Alloys
by Junyan Zhou, Haochuan Zhao, Pei Li and Henggao Xiang
Materials 2025, 18(13), 3147; https://doi.org/10.3390/ma18133147 - 2 Jul 2025
Viewed by 268
Abstract
In this paper, the low-cycle fatigue deformation behavior of polycrystalline γ-TiAl alloys at different temperatures was investigated by molecular dynamics simulations. The results showed that the fatigue process comprises an initial cyclic softening stage followed by saturation, and the stress–strain response of the [...] Read more.
In this paper, the low-cycle fatigue deformation behavior of polycrystalline γ-TiAl alloys at different temperatures was investigated by molecular dynamics simulations. The results showed that the fatigue process comprises an initial cyclic softening stage followed by saturation, and the stress–strain response of the material shows significant asymmetry. With an increase in temperature, the asymmetry between tensile and compressive stresses gradually decreases, and the amplitude of saturated stress decreases significantly. The decrease in dislocation density leads to the cyclic softening of the alloy, and the evolution of dislocation density is temperature-dependent. The dislocation density first decreases and then tends to be stable, while at 900 °C and 1000 °C, it shows an abnormal trend of decreasing first and then increasing. In addition, microscopic mechanism analysis shows that grain coarsening, dislocation annihilation, and phase instability lead to the cyclic softening of the alloys. The fatigue plastic accumulation at low temperatures is mainly dominated by dislocation slip, while at high temperatures, grain boundary slip gradually replaces dislocation slip and becomes the main deformation mechanism. This work reveals new insights into the mechanical behavior of polycrystalline γ-TiAl alloys under cyclic plasticity and temperature-dependent deformation mechanisms. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

14 pages, 1520 KiB  
Article
Thermomechanical Parameters Modelling of Spring Force Elements Made of Shape Memory Alloys
by Olga Łastowska, Vitaliy Polishchuk and Andrii Poznanskyi
Materials 2025, 18(13), 3055; https://doi.org/10.3390/ma18133055 - 27 Jun 2025
Viewed by 344
Abstract
This study presents a phenomenological model for predicting the thermomechanical behaviour of spring-type actuators made of shape memory alloys (SMAs). The model incorporates the kinetics of martensite–austenite phase transitions as a function of temperature and applied stress. The primary innovation is the inclusion [...] Read more.
This study presents a phenomenological model for predicting the thermomechanical behaviour of spring-type actuators made of shape memory alloys (SMAs). The model incorporates the kinetics of martensite–austenite phase transitions as a function of temperature and applied stress. The primary innovation is the inclusion of a scalar internal variable that represents the evolution of the phase transformation within a phenomenological macroscopic model. This approach enables the deformation–force–temperature behaviour of SMA-based spring elements under cyclic loading to be accurately described. A set of constitutive equations was derived to describe reversible and residual strains, along with transformation start and finish conditions. Model parameters were calibrated using experimental data from VSP-1 and TN-1K SMA springs that were subjected to thermal cycling. The validation results show a high correlation between the theoretical predictions and the experimental data, with deviation margins of less than 6.5%. The model was then applied to designing and analysing thermosensitive actuator mechanisms for temperature control systems. This yielded accurate deformation–force characteristics, demonstrating low inertia and high repeatability. This approach enables the efficient prediction and improvement of the performance of SMA-based spring elements in actuators, making it relevant for adaptive systems in marine and aerospace applications. Full article
Show Figures

Figure 1

23 pages, 9093 KiB  
Article
Mechanical and Metallurgical Characterization of Advance High Strength Steel Q&P1180 Produced by Two Different Suppliers
by Michele Maria Tedesco, Pietro Licignano, Antonio Mara, Stefano Plano, Davide Gabellone, Matteo Basso and Marcello Baricco
Metals 2025, 15(3), 301; https://doi.org/10.3390/met15030301 - 10 Mar 2025
Viewed by 778
Abstract
Through mechanical analysis, a comparison of the same type of cold rolled steel produced by two steel manufacturers, supplier 1 and supplier 2, has been carried out. The considered material is a steel that has undergone a quenching and partitioning heat treatment, i.e., [...] Read more.
Through mechanical analysis, a comparison of the same type of cold rolled steel produced by two steel manufacturers, supplier 1 and supplier 2, has been carried out. The considered material is a steel that has undergone a quenching and partitioning heat treatment, i.e., a rapid cooling from the austenitizing temperature, followed by a holding treatment at a suitable temperature, so that the residual austenite is stabilized at room temperature. The following tests for mechanical properties were carried out: formability, through Nakajima test, tensile test, bending test, hole expansion test and fatigue strength analysis, through high cycle fatigue and low cycle fatigue test. In addition, to derive useful data for future simulations, tensile and Nakajima tests were analyzed by digital image correlation, which uses a monochrome camera to capture frames during the test, in order to analyze local deformations on investigated samples. Finite elements modeling has been carried out. A suitable calibration of a material card for the Abaqus Finite Element Analysis software has been performed. Through the combination of obtained results, a rational comparison of the two analyzed products has been obtained. Full article
(This article belongs to the Special Issue Design, Processing and Characterization of Metals and Alloys)
Show Figures

Figure 1

22 pages, 6301 KiB  
Article
Mechanical Properties and Constitutive Model of Steel Under Temperature–Humidity Cycles
by Qianying Ma, Dingyu Feng, Yu Li, Boxiang Yao and Lu Wang
Buildings 2025, 15(5), 732; https://doi.org/10.3390/buildings15050732 - 24 Feb 2025
Viewed by 964
Abstract
Through alternating high–low temperature and humid heat tests, six sets of different humidity cycle numbers were applied to Q235B low-carbon steel and Q345B low-alloy steel. Monotonic tensile tests were conducted to compare the differences in monotonic performance degradations. The influence of humidity cycle [...] Read more.
Through alternating high–low temperature and humid heat tests, six sets of different humidity cycle numbers were applied to Q235B low-carbon steel and Q345B low-alloy steel. Monotonic tensile tests were conducted to compare the differences in monotonic performance degradations. The influence of humidity cycle numbers on the hysteretic and fatigue performance of Q235 steel was investigated through cyclic loading tests. A cyclic constitutive model based on the mixed hardening model was established and validated. The results show that the humid heat environment causes corrosion of the steel, and the degree of corrosion follows a power-law relationship with the number of humid heat cycles. Under monotonic loading, as the number of humid heat cycles increases, the strength and deformation performance of both steels degrade linearly, with Q345 low-alloy steel exhibiting more significant performance deterioration. The corrosion damage induced by the humid heat environment greatly reduces the low-cycle fatigue life of Q235 steel, and the more severe the corrosion, the lower the fatigue life. However, there is no significant effect on the development of the hysteretic curve shape. Under variable amplitude cyclic loading, as the corrosion degree increases, the hysteretic energy dissipation and energy dissipation rate continuously decrease. The two-segment backbone curve considering mass loss rate and the material hardening parameters based on the mixed hardening model can accurately describe the hysteretic characteristics of Q235 low-carbon steel under the humid heat environment. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

12 pages, 15400 KiB  
Article
The Low-Cycle Fatigue Behavior of a High-Strength Low-Alloy Steel Subjected to Tempforming
by Anastasiia Dolzhenko, Pavel Dolzhenko, Valeriy Dudko, Rustam Kaibyshev and Andrey Belyakov
Materials 2025, 18(5), 972; https://doi.org/10.3390/ma18050972 - 21 Feb 2025
Cited by 1 | Viewed by 508
Abstract
The developed microstructures and their deformation behavior were studied in a high-strength low-alloy steel subjected to tempforming, i.e., tempering followed by large-strain rolling at temperatures of 823 K or 923 K. Tempforming has been recently proposed as an advanced treatment for low-alloy steels [...] Read more.
The developed microstructures and their deformation behavior were studied in a high-strength low-alloy steel subjected to tempforming, i.e., tempering followed by large-strain rolling at temperatures of 823 K or 923 K. Tempforming has been recently proposed as an advanced treatment for low-alloy steels in order to substantially increase their impact toughness at low temperatures. However, the mechanical properties, especially the fatigue behavior, of tempformed steels have not been studied in sufficient detail. The present study, therefore, is focused on the strengthening mechanisms of the tempformed steel, placing particular emphasis on the low-cycle fatigue behavior. Tempforming resulted in a lamellar-type microstructure with a high dislocation density and dispersed Cr23C6 carbide particles. The size of the latter particles increased from 25 nm to 40 nm with an increase in tempforming temperature. The transverse grain size and dislocation density comprised 550 nm and 2.6 × 1015 m−2 after tempforming at 823 K or 865 nm and 1.8 × 1015 m−2 after processing at 923 K, respectively. Tempforming led to significant strengthening, which was attributed to high-density dislocations arranged in low-angle subboundaries. The yield strength of 1140 MPa or 810 MPa was observed for the steel samples tempformed at 823 K or 923 K, respectively. The low-cycle fatigue behavior depended on the plastic strain amplitude, which, in turn, was controlled by the previous strengthening under tempforming conditions besides the total strain amplitude. An increase in the plastic strain amplitude promoted fatigue softening that was caused by a decrease in the dislocation density as a result of subgrain coalescence. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

18 pages, 4043 KiB  
Article
Numerical Simulation of Fatigue Damage in Cross-Ply CFRP Laminates: Exploring Frequency Dependence and Internal Heat Generation Effects
by Natsuko Kudo, M. J. Mohammad Fikry, Shinji Ogihara and Jun Koyanagi
Polymers 2025, 17(3), 432; https://doi.org/10.3390/polym17030432 - 6 Feb 2025
Viewed by 1175
Abstract
A numerical simulation investigating the frequency dependence of fatigue damage progression in carbon fiber-reinforced plastics (CFRPs) is conducted in this study. The initiation and propagation of transverse cracks under varying fatigue test frequencies are successfully simulated, consistent with experiments, using an enhanced degradable [...] Read more.
A numerical simulation investigating the frequency dependence of fatigue damage progression in carbon fiber-reinforced plastics (CFRPs) is conducted in this study. The initiation and propagation of transverse cracks under varying fatigue test frequencies are successfully simulated, consistent with experiments, using an enhanced degradable Hashin failure model that was originally developed by the authors in 2022. The results obtained from the numerical simulation in the present study, which employs adjusted numerical values for the purpose of damage acceleration, indicate that the number of cycles required for the formation of three transverse cracks was 174 cycles at 0.1 Hz, 209 cycles at 1 Hz, and 165 cycles at 10 Hz. Based on these results, it is demonstrated that under high-frequency cyclic loading, internal heat generation caused by dissipated energy from mechanical deformation, attributed to the viscoelastic and/or plastic behavior of the material, exceeds thermal dissipation to the environment, leading to an increase in specimen temperature. Consequently, damage progression accelerates under high-frequency fatigue. In contrast, under low-frequency fatigue, viscoelastic dissipation becomes more pronounced, reducing the number of cycles required to reach a similar damage state. The rate of damage accumulation initially increases with test frequency but subsequently decreases. This observation underscores the importance of incorporating these findings into discussions on the fatigue damage of real structural components. Full article
Show Figures

Figure 1

14 pages, 6740 KiB  
Article
Facile Preparation of Flexible Phenolic-Silicone Aerogels with Good Thermal Stability and Fire Resistance
by Zengyue Su, Zhenrong Zheng, Xiaobiao Zuo, Lijuan Luo and Yaxin Guo
Molecules 2025, 30(3), 464; https://doi.org/10.3390/molecules30030464 - 21 Jan 2025
Viewed by 1003
Abstract
A huge challenge is how to prepare flexible silicone aerogel materials with good flame retardancy, thermal stability, and hydrophobic properties. In this paper, resorcinol–formaldehyde was introduced into the silicone network composed of methyltrimethoxysilane (MTMS), phenyltriethoxysilane (PTES), and dimethyldimethoxysilane (DMDMS). Flexible hybrid aerogels with [...] Read more.
A huge challenge is how to prepare flexible silicone aerogel materials with good flame retardancy, thermal stability, and hydrophobic properties. In this paper, resorcinol–formaldehyde was introduced into the silicone network composed of methyltrimethoxysilane (MTMS), phenyltriethoxysilane (PTES), and dimethyldimethoxysilane (DMDMS). Flexible hybrid aerogels with excellent thermal insulation, flame retardant, and hydrophobic properties were prepared by the sol–gel method and ambient pressure drying (APD), and the preparation process does not require long-term solvent exchange, only about 3 h of soaking and washing of the wet gel. The results show that the prepared phenolic-silicone aerogel has low density (0.093 g/cm3), low thermal conductivity (0.041 W/m·K), high flexibility, and compression fatigue resistance. The phenolic microspheres are bonded to the silicone skeleton to maintain the original flexibility. After 50% compression deformation, it returns to the original size normally, and there is no significant change in the stress of the sample after 50 compression cycles. Compared with pure silicone aerogels, the hybrid aerogels doped with phenolic have better char yield (65.28%) and higher decomposition temperature (609 °C). The hybrid aerogel sample has good flame-retardant properties, which can withstand alcohol lamp burning without being ignited. The micron-sized phenolic beads give the hybrid aerogels better hydrophobic properties, showing a higher static water contact angle (152°). The excellent thermal and mechanical properties mean that the hybrid aerogels prepared in this paper have good application prospects for aerospace, outdoor equipment, and other fields. Full article
Show Figures

Figure 1

19 pages, 11286 KiB  
Article
Lifetime Prediction of Single Crystal Nickel-Based Superalloys
by Çağatay Kasar, Utku Kaftancioglu, Emin Bayraktar and Ozgur Aslan
Appl. Sci. 2025, 15(1), 201; https://doi.org/10.3390/app15010201 - 29 Dec 2024
Viewed by 1270
Abstract
Single crystal nickel-based superalloys are extensively used in turbine blade applications due to their superior creep resistance compared to their polycrystalline counterparts. With the high creep resistance, high cycle fatigue (HCF) and low cycle fatigue (LCF) become primary failure mechanisms for such applications. [...] Read more.
Single crystal nickel-based superalloys are extensively used in turbine blade applications due to their superior creep resistance compared to their polycrystalline counterparts. With the high creep resistance, high cycle fatigue (HCF) and low cycle fatigue (LCF) become primary failure mechanisms for such applications. This study investigates the fatigue life prediction of CMSX-4 using a combination of crystal plasticity and lifetime assessment models. The constitutive crystal plasticity model simulates the anisotropic, rate-dependent deformation behavior of CMSX-4, while the modified Chaboche damage model is used for lifetime assessment, focusing on cleavage stresses on active slip planes to include anisotropy. Both qualitative and quantitative data obtained from HCF experiments on single crystal superalloys with notched geometry were used for validation of the model. Furthermore, artificial neural networks (ANNs) were employed to enhance the accuracy of lifetime predictions across varying temperatures by analyzing the fatigue curves obtained from the damage model. The integration of crystal plasticity, damage mechanics, and ANNs resulted in an accurate prediction of fatigue life and crack initiation points under complex loading conditions of single crystals superalloys. Full article
Show Figures

Figure 1

18 pages, 13129 KiB  
Article
A Comparison Study of High-Temperature Low-Cycle Fatigue Behaviour and Deformation Mechanisms Between Incoloy 800H and Its Weldments
by Wenjing Li, Lin Xiao, Lori Walters, Greg Kasprick and Robyn Sloan
J. Nucl. Eng. 2024, 5(4), 545-562; https://doi.org/10.3390/jne5040034 - 30 Nov 2024
Viewed by 1231
Abstract
The high-temperature low-cycle fatigue (LCF) behaviour of Incoloy 800H and its weldments with Haynes 230 and Inconel 82 filler metals, which were fabricated with the gas tungsten arc welding (GTAW) technique, was investigated and compared at 760 °C. The results revealed that the [...] Read more.
The high-temperature low-cycle fatigue (LCF) behaviour of Incoloy 800H and its weldments with Haynes 230 and Inconel 82 filler metals, which were fabricated with the gas tungsten arc welding (GTAW) technique, was investigated and compared at 760 °C. The results revealed that the Incoloy 800H weldments showed lower fatigue lifetimes compared to the base metal. However, the weldments with the Haynes 230 filler metal demonstrated an improved fatigue life at the low strain amplitude compared to both Incoloy 800H and the weldment with the Inconel 82 filler metal. The Incoloy 800H base metal showed pronounced initial cyclic hardening with hardening factors increasing with strain amplitudes. In contrast, the weldments with Haynes 230 and Inconel 82 filler metals displayed short initial cyclic hardening and saturation stages, followed by long continuous cyclic softening. The fractography and microstructure after LCF the tests were characterized with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Transgranular fracture with multiple crack initiations was the predominant failure mode on the fracture surfaces of both Incoloy 800 base metal and the weldments. TEM examination revealed that planar dislocation slips at the low strain amplitude evolved to wavy slips, eventually forming a cell structure at high strain amplitudes in the Incoloy 800H material as the strain amplitudes increased. However, the weld metal exhibited a planar slip mode deformation mechanism regardless of cyclic strain amplitude in the weldment specimens. The differing cyclic hardening and softening behaviours between Incoloy 800H and its weldments are attributed to the higher strength of the weldment specimens compared to the base metal. In the Incoloy 800H base material specimens, the reverse strains during LCF created wavy dislocation structures, which could not fully recover due to the non-reversible nature of the microstructure. As a result, cells or subgrains formed within the microstructure once created. In contrast, the higher strength of the weld metal in the weldment specimens significantly suppressed the formation of wavy dislocation structures, and deformation primarily manifested as planar arrays of dislocations. Full article
Show Figures

Figure 1

19 pages, 3575 KiB  
Article
Contributions to Incorporation of Non-Recyclable Plastics in Bituminous Mixtures
by João Fonseca, Vítor Antunes and Ana Cristina Freire
Sustainability 2024, 16(22), 9945; https://doi.org/10.3390/su16229945 - 14 Nov 2024
Viewed by 970
Abstract
Over the past 50 years, global plastic production has surged exponentially. Around 40% of this plastic is used for packaging, most of which is single-use, while 20% is used in construction. Despite the vast quantities produced, only about 6% of discarded plastics are [...] Read more.
Over the past 50 years, global plastic production has surged exponentially. Around 40% of this plastic is used for packaging, most of which is single-use, while 20% is used in construction. Despite the vast quantities produced, only about 6% of discarded plastics are properly recycled, 10% are incinerated, and the majority are disposed of without proper management. With low recycling rates and some plastics being non-recyclable or with limited recycling cycles, it is important to explore new ways of reusing this waste as secondary raw materials. This study explores the potential of incorporating non-recyclable plastic waste into bituminous mixtures. The objective is to develop a sustainable solution for surface courses with similar or better performance than traditional bituminous mixtures by incorporating plastic waste using the dry method. A bituminous mixture containing 10% non-recyclable plastic was formulated and tested for water sensitivity, wheel tracking, and stiffness modulus. Additionally, environmental and economic comparisons were performed with a standard surface mixture. Results showed increased water resistance, high resistance to permanent deformation, reduced stiffness, lower susceptibility to frequency and temperature variations, and greater flexibility. These findings suggest that adding plastic not only enhances mechanical properties but also reduces costs, offering a sustainable alternative for non-recyclable plastics in road construction. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

13 pages, 3515 KiB  
Article
Modeling and Analysis of Resistance-Sensing Characteristics for Two-Way Shape Memory Alloy-Based Deep-Sea Actuators
by Jian Guo, Binbin Pan, Weicheng Cui and Huiming Xiang
J. Mar. Sci. Eng. 2024, 12(10), 1703; https://doi.org/10.3390/jmse12101703 - 26 Sep 2024
Viewed by 927
Abstract
Deep-sea actuators based on shape memory alloys (SMAs) are an emerging frontier field of multidisciplinary crossover, and the resistive sensing characteristics are the basis for the drive control of SMA deep-sea actuators. The resistance and resistivity of SMAs are complex and highly dependent [...] Read more.
Deep-sea actuators based on shape memory alloys (SMAs) are an emerging frontier field of multidisciplinary crossover, and the resistive sensing characteristics are the basis for the drive control of SMA deep-sea actuators. The resistance and resistivity of SMAs are complex and highly dependent on temperature and stress, and there is no complete description of SMAs for extreme environments of high pressure, low temperature, and high salinity in the deep sea. In this study, the logistic function is introduced to improve the kinetic equation of phase transition, and the macromechanical model, the law of resistance, and the resistivity mixing rule are integrated to model and analyze the resistive self-awareness characteristics of two-way shape memory alloy deep-sea actuators. The complex coupling relationships among resistance, strain, stress, resistivity, and temperature under constant load conditions are investigated, and the validity of the resistance-sensing model is verified by the water bath cycling test. The results show that the predicted values of the model agree well with the measured values. The self-perceived relationship between the resistance and deformation of the two-way shape memory alloy can be effectively expressed, which provides theoretical model support for the design of memory alloy deep sea actuators and sensorless drive control. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 8690 KiB  
Article
Variation of MEMS Thin Film Device Parameters under the Influence of Thermal Stresses
by Xiao Wen, Jinchuan Chen, Ruiwen Liu, Chunhua He, Qinwen Huang and Huihui Guo
Micromachines 2024, 15(10), 1177; https://doi.org/10.3390/mi15101177 - 24 Sep 2024
Cited by 3 | Viewed by 1585
Abstract
With the advancement of semiconductor manufacturing technology, thin film structures were widely used in MEMS devices. These films played critical roles in providing support, reinforcement, and insulation in MEMS devices. However, due to their microscopic dimensions, the sensitivity of their parameters and performance [...] Read more.
With the advancement of semiconductor manufacturing technology, thin film structures were widely used in MEMS devices. These films played critical roles in providing support, reinforcement, and insulation in MEMS devices. However, due to their microscopic dimensions, the sensitivity of their parameters and performance to thermal stress increased significantly. In this study, a Pirani gauge sample with a multilayer thin film structure was designed and fabricated. Based on this sample, finite element modeling analysis and thermal stress experiments were conducted. The finite element modeling analysis employed a combination of steady-state and transient methods to simulate the deformation and stress distribution of the device at room temperature (25 °C), low temperature (−55 °C), and high temperature (125 °C). The thermal stress test involved placing the sample in a temperature cycling chamber for temperature cycling tests. After the tests, the resonant frequency and surface deformation of the device were measured to quantitatively evaluate the impact of thermal stress on the deformation and resonant frequency parameters of the device. After the experiments, it was found that the clamped-end beams made of Pt were a stress concentration area. Additionally, the repetitive thermal load caused the cantilever beam to move cyclically in the Z direction. This movement altered the deformation of the film and the resonant frequency. The suspended film exhibited concavity, and the overall trend of the resonant frequency was downward. Over time, this could even lead to the fracture of the clamped-end beams. The variation of mechanical parameters derived from finite element simulations and experiments provided an important reference value for device design improvement and played a crucial role in enhancing the reliability of thin film devices. Full article
Show Figures

Figure 1

17 pages, 12847 KiB  
Article
Influence of Pd-Layer Thickness on Bonding Reliability of Pd-Coated Cu Wire
by Junling Fan, Donglin Yuan, Juan Du, Tao Hou, Furong Wang, Jun Cao, Xuemei Yang and Yuemin Zhang
Micromachines 2024, 15(7), 931; https://doi.org/10.3390/mi15070931 - 22 Jul 2024
Cited by 5 | Viewed by 1404
Abstract
In this paper, three Pd-coated Cu (PCC) wires with different Pd-layer thicknesses were used to make bonding samples, and the influence of Pd-layer thickness on the reliability of bonded points before and after a high-temperature storage test was studied. The results show that [...] Read more.
In this paper, three Pd-coated Cu (PCC) wires with different Pd-layer thicknesses were used to make bonding samples, and the influence of Pd-layer thickness on the reliability of bonded points before and after a high-temperature storage test was studied. The results show that smaller bonding pressure and ultrasonic power lead to insufficient plastic deformation of the ball-bonded point, which also leads to small contact area with the pad and low bonding strength. Excessive bonding pressure and ultrasonic power will lead to ‘scratch’ on the surface of the pad and large-scale Ag spatter. The wedge-bonded point has a narrowed width when the bonding pressure and ultrasonic power are too small, and the tail edge will be cocked, resulting in false bonding and low strength. When the bonding pressure or ultrasonic power is too large, it will cause stress concentration, and the pad will appear as an ‘internal injury’, which will improve the failure probability; a high-temperature environment can make Cu-Ag intermetallic compounds (IMCs) grow and improve the bonding strength. With the extension of high-temperature storage time, the shear force of Pd100 gradually reaches the peak and then decreases, due to Kirkendall pores caused by excessive growth of IMCs, while the shear force of Pd120 continued to increase due to the slow growth rate of IMCs. In the high-temperature storage test, the thicker the Pd layer of the bonding wire, the higher the bonding strength; in the cold/hot cycle test, the sample with the largest Pd-layer thickness has the lowest failure rate. The thicker the Pd layer, the stronger its ability to resist changes in the external environment, and the higher its stability and reliability. Full article
(This article belongs to the Special Issue MEMS Packaging Technologies and 3D Integration, 3rd Edition)
Show Figures

Figure 1

19 pages, 8404 KiB  
Article
Cyclic Void Growth Model Parameter Calibration of Q460D Steel and ER55-G Welds after Exposure to High Temperatures
by Fangfang Liao, Zhiyan Yang, Jinhu Wang, Pujing Fang, Xian Liu and Xiaohong Li
Buildings 2024, 14(6), 1622; https://doi.org/10.3390/buildings14061622 - 1 Jun 2024
Cited by 1 | Viewed by 1055
Abstract
When high-strength steel is heated to high temperatures and then cooled naturally, its ductility decreases. In earthquake-prone areas, it is necessary to evaluate the ultra-low cycle fatigue fracture (ULCF) behavior of high-strength steel structures after a fire if these structures are used continuously. [...] Read more.
When high-strength steel is heated to high temperatures and then cooled naturally, its ductility decreases. In earthquake-prone areas, it is necessary to evaluate the ultra-low cycle fatigue fracture (ULCF) behavior of high-strength steel structures after a fire if these structures are used continuously. However, the ULCF fracture model of high-strength steel subjected to high temperatures followed by natural cooling has not been deeply studied. In view of this, twelve notched, round bar specimens fabricated from Q460D steel and ER55-G welds were heated to 900 °C followed by natural cooling and then cyclic loading experiments and finite element analyses (FEA) were performed on these specimens. The fracture deformation obtained from the experiments was used in the FEA to calibrate the damage degradation parameter of a Cyclic Void Growth Model (CVGM) of Q460D steel and ER55-G welds under this condition. The calibrated values were 0.30 and 0.20, respectively. The calibrated CVGM was employed to predict the number of cycles and the force and displacement at the fracture moment of the notched round bar specimens. The predicted results aligned closely with the experimental results, indicating that CVGM is effective in predicting the fracture of Q460D steel and ER55-G welds following exposure to 900 °C and subsequent natural cooling. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 3638 KiB  
Review
Mechanism and Model Analysis of Ultralow-Temperature Fluid Fracturing in Low-Permeability Reservoir: Insights from Liquid Nitrogen Fracturing
by Haifeng Wang, Yunbo Li, Dangyu Song, Meng Lin, Xingxin Guo and Xiaowei Shi
Processes 2024, 12(6), 1117; https://doi.org/10.3390/pr12061117 - 29 May 2024
Cited by 1 | Viewed by 2551
Abstract
Ultralow-temperature fluids (such as liquid nitrogen, liquid CO2) are novel waterless fracturing technologies designed for dry, water-sensitive reservoirs. Due to their ultralow temperatures, high compression ratios, strong frost heaving forces, and low viscosities, they offer a solution for enhancing the fracturing [...] Read more.
Ultralow-temperature fluids (such as liquid nitrogen, liquid CO2) are novel waterless fracturing technologies designed for dry, water-sensitive reservoirs. Due to their ultralow temperatures, high compression ratios, strong frost heaving forces, and low viscosities, they offer a solution for enhancing the fracturing and permeability of low-permeability reservoirs. In this study, we focus on the combined effects of high-pressure fluid rock breaking, low-temperature freeze-thaw fracturing, and liquid-gas phase transformation expansion on coal-rock in low-permeability reservoirs during liquid nitrogen fracturing (LNF). We systematically analyze the factors that limit the LNF effectiveness, and we discuss the pore fracture process induced by low-temperature fracturing in coal-rock and its impact on the permeability. Based on this analysis, we propose a model and flow for fracturing low-permeability reservoirs with low-temperature fluids. The analysis suggests that the Leidenfrost effect and phase change after ultralow-temperature fluids enter the coal support the theoretical feasibility of high-pressure fluid rock breaking. The thermal impact and temperature exchange rate between the fluid and coal determine the temperature difference gradient, which directly affects the mismatch deformation and fracture development scale of different coal-rock structures. The low-temperature phase change coupling fracturing of ultralow-temperature fluids is the key to the formation of reservoir fracture networks. The coal-rock components, natural fissures, temperature difference gradients, and number of cycles are the key factors in low-temperature fracturing. In contrast to those in conventional hydraulic fracturing, the propagation and interaction of fractures under low-temperature conditions involve multifield coupling and synergistic temperature, fluid flow, fracture development, and stress distribution processes. The key factors determining the feasibility of the large-scale application of ultralow-temperature fluid fracturing in the future are the reconstruction of fracture networks and the enhancement of the permeability response in low-permeability reservoirs. Based on these considerations, we propose a model and process for LNF in low-permeability reservoirs. The research findings presented herein provide theoretical insights and practical guidance for understanding waterless fracturing mechanisms in deep reservoirs. Full article
(This article belongs to the Special Issue Exploration, Exploitation and Utilization of Coal and Gas Resources)
Show Figures

Figure 1

Back to TopTop