Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = heterovalent doping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 6169 KB  
Review
SnSe: A Versatile Material for Thermoelectric and Optoelectronic Applications
by Chi Zhang, Zhengjie Guo, Fuyueyang Tan, Jinhui Zhou, Xuezhi Li, Xi Cao, Yikun Yang, Yixian Xie, Yuying Feng, Chenyao Huang, Zaijin Li, Yi Qu and Lin Li
Coatings 2026, 16(1), 56; https://doi.org/10.3390/coatings16010056 - 3 Jan 2026
Viewed by 584
Abstract
Tin selenide (SnSe) is a sustainable, lead-free IV–VI semiconductor whose layered orthorhombic crystal structure induces pronounced electronic and phononic anisotropy, enabling diverse energy-related functionalities. This review systematically summarizes recent progress in understanding the structure–property–processing relationships that govern SnSe performance in thermoelectric and optoelectronic [...] Read more.
Tin selenide (SnSe) is a sustainable, lead-free IV–VI semiconductor whose layered orthorhombic crystal structure induces pronounced electronic and phononic anisotropy, enabling diverse energy-related functionalities. This review systematically summarizes recent progress in understanding the structure–property–processing relationships that govern SnSe performance in thermoelectric and optoelectronic applications. Key crystallographic characteristics are first discussed, including the temperature-driven Pnma–Cmcm phase transition, anisotropic band and valley structures, and phonon transport mechanisms that lead to intrinsically low lattice thermal conductivity below 0.5 W m−1 K−1 and tunable carrier transport. Subsequently, major synthesis strategies are critically compared, spanning Bridgman and vertical-gradient single-crystal growth, spark plasma sintering and hot pressing of polycrystals, as well as vapor- and solution-based thin-film fabrication, with emphasis on process windows, stoichiometry control, defect chemistry, and microstructure engineering. For thermoelectric applications, directional and temperature-dependent transport behaviors are analyzed, highlighting record thermoelectric performance in single-crystal SnSe at hi. We analyze directional and temperature-dependent transport, highlighting record thermoelectric figure of merit values exceeding 2.6 along the b-axis in single-crystal SnSe at ~900 K, as well as recent progress in polycrystalline and thin-film systems through alkali/coinage-metal doping (Ag, Na, Cu), isovalent and heterovalent substitution (Zn, S), and hierarchical microstructural design. For optoelectronic applications, optical properties, carrier dynamics, and photoresponse characteristics are summarized, underscoring high absorption coefficients exceeding 104 cm−1 and bandgap tunability across the visible to near-infrared range, together with interface engineering strategies for thin-film photovoltaics and broadband photodetectors. Emerging applications beyond energy conversion, including phase-change memory and electrochemical energy storage, are also reviewed. Finally, key challenges related to selenium volatility, performance reproducibility, long-term stability, and scalable manufacturing are identified. Overall, this review provides a process-oriented and application-driven framework to guide the rational design, synthesis optimization, and device integration of SnSe-based materials. Full article
(This article belongs to the Special Issue Advancements in Lasers: Applications and Future Trends)
Show Figures

Figure 1

14 pages, 4004 KB  
Article
Enhanced Cycling Performance of Spinel LiNi0.5Mn1.5O4 Cathodes through Mg-Mn Hetero-Valent Doping via Microwave Sol-Gel Method
by Mingyin Su, Xiongwen Dong, Xinyi Dai, Bingbing Huang, Min Shen, Teng Xu and Qibin Liu
Materials 2024, 17(19), 4714; https://doi.org/10.3390/ma17194714 - 25 Sep 2024
Cited by 2 | Viewed by 1959
Abstract
As a high energy density cathode material, further development of high working voltage spinel LiNi0.5Mn1.5O4 has hindered by its rapid capacity degradation. To address this, a hetero-valent substitution of magnesium for manganese was used to synthesize spinel LiNi0.5Mg [...] Read more.
As a high energy density cathode material, further development of high working voltage spinel LiNi0.5Mn1.5O4 has hindered by its rapid capacity degradation. To address this, a hetero-valent substitution of magnesium for manganese was used to synthesize spinel LiNi0.5MgxMn1.5−xO4 (x = 0, 0.03, 0.05) via a microwave sol-gel method. XRD and refined results indicate that such strategy leads to the modification of the 16c interstitial sites. The electrical performance demonstrates that a modest substitution (x = 0.03) significantly improves both rate performance (113.1 mAh/g, charge and discharge at 5 C) and cycling stability (85% capacity retention after 500 cycles at 1 C). A higher substitution level (x = 0.05) markedly improves high-rate cycling performance, achieving 96% capacity retention after 500 cycles at 5 C. It offers tailored solutions for various application needs, including capacity-focused and high-current-rate applications. Furthermore, the stable LiNi0.5Mg0.05Mn1.45O4 sample could also serve as an effective coating layer for other electrode materials to enhance their cycling stability. Full article
Show Figures

Figure 1

18 pages, 5875 KB  
Article
(Sb0.5Li0.5)TiO3-Doping Effect and Sintering Condition Tailoring in BaTiO3-Based Ceramics
by Juanwen Yan, Bijun Fang, Shuai Zhang, Xiaolong Lu and Jianning Ding
Materials 2024, 17(9), 2085; https://doi.org/10.3390/ma17092085 - 29 Apr 2024
Cited by 4 | Viewed by 1966
Abstract
(1-x)(Ba0.75Sr0.1Bi0.1)(Ti0.9Zr0.1)O3-x(Sb0.5Li0.5)TiO3 (abbreviated as BSBiTZ-xSLT, x = 0.025, 0.05, 0.075, 0.1) ceramics were prepared via a conventional solid-state sintering method under different sintering temperatures. All BSBiTZ-xSLT ceramics [...] Read more.
(1-x)(Ba0.75Sr0.1Bi0.1)(Ti0.9Zr0.1)O3-x(Sb0.5Li0.5)TiO3 (abbreviated as BSBiTZ-xSLT, x = 0.025, 0.05, 0.075, 0.1) ceramics were prepared via a conventional solid-state sintering method under different sintering temperatures. All BSBiTZ-xSLT ceramics have predominantly perovskite phase structures with the coexistence of tetragonal, rhombohedral and orthogonal phases, and present mainly spherical-like shaped grains relating to a liquid-phase sintering mechanism due to adding SLT and Bi2O3. By adjusting the sintering temperature, all compositions obtain the highest relative density and present densified micro-morphology, and doping SLT tends to promote the growth of grain size and the grain size distribution becomes nonuniform gradually. Due to the addition of heterovalent ions and SLT, typical relaxor ferroelectric characteristic is realized, dielectric performance stability is broadened to ~120 °C with variation less than 10%, and very long and slim hysteresis loops are obtained, which is especially beneficial for energy storage application. All samples show extremely fast discharge performance where the discharge time t0.9 (time for 90% discharge energy density) is less than 160 ns and the largest discharge current occurs at around 30 ns. The 1155 °C sintered BSBiTZ-0.025SLT ceramics exhibit rather large energy storage density, very high energy storage efficiency and excellent pulse charge–discharge performance, providing the possibility to develop novel BT-based dielectric ceramics for pulse energy storage applications. Full article
(This article belongs to the Special Issue Ferroelectric/Dielectric Materials for Energy Storage Applications)
Show Figures

Figure 1

12 pages, 2036 KB  
Article
Effect of the Heterovalent Sc3+ and Nb5+ Doping on Photoelectrochemical Behavior of Anatase TiO2
by Elena S. Siliavka, Aida V. Rudakova, Tair V. Bakiev, Anna A. Murashkina, Petr D. Murzin, Galina V. Kataeva, Alexei V. Emeline and Detlef W. Bahnemann
Catalysts 2024, 14(1), 76; https://doi.org/10.3390/catal14010076 - 17 Jan 2024
Cited by 6 | Viewed by 2341
Abstract
In this study, we explored the effect of either Nb or Sc doping at a concentration range of 0.0–1.0 at.% on the physical–chemical and photoelectrochemical behavior of TiO2 anatase electrodes. This behavior was characterized by work function, flat band potential, donor density, [...] Read more.
In this study, we explored the effect of either Nb or Sc doping at a concentration range of 0.0–1.0 at.% on the physical–chemical and photoelectrochemical behavior of TiO2 anatase electrodes. This behavior was characterized by work function, flat band potential, donor density, spectral dependence of photocurrent and stationary photocurrent measurements. All experimental results are interpreted in terms of the formation of the shallow delocalized polaron states in the case of Nb doping and deep acceptor states induced by Sc doping on TiO2 anatase. Full article
Show Figures

Figure 1

13 pages, 5964 KB  
Article
Tuning Multicolor Emission of Manganese-Activated Gallogermanate Nanophosphors by Regulating Mn Ions Occupying Sites for Multiple Anti-Counterfeiting Application
by Dangli Gao, Peng Wang, Feng Gao, William Nguyen and Wei Chen
Nanomaterials 2022, 12(12), 2029; https://doi.org/10.3390/nano12122029 - 13 Jun 2022
Cited by 16 | Viewed by 2592
Abstract
The ability to manipulate the luminescent color, intensity and long lifetime of nanophosphors is important for anti-counterfeiting applications. Unfortunately, persistent luminescence materials with multimode luminescent features have rarely been reported, even though they are expected to be highly desirable in sophisticated anti-counterfeiting. Here, [...] Read more.
The ability to manipulate the luminescent color, intensity and long lifetime of nanophosphors is important for anti-counterfeiting applications. Unfortunately, persistent luminescence materials with multimode luminescent features have rarely been reported, even though they are expected to be highly desirable in sophisticated anti-counterfeiting. Here, the luminescence properties of Zn3Ga2GeO8:Mn phosphors were tuned by using different preparation approaches, including a hydrothermal method and solid-state reaction approach combining with non-equivalent ion doping strategy. As a result, Mn-activated Zn3Ga2GeO8 phosphors synthesized by a hydrothermal method demonstrate an enhanced red photoluminescence at 701 nm and a strong green luminescence with persistent luminescence and photostimulated luminescence at 540 nm. While Mn-activated Zn3Ga2GeO8 phosphors synthesized by solid-state reactions combined with a hetero-valent doping approach only exhibit an enhanced single-band red emission. Keeping the synthetic method unchanged, the substitution of hetero-valent dopant ion Li+ into different sites is valid for spectral fine-tuning. A spectral tuning mechanism is also proposed. Mn-activated Zn3Ga2GeO8 phosphors synthesized by a hydrothermal approach with multimodal luminescence is especially suitable for multiple anti-counterfeiting, multicolor display and other potential applications. Full article
(This article belongs to the Special Issue Luminescence Nanomaterials and Applications)
Show Figures

Graphical abstract

13 pages, 2444 KB  
Article
Effect of the Heterovalent Doping of TiO2 with Sc3+ and Nb5+ on the Defect Distribution and Photocatalytic Activity
by Petr D. Murzin, Aida V. Rudakova, Alexei V. Emeline and Detlef W. Bahnemann
Catalysts 2022, 12(5), 484; https://doi.org/10.3390/catal12050484 - 25 Apr 2022
Cited by 8 | Viewed by 2914
Abstract
Two series of Sc3+- and Nb5+-doped TiO2 (rutile) samples were synthesized and characterized by SEM, ICPE spectroscopy, XPS, and BET methods. Photocatalytic activity of the doped TiO2 samples was tested in photocatalytic degradation of phenol. Dependences of [...] Read more.
Two series of Sc3+- and Nb5+-doped TiO2 (rutile) samples were synthesized and characterized by SEM, ICPE spectroscopy, XPS, and BET methods. Photocatalytic activity of the doped TiO2 samples was tested in photocatalytic degradation of phenol. Dependences of the photocatalytic activities of the doped TiO2 samples demonstrate a volcano-like behavior, indicating the existence of the optimal dopant concentrations to achieve the highest activity of photocatalysts. Remarkably, the optimal dopant concentrations correspond to the extrema observed in work function dependences on the dopant concentrations, that indicates a significant energy redistribution of the defect states within the bandgap of TiO2. Such a redistribution of the defect states is also proven by the alterations of the optical and EPR spectra of the intrinsic Ti3+ defect states in TiO2. Based on the analysis of the experimental results, we conclude that both Sc3+ and Nb5+ doping of TiO2 results in redistribution of the defect states and the optimal dopant concentrations correspond to the defect structures, which are ineffective in charge carrier recombination, that ultimately leads to the higher photocatalytic activity of doped TiO2. Full article
(This article belongs to the Special Issue Synthesis and Photocatalytic Activity of Composite)
Show Figures

Figure 1

11 pages, 3619 KB  
Article
Ionic Conductivity of LiSiON and the Effect of Amorphization/Heterovalent Doping on Li+ Diffusion
by Siyuan Wu, Ruijuan Xiao, Hong Li and Liquan Chen
Inorganics 2022, 10(4), 45; https://doi.org/10.3390/inorganics10040045 - 31 Mar 2022
Cited by 7 | Viewed by 4121
Abstract
The search for and design of suitable superior lithium ion conductors is a key process for developing solid state batteries. In order to realize a large range of applications, we researched the ionic conductivity of LiSiON, an example oxynitride mainly composed of elements [...] Read more.
The search for and design of suitable superior lithium ion conductors is a key process for developing solid state batteries. In order to realize a large range of applications, we researched the ionic conductivity of LiSiON, an example oxynitride mainly composed of elements with high abundance and a similar mixed anion size. Both its amorphous and heterovalent-doped phases were studied through density functional theory simulations. The Li+ ion diffusion behaviors and related properties are discussed. These elements are abundant in nature, and we found that amorphization or doping with P obviously enhanced the ionic conductivity of the system. General strategies to improve the kinetic properties of a candidate structure are presented, to help in the design of solid state electrolytes for lithium batteries. Full article
Show Figures

Figure 1

14 pages, 3216 KB  
Article
Methanol Steam Reforming on Bimetallic Catalysts Based on In and Nb Doped Titania or Zirconia: A Support Effect
by Alexandra Lytkina-Payen, Natalya Tabachkova and Andrey Yaroslavtsev
Processes 2022, 10(1), 19; https://doi.org/10.3390/pr10010019 - 24 Dec 2021
Cited by 15 | Viewed by 4410
Abstract
Methanol steam reforming (MSR) is considered an effective method for hydrogen storage and to generate high-quality hydrogen for fuel cells. In this work, a comprehensive investigation of the methanol steam reforming process using a bimetallic Pt–Rh and Cu–Ni based on different oxide supports [...] Read more.
Methanol steam reforming (MSR) is considered an effective method for hydrogen storage and to generate high-quality hydrogen for fuel cells. In this work, a comprehensive investigation of the methanol steam reforming process using a bimetallic Pt–Rh and Cu–Ni based on different oxide supports is presented. Highly dispersed titania and zirconia doped with indium and niobium ions were synthesized by sol–gel method. The effect of the nature and quantity of the dopant cation (In, Nb) on the catalytic performance of titania supported metal catalysts was investigated. The conclusions obtained show a significant effect of both the metal alloy and the oxide support nature on the activity and selectivity of the methanol steam reforming process. Pt–Rh alloy catalyst shows higher hydrogen yield, but its selectivity in the MSR process is lower than for the catalysts containing the Cu0.8-Ni0.2 alloy. Heterovalent indium doping of titania leads to the catalytic activity increase. It was suggested that this is due to the defects formation in the oxygen TiO2 sublattice. On the contrary, the use of niobium oxide as a dopant decreases the catalyst activity in the methanol steam reforming process but leads to the selectivity increase in the studied process. Full article
(This article belongs to the Special Issue Hydrogen Production and Purification)
Show Figures

Figure 1

15 pages, 4943 KB  
Article
Lithium-Cation Conductivity of Solid Solutions in Li6-xZr2-xAxO7 (A = Nb, Ta) Systems
by Georgiy Sh. Shekhtman, Anastasia V. Kalashnova and Boris D. Antonov
Materials 2021, 14(22), 6904; https://doi.org/10.3390/ma14226904 - 16 Nov 2021
Cited by 3 | Viewed by 2356
Abstract
Li6-xZr2-xAxO7 (A = Nb; Ta) system with 0 < x < 0.30 is synthesized by glycine-nitrate method. Boundaries of solid solutions based on monoclinic Li6Zr2O7 are determined; temperature (200–600 °C) and concentration dependences [...] Read more.
Li6-xZr2-xAxO7 (A = Nb; Ta) system with 0 < x < 0.30 is synthesized by glycine-nitrate method. Boundaries of solid solutions based on monoclinic Li6Zr2O7 are determined; temperature (200–600 °C) and concentration dependences of conductivity are investigated. It is shown that monoclinic Li6Zr2O7 exhibits better transport properties compared to its triclinic modification. Li5.8Zr1.8Nb(Ta)0.2O7 solid solutions have a higher lithium-cation conductivity at 300 °C compared to solid electrolytes based on other lithium zirconates due the “open” structure of monoclinic Li6Zr2O7 and a high solubility of the doping cations. Full article
(This article belongs to the Special Issue Electrochemical Energy Materials)
Show Figures

Graphical abstract

22 pages, 4310 KB  
Article
Defects and Lattice Instability in Doped Lead-Based Perovskite Antiferroelectrics: Revisited
by Dariusz Kajewski
Crystals 2020, 10(6), 501; https://doi.org/10.3390/cryst10060501 - 12 Jun 2020
Cited by 1 | Viewed by 2995
Abstract
This paper is a summary of earlier results that have been completed with recent investigations on the nature and sequence of phase transitions evolving in the antiferroelectric PbZrO3 single crystals doped with niobium and Pb(Zr0.70Ti0.30)O3 ceramics doped [...] Read more.
This paper is a summary of earlier results that have been completed with recent investigations on the nature and sequence of phase transitions evolving in the antiferroelectric PbZrO3 single crystals doped with niobium and Pb(Zr0.70Ti0.30)O3 ceramics doped with different concentration of Bi2O3. It was found that these crystals undergo new phase transitions never observed before. To investigate all phase transitions, different experimental methods were used to characterize the crystal properties. Temperature and time dependencies have been tentatively measured in a wide range, including a region above Tc, where precursor dynamics is observed in the form of non-centrosymmetric regions existing locally in crystal lattices. Also, coexistence of antiferroelectric phase and one of the intermediate phases could be observed in a wide temperature range. The phase transition mechanism in PbZrO3 is discussed, taking into account the local breaking of the crystal symmetry above Tc and the defects of crystal lattices, i.e., those generated during crystal growth, and intentionally introduced by preheating in a vacuum or doping with hetero-valent dopant. Full article
(This article belongs to the Special Issue Electronic Phenomena of Transition Metal Oxides)
Show Figures

Figure 1

Back to TopTop