Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = heterochromatin protein 1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1891 KiB  
Article
HP1-Mediated Silencing of the Doublesex1 Gene for Female Determination in the Crustacean Daphnia magna
by Junya Leim, Nikko Adhitama, Quang Dang Nong, Pijar Religia, Yasuhiko Kato and Hajime Watanabe
J. Dev. Biol. 2025, 13(3), 23; https://doi.org/10.3390/jdb13030023 - 3 Jul 2025
Viewed by 470
Abstract
The crustacean Daphnia magna produces genetically identical females and males by parthenogenesis. Males are produced in response to environmental cues including crowding and lack of food. For male development, the DM-domain containing transcription factor Doublesex1 (DSX1) is expressed spatiotemporally in male-specific traits and [...] Read more.
The crustacean Daphnia magna produces genetically identical females and males by parthenogenesis. Males are produced in response to environmental cues including crowding and lack of food. For male development, the DM-domain containing transcription factor Doublesex1 (DSX1) is expressed spatiotemporally in male-specific traits and orchestrates male trait formation in both somatic and gonadal tissues. However, it remains unknown how the dsx1 gene is silenced in females to avoid male trait development. Heterochromatin Protein 1 (HP1) plays a crucial role in epigenetic gene silencing during developmental processes. Here we report the identification of four HP1 orthologs in D. magna. None of these orthologs exhibited sexually dimorphic expression, and among them, HP1-1 was most abundantly expressed during embryogenesis. The knock-down of HP1-1 in female embryos led to the derepression of dsx1 in the male-specific traits, resulting in the development of male characteristics, such as the elongation of the first antennae. These results suggest that HP1-1 silences dsx1 for female development while environmental cues unlock this silencing to induce male production. We infer the HP1-dependent formation of a sex-specific chromatin structure on the dsx1 locus is a key process in the environmental sex determination of D. magna. Full article
Show Figures

Figure 1

25 pages, 2090 KiB  
Article
The Growth, Pathogenesis, and Secondary Metabolism of Fusarium verticillioides Are Epigenetically Modulated by Putative Heterochromatin Protein 1 (FvHP1)
by Andrés G. Jacquat, Natalia S. Podio, María Carmen Cañizares, Pilar A. Velez, Martín G. Theumer, Vanessa A. Areco, María Dolores Garcia-Pedrajas and José S. Dambolena
J. Fungi 2025, 11(6), 424; https://doi.org/10.3390/jof11060424 - 31 May 2025
Viewed by 1682
Abstract
Fusarium verticillioides is a globally prevalent phytopathogenic fungus responsible for multiple diseases in maize and a major producer of the mycotoxin fumonisin B1 (FB1), a highly toxic fungal secondary metabolite (FSM). The histone code, which includes reversible modifications such as acetylation and methylation, [...] Read more.
Fusarium verticillioides is a globally prevalent phytopathogenic fungus responsible for multiple diseases in maize and a major producer of the mycotoxin fumonisin B1 (FB1), a highly toxic fungal secondary metabolite (FSM). The histone code, which includes reversible modifications such as acetylation and methylation, plays a critical role in regulating chromatin structure and gene expression. In fungi, di- and tri-methylation of histone H3 at lysine 9 (H3K9me2/3) serves as a key epigenetic mark associated with heterochromatin formation and transcriptional repression. In this study, we identified and characterized a putative heterochromatin protein 1 (HP1) family member in F. verticillioides, designated FvHP1, based on conserved domain architecture and phylogenetic analyses. FvHP1 retains essential residues required for H3K9me2/3 recognition, supporting its functional conservation within the HP1 protein family. Phenotypic analysis of the ΔFvHP1 mutant revealed impaired vegetative growth, reduced conidiation and virulence, and altered FB1 mycotoxin production. Additionally, the accumulation of red pigment in the mutant was linked to the deregulation of secondary metabolism, specifically the overproduction of fusarubin-type naphthoquinones, such as 8-O-methylnectriafurone. These results support the role of FvHP1 in facultative heterochromatin-mediated repression of sub-telomeric biosynthetic gene clusters, including the pigment-associated PGL1 cluster. Our findings provide new insights into the epigenetic regulation of fungal pathogenicity and metabolite production, as well as the first evidence of a functional HP1 homolog in F. verticillioides. Full article
(This article belongs to the Special Issue Plant Pathogens and Mycotoxins)
Show Figures

Figure 1

16 pages, 1850 KiB  
Review
Stress Can Induce Bovine Alpha-Herpesvirus 1 (BoHV-1) Reactivation from Latency
by Fouad El-Mayet and Clinton Jones
Viruses 2024, 16(11), 1675; https://doi.org/10.3390/v16111675 - 27 Oct 2024
Cited by 2 | Viewed by 2094
Abstract
Bovine alpha-herpesvirus 1 (BoHV-1) is a significant problem for the cattle industry, in part because the virus establishes latency, and stressful stimuli increase the incidence of reactivation from latency. Sensory neurons in trigeminal ganglia and unknown cells in pharyngeal tonsils are important
sites [...] Read more.
Bovine alpha-herpesvirus 1 (BoHV-1) is a significant problem for the cattle industry, in part because the virus establishes latency, and stressful stimuli increase the incidence of reactivation from latency. Sensory neurons in trigeminal ganglia and unknown cells in pharyngeal tonsils are important
sites for latency. Reactivation from latency can lead to reproductive problems in pregnant cows, virus transmission to young calves, suppression of immune responses, and bacterial pneumonia. BoHV-1 is also a significant cofactor in bovine respiratory disease (BRD). Stress, as mimicked by the synthetic corticosteroid dexamethasone, reproducibly initiates reactivation from latency. Stress-mediated activation of the glucocorticoid receptor (GR) stimulates viral replication and transactivation of viral promoters that drive the expression of infected cell protein 0 (bICP0) and bICP4. Notably, GR and Krüppel-like factor 15 (KLF15) form a feed-forward transcription loop that cooperatively transactivates immediate early transcription unit 1 (IEtu1 promoter). Two  pioneer transcription factors, GR and KLF4, cooperatively transactivate the bICP0 early promoter. Pioneer transcription factors bind silent viral  heterochromatin, remodel chromatin, and activate gene expression. Thus, we
predict that these novel transcription factors mediate early stages of BoHV-1 reactivation from latency. Full article
(This article belongs to the Special Issue Herpesvirus Latency 2024)
Show Figures

Figure 1

16 pages, 2743 KiB  
Article
Exosc9 Initiates SUMO-Dependent lncRNA TERRA Degradation to Impact Telomeric Integrity in Endocrine Therapy Insensitive Hormone Receptor-Positive Breast Cancer
by Maram Quttina, Kacie D. Waiters, Ashfia Fatima Khan, Samaneh Karami, Anthony S. Peidl, Mariam Funmi Babajide, Justus Pennington, Fatima A. Merchant and Tasneem Bawa-Khalfe
Cells 2023, 12(20), 2495; https://doi.org/10.3390/cells12202495 - 20 Oct 2023
Cited by 4 | Viewed by 3181
Abstract
Long, noncoding RNAs (lncRNAs) are indispensable for normal cell physiology and, consequently, are tightly regulated in human cells. Yet, unlike mRNA, substantially less is known about the mechanisms for lncRNA degradation. It is important to delineate the regulatory control of lncRNA degradation, particularly [...] Read more.
Long, noncoding RNAs (lncRNAs) are indispensable for normal cell physiology and, consequently, are tightly regulated in human cells. Yet, unlike mRNA, substantially less is known about the mechanisms for lncRNA degradation. It is important to delineate the regulatory control of lncRNA degradation, particularly for lncRNA telomeric repeat-containing RNA (TERRA), as the TERRA-telomere R-loops dictate cell cycle progression and genomic stability. We now report that the exosome complex component Exosc9 degrades lncRNA TERRA in human mammary epithelial cells. Heterochromatin protein 1 alpha (HP1α) recruits Exosc9 to the telomeres; specifically, the SUMO-modified form of HP1α supports interaction with Exosc9 and, as previously reported, lncRNA TERRA. The telomeric enrichment of Exosc9 is cell cycle-dependent and consistent with the loss of telomeric TERRA in the S/G2 phase. Elevated Exosc9 is frequently observed and drives the growth of endocrine therapy-resistant (ET-R) HR+ breast cancer (BCa) cells. Specifically, the knockdown of Exosc9 inversely impacts telomeric R-loops and the integrity of the chromosome ends of ET-R cells. Consistently, Exosc9 levels dictate DNA damage and the sensitivity of ET-R BCa cells to PARP inhibitors. In this regard, Exosc9 may serve as a promising biomarker for predicting the response to PARP inhibitors as a targeted monotherapy for ET-R HR+ BCa. Full article
(This article belongs to the Special Issue LncRNAs: Biofunctions, Cellular Targets, and Applications)
Show Figures

Figure 1

17 pages, 5232 KiB  
Article
Antipsychotics Affect Satellite III (1q12) Copy Number Variations in the Cultured Human Skin Fibroblasts
by Elizaveta S. Ershova, Ekaterina A. Savinova, Larisa V. Kameneva, Lev N. Porokhovnik, Roman V. Veiko, Tatiana A. Salimova, Vera L. Izhevskaya, Sergey I. Kutsev, Natalia N. Veiko and Svetlana V. Kostyuk
Int. J. Mol. Sci. 2023, 24(14), 11283; https://doi.org/10.3390/ijms241411283 - 10 Jul 2023
Cited by 2 | Viewed by 1564
Abstract
The fragment of satellite III (f-SatIII) is located in pericentromeric heterochromatin of chromosome 1. Cell with an enlarged f-SatIII block does not respond to various stimuli and are highly stress-susceptible. The fraction of f-SatIII in the cells of schizophrenia patients changed during antipsychotic [...] Read more.
The fragment of satellite III (f-SatIII) is located in pericentromeric heterochromatin of chromosome 1. Cell with an enlarged f-SatIII block does not respond to various stimuli and are highly stress-susceptible. The fraction of f-SatIII in the cells of schizophrenia patients changed during antipsychotic therapy. Therefore, antipsychotics might reduce the f-SatIII content in the cells. We studied the action of haloperidol, risperidone and olanzapine (3 h, 24 h, 96 h) on human skin fibroblast lines (n = 10). The f-SatIII contents in DNA were measured using nonradioactive quantitative hybridization. RNASATIII were quantified using RT-qPCR. The levels of DNA damage markers (8-oxodG, γ-H2AX) and proteins that regulate apoptosis and autophagy were determined by flow cytometry. The antipsychotics reduced the f-SatIII content in DNA and RNASATIII content in RNA from HSFs. After an exposure to the antipsychotics, the autophagy marker LC3 significantly increased, while the apoptosis markers decreased. The f-SatIII content in DNA positively correlated with RNASATIII content in RNA and with DNA oxidation marker 8-oxodG, while negatively correlated with LC3 content. The antipsychotics arrest the process of f-SatIII repeat augmentation in cultured skin fibroblasts via the transcription suppression and/or through upregulated elimination of cells with enlarged f-SatIII blocks with the help of autophagy. Full article
Show Figures

Figure 1

18 pages, 1152 KiB  
Review
Understanding HAT1: A Comprehensive Review of Noncanonical Roles and Connection with Disease
by Miguel A. Ortega, Diego De Leon-Oliva, Cielo Garcia-Montero, Oscar Fraile-Martinez, Diego Liviu Boaru, María del Val Toledo Lobo, Ignacio García-Tuñón, Mar Royuela, Natalio García-Honduvilla, Julia Bujan, Luis G. Guijarro, Melchor Alvarez-Mon and Miguel Ángel Alvarez-Mon
Genes 2023, 14(4), 915; https://doi.org/10.3390/genes14040915 - 14 Apr 2023
Cited by 11 | Viewed by 4436
Abstract
Histone acetylation plays a vital role in organizing chromatin, regulating gene expression and controlling the cell cycle. The first histone acetyltransferase to be identified was histone acetyltransferase 1 (HAT1), but it remains one of the least understood acetyltransferases. HAT1 catalyzes the acetylation of [...] Read more.
Histone acetylation plays a vital role in organizing chromatin, regulating gene expression and controlling the cell cycle. The first histone acetyltransferase to be identified was histone acetyltransferase 1 (HAT1), but it remains one of the least understood acetyltransferases. HAT1 catalyzes the acetylation of newly synthesized H4 and, to a lesser extent, H2A in the cytoplasm. However, 20 min after assembly, histones lose acetylation marks. Moreover, new noncanonical functions have been described for HAT1, revealing its complexity and complicating the understanding of its functions. Recently discovered roles include facilitating the translocation of the H3H4 dimer into the nucleus, increasing the stability of the DNA replication fork, replication-coupled chromatin assembly, coordination of histone production, DNA damage repair, telomeric silencing, epigenetic regulation of nuclear lamina-associated heterochromatin, regulation of the NF-κB response, succinyl transferase activity and mitochondrial protein acetylation. In addition, the functions and expression levels of HAT1 have been linked to many diseases, such as many types of cancer, viral infections (hepatitis B virus, human immunodeficiency virus and viperin synthesis) and inflammatory diseases (chronic obstructive pulmonary disease, atherosclerosis and ischemic stroke). The collective data reveal that HAT1 is a promising therapeutic target, and novel therapeutic approaches, such as RNA interference and the use of aptamers, bisubstrate inhibitors and small-molecule inhibitors, are being evaluated at the preclinical level. Full article
(This article belongs to the Special Issue Epigenetic Regulation of Cell Fate)
Show Figures

Figure 1

12 pages, 1255 KiB  
Review
Regulation of the SUV39H Family Methyltransferases: Insights from Fission Yeast
by Rinko Nakamura and Jun-ichi Nakayama
Biomolecules 2023, 13(4), 593; https://doi.org/10.3390/biom13040593 - 25 Mar 2023
Cited by 2 | Viewed by 3612
Abstract
Histones, which make up nucleosomes, undergo various post-translational modifications, such as acetylation, methylation, phosphorylation, and ubiquitylation. In particular, histone methylation serves different cellular functions depending on the location of the amino acid residue undergoing modification, and is tightly regulated by the antagonistic action [...] Read more.
Histones, which make up nucleosomes, undergo various post-translational modifications, such as acetylation, methylation, phosphorylation, and ubiquitylation. In particular, histone methylation serves different cellular functions depending on the location of the amino acid residue undergoing modification, and is tightly regulated by the antagonistic action of histone methyltransferases and demethylases. The SUV39H family of histone methyltransferases (HMTases) are evolutionarily conserved from fission yeast to humans and play an important role in the formation of higher-order chromatin structures called heterochromatin. The SUV39H family HMTases catalyzes the methylation of histone H3 lysine 9 (H3K9), and this modification serves as a binding site for heterochromatin protein 1 (HP1) to form a higher-order chromatin structure. While the regulatory mechanism of this family of enzymes has been extensively studied in various model organisms, Clr4, a fission yeast homologue, has made an important contribution. In this review, we focus on the regulatory mechanisms of the SUV39H family of proteins, in particular, the molecular mechanisms revealed by the studies of the fission yeast Clr4, and discuss their generality in comparison to other HMTases. Full article
(This article belongs to the Special Issue Yeast Models for Gene Regulation)
Show Figures

Figure 1

14 pages, 2068 KiB  
Review
The Potential Use of the Epigenetic Remodeler LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) as a Tool for Crop Improvement
by Natanael Mansilla, Lucia Ferrero, Federico D. Ariel and Leandro E. Lucero
Horticulturae 2023, 9(2), 199; https://doi.org/10.3390/horticulturae9020199 - 3 Feb 2023
Cited by 2 | Viewed by 2636
Abstract
The vast diversity of traits exhibited by horticultural crops largely depends upon variation in gene expression regulation. The uppermost layer of gene expression regulation is chromatin compaction. In plants, the LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) is a member of the Polycomb Repressive Complex [...] Read more.
The vast diversity of traits exhibited by horticultural crops largely depends upon variation in gene expression regulation. The uppermost layer of gene expression regulation is chromatin compaction. In plants, the LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) is a member of the Polycomb Repressive Complex 1 (PRC1) that controls the spreading of the H3K27me3 mark throughout the genome to regulate gene expression. Much of the epigenetic control exerted by LHP1 has been deeply explored on the model species Arabidopsis thaliana. Recent advances in melon, tomato, and soybean highlight the relevance of LHP1 in controlling the development and physiology of a plethora of traits in crops. However, whether LHP1 exerts its diverse roles through similar mechanisms and through modulating the same target genes has been overlooked. In this review, we gather a wealth of knowledge about the LHP1 mode of action, which involves a tight connection with histone marks and long noncoding RNAs to modulate gene expression. Strikingly, we found that LHP1 may be linked to H3K27me3 regulation across the plant lineage, yet, through epigenetic regulation of a distinct set of target genes. This is supported by subtle differences in subcellular LHP1 localization between species found here. In addition, we summarize the variety of developmental outputs modulated by LHP1 across land plants pinpointing its importance for plant breeding. Hence, LHP1 has probably been co-opted in different lineages to modulate diverse traits contributing to crop diversification. Full article
(This article belongs to the Special Issue Horticultural Crops Genetics and Genomics)
Show Figures

Figure 1

16 pages, 1756 KiB  
Review
DDM1-Mediated TE Silencing in Plants
by Ruth Y. Akinmusola, Catherine-Axa Wilkins and James Doughty
Plants 2023, 12(3), 437; https://doi.org/10.3390/plants12030437 - 18 Jan 2023
Cited by 7 | Viewed by 4412
Abstract
Epigenetic modifications are indispensable for regulating gene bodies and TE silencing. DECREASE IN DNA METHYLATION 1 (DDM1) is a chromatin remodeller involved in histone modifications and DNA methylation. Apart from maintaining the epigenome, DDM1 also maintains key plant traits such as flowering time [...] Read more.
Epigenetic modifications are indispensable for regulating gene bodies and TE silencing. DECREASE IN DNA METHYLATION 1 (DDM1) is a chromatin remodeller involved in histone modifications and DNA methylation. Apart from maintaining the epigenome, DDM1 also maintains key plant traits such as flowering time and heterosis. The role of DDM1 in epigenetic regulation is best characterised in plants, especially arabidopsis, rice, maize and tomato. The epigenetic changes induced by DDM1 establish the stable inheritance of many plant traits for at least eight generations, yet DDM1 does not methylate protein-coding genes. The DDM1 TE silencing mechanism is distinct and has evolved independently of other silencing pathways. Unlike the RNA-directed DNA Methylation (RdDM) pathway, DDM1 does not depend on siRNAs to enforce the heterochromatic state of TEs. Here, we review DDM1 TE silencing activity in the RdDM and non-RdDM contexts. The DDM1 TE silencing machinery is strongly associated with the histone linker H1 and histone H2A.W. While the linker histone H1 excludes the RdDM factors from methylating the heterochromatin, the histone H2A.W variant prevents TE mobility. The DDM1-H2A.W strategy alone silences nearly all the mobile TEs in the arabidopsis genome. Thus, the DDM1-directed TE silencing essentially preserves heterochromatic features and abolishes mobile threats to genome stability. Full article
(This article belongs to the Special Issue Epigenetics and Genome Evolution in Plants)
Show Figures

Figure 1

18 pages, 2399 KiB  
Article
Characterization of Hepatoma-Derived Growth Factor-Related Protein 2 Interactions with Heterochromatin
by Sarah C. Wistner, Ian A. MacDonald, Karly A. Stanley and Nathaniel A. Hathaway
Cells 2023, 12(2), 325; https://doi.org/10.3390/cells12020325 - 14 Jan 2023
Cited by 1 | Viewed by 2670
Abstract
The expression of genetic information is tightly controlled by chromatin regulatory proteins, including those in the heterochromatin gene repression family. Many of these regulatory proteins work together on the chromatin substrate to precisely regulate gene expression during mammalian development, giving rise to many [...] Read more.
The expression of genetic information is tightly controlled by chromatin regulatory proteins, including those in the heterochromatin gene repression family. Many of these regulatory proteins work together on the chromatin substrate to precisely regulate gene expression during mammalian development, giving rise to many different tissues in higher organisms from a fixed genomic template. Here we identify and characterize the interactions of two related heterochromatin regulatory proteins, heterochromatin protein 1 alpha (HP1α) and M-phase phosphoprotein 8 (MPP8), with hepatoma-derived growth factor-related protein 2 (HRP2). We find in biochemical experiments that HRP2 copurifies and co-sediments with heterochromatin-associated proteins, including HP1α and MPP8. Using the Chromatin in vivo Assay in multiple cell types, we demonstrate that HP1α-mediated gene repression dynamics are altered by the presence of HRP2. Furthermore, the knockout of HRP2 in MDA-MB-231 cells results in significant changes to chromatin structure and stability, which alter gene expression patterns. Here, we detail a mechanism by which HRP2 contributes to epigenetic transcriptional regulation through engagement with heterochromatin-associated proteins to stabilize the chromatin landscape and influence gene expression. Full article
(This article belongs to the Special Issue Heterochromatin and Tumorigenesis II)
Show Figures

Figure 1

17 pages, 2472 KiB  
Article
The KDET Motif in the Intracellular Domain of the Cell Adhesion Molecule L1 Interacts with Several Nuclear, Cytoplasmic, and Mitochondrial Proteins Essential for Neuronal Functions
by Ralf Kleene, Gabriele Loers and Melitta Schachner
Int. J. Mol. Sci. 2023, 24(2), 932; https://doi.org/10.3390/ijms24020932 - 4 Jan 2023
Cited by 6 | Viewed by 2453
Abstract
Abnormal functions of the cell adhesion molecule L1 are linked to several neural diseases. Proteolytic L1 fragments were reported to interact with nuclear and mitochondrial proteins to regulate events in the developing and the adult nervous system. Recently, we identified a 55 kDa [...] Read more.
Abnormal functions of the cell adhesion molecule L1 are linked to several neural diseases. Proteolytic L1 fragments were reported to interact with nuclear and mitochondrial proteins to regulate events in the developing and the adult nervous system. Recently, we identified a 55 kDa L1 fragment (L1-55) that interacts with methyl CpG binding protein 2 (MeCP2) and heterochromatin protein 1 (HP1) via the KDET motif. We now show that L1-55 also interacts with histone H1.4 (HistH1e) via this motif. Moreover, we show that this motif binds to NADH dehydrogenase ubiquinone flavoprotein 2 (NDUFV2), splicing factor proline/glutamine-rich (SFPQ), the non-POU domain containing octamer-binding protein (NonO), paraspeckle component 1 (PSPC1), WD-repeat protein 5 (WDR5), heat shock cognate protein 71 kDa (Hsc70), and synaptotagmin 1 (SYT1). Furthermore, applications of HistH1e, NDUFV2, SFPQ, NonO, PSPC1, WDR5, Hsc70, or SYT1 siRNAs or a cell-penetrating KDET-carrying peptide decrease L1-dependent neurite outgrowth and the survival of cultured neurons. These findings indicate that L1’s KDET motif binds to an unexpectedly large number of molecules that are essential for nervous system-related functions, such as neurite outgrowth and neuronal survival. In summary, L1 interacts with cytoplasmic, nuclear and mitochondrial proteins to regulate development and, in adults, the formation, maintenance, and flexibility of neural functions. Full article
Show Figures

Figure 1

16 pages, 3393 KiB  
Article
Cytogenetic Analysis of the Bimodal Karyotype of the Common European Adder, Vipera berus (Viperidae)
by Victor Spangenberg, Ilya Redekop, Sergey A. Simanovsky and Oxana Kolomiets
Animals 2022, 12(24), 3563; https://doi.org/10.3390/ani12243563 - 16 Dec 2022
Cited by 5 | Viewed by 3801
Abstract
Vipera berus is the species with the largest range of snakes on Earth and one of the largest among reptiles in general. It is also the only snake species found in the Arctic Circle. Vipera berus is the most involved species of the [...] Read more.
Vipera berus is the species with the largest range of snakes on Earth and one of the largest among reptiles in general. It is also the only snake species found in the Arctic Circle. Vipera berus is the most involved species of the genus Vipera in the process of interspecific hybridization in nature. The taxonomy of the genus Vipera is based on molecular markers and morphology and requires clarification using SC-karyotyping. This work is a detailed comparative study of the somatic and meiotic karyotypes of V. berus, with special attention to DNA and protein markers associated with synaptonemal complexes. The karyotype of V. berus is a remarkable example of a bimodal karyotype containing both 16 large macrochromosomes and 20 microchromosomes. We traced the stages of the asynchronous assembly of both types of bivalents. The number of crossing-over sites per pachytene nucleus, the localization of the nucleolar organizer, and the unique heterochromatin block on the autosomal bivalent 6—an important marker—were determined. Our results show that the average number of crossing-over sites per pachytene nucleus is 49.5, and the number of MLH1 sites per bivalent 1 reached 11, which is comparable to several species of agamas. Full article
Show Figures

Figure 1

30 pages, 2157 KiB  
Review
Polycomb Directed Cell Fate Decisions in Development and Cancer
by Beatriz German and Leigh Ellis
Epigenomes 2022, 6(3), 28; https://doi.org/10.3390/epigenomes6030028 - 6 Sep 2022
Cited by 20 | Viewed by 9322
Abstract
The polycomb group (PcG) proteins are a subset of transcription regulators highly conserved throughout evolution. Their principal role is to epigenetically modify chromatin landscapes and control the expression of master transcriptional programs to determine cellular identity. The two mayor PcG protein complexes that [...] Read more.
The polycomb group (PcG) proteins are a subset of transcription regulators highly conserved throughout evolution. Their principal role is to epigenetically modify chromatin landscapes and control the expression of master transcriptional programs to determine cellular identity. The two mayor PcG protein complexes that have been identified in mammals to date are Polycomb Repressive Complex 1 (PRC1) and 2 (PRC2). These protein complexes selectively repress gene expression via the induction of covalent post-translational histone modifications, promoting chromatin structure stabilization. PRC2 catalyzes the histone H3 methylation at lysine 27 (H3K27me1/2/3), inducing heterochromatin structures. This activity is controlled by the formation of a multi-subunit complex, which includes enhancer of zeste (EZH2), embryonic ectoderm development protein (EED), and suppressor of zeste 12 (SUZ12). This review will summarize the latest insights into how PRC2 in mammalian cells regulates transcription to orchestrate the temporal and tissue-specific expression of genes to determine cell identity and cell-fate decisions. We will specifically describe how PRC2 dysregulation in different cell types can promote phenotypic plasticity and/or non-mutational epigenetic reprogramming, inducing the development of highly aggressive epithelial neuroendocrine carcinomas, including prostate, small cell lung, and Merkel cell cancer. With this, EZH2 has emerged as an important actionable therapeutic target in such cancers. Full article
(This article belongs to the Special Issue Polycomb Proteins)
Show Figures

Figure 1

14 pages, 2022 KiB  
Article
New Flowering and Architecture Traits Mediated by Multiplex CRISPR-Cas9 Gene Editing in Hexaploid Camelina sativa
by Yannick Bellec, Anouchka Guyon-Debast, Tracy François, Lionel Gissot, Eric Biot, Fabien Nogué, Jean-Denis Faure and Mark Tepfer
Agronomy 2022, 12(8), 1873; https://doi.org/10.3390/agronomy12081873 - 9 Aug 2022
Cited by 9 | Viewed by 3405
Abstract
Adapting plants to sustainable cropping systems is a major challenge for facing climate change and promoting agroecological transition. Camelina sativa is an emerging oilseed crop species with climate-resilient properties that could be used in double-cropping systems, in particular as a summer catch crop. [...] Read more.
Adapting plants to sustainable cropping systems is a major challenge for facing climate change and promoting agroecological transition. Camelina sativa is an emerging oilseed crop species with climate-resilient properties that could be used in double-cropping systems, in particular as a summer catch crop. The availability of early-flowering camelina is essential in such cropping systems to allow full completion of the growth cycle during summer. Targeted induced gene variation (TIGV) was used in camelina on several flowering repressor genes identified in Arabidopsis to obtain early-flowering lines. Multiplex editing of 15 target genes representing FLOWERING LOCUS C, SHORT VEGETATIVE PHASE, LIKE HETEROCHROMATIN PROTEIN 1, TERMINAL FLOWER 1 and EARLY FLOWERING LOCUS 3 induced combinatorial mutations that were screened for early-flowering phenotypes. Certain mutants showing a stable early-flowering trait after five generations also presented additional phenotypes: determinate flowering, shorter stature and/or basal branching. Different combinations of mutations had a positive or negative impact on yield. This work demonstrates that efficient multiplex CRISPR is achievable in hexaploid plants like camelina, providing valuable genetic diversity for better selecting lines adapted to new cropping systems. Full article
(This article belongs to the Special Issue Genome Editing of Polyploid Crops)
Show Figures

Figure 1

17 pages, 2522 KiB  
Article
Endogenous Retroviral Sequences Behave as Putative Enhancers Controlling Gene Expression through HP1-Regulated Long-Range Chromatin Interactions
by Sébastien Calvet, Séphora Sallis, Nehmé Saksouk, Cosette Rebouissou, Catherine Teyssier, Annick Lesne, Florence Cammas and Thierry Forné
Cells 2022, 11(15), 2392; https://doi.org/10.3390/cells11152392 - 3 Aug 2022
Viewed by 2720
Abstract
About half of the mammalian genome is constituted of repeated elements, among which endogenous retroviruses (ERVs) are known to influence gene expression and cancer development. The HP1 (Heterochromatin Protein 1) proteins are known to be essential for heterochromatin establishment and function and its [...] Read more.
About half of the mammalian genome is constituted of repeated elements, among which endogenous retroviruses (ERVs) are known to influence gene expression and cancer development. The HP1 (Heterochromatin Protein 1) proteins are known to be essential for heterochromatin establishment and function and its loss in hepatocytes leads to the reactivation of specific ERVs and to liver tumorigenesis. Here, by studying two ERVs located upstream of genes upregulated upon loss of HP1, Mbd1 and Trim24, we show that these HP1-dependent ERVs behave as either alternative promoters or as putative enhancers forming a loop with promoters of endogenous genes depending on the genomic context and HP1 expression level. These ERVs are characterised by a specific HP1-independent enrichment in heterochromatin-associated marks H3K9me3 and H4K20me3 as well as in the enhancer-specific mark H3K4me1, a combination that might represent a bookmark of putative ERV-derived enhancers. These ERVs are further enriched in a HP1-dependent manner in H3K27me3, suggesting a critical role of this mark together with HP1 in the silencing of the ERVs, as well as for the repression of the associated genes. Altogether, these results lead to the identification of a new regulatory hub involving the HP1-dependent formation of a physical loop between specific ERVs and endogenous genes. Full article
(This article belongs to the Special Issue Heterochromatin and Tumorigenesis)
Show Figures

Figure 1

Back to TopTop