Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (476)

Search Parameters:
Keywords = heritage reconstruction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 426 KiB  
Review
Survey on the Application of Robotics in Archaeology
by Panagiota Kyriakoulia, Anastasios Kazolias, Dimitrios Konidaris and Panagiotis Kokkinos
Sensors 2025, 25(15), 4836; https://doi.org/10.3390/s25154836 - 6 Aug 2025
Abstract
This work explores the application of robotic systems in archaeology, highlighting their transformative role in excavation, documentation, and the preservation of cultural heritage. By combining technologies such as LiDAR, GIS, 3D modeling, sonar, and other sensors with autonomous and semi-autonomous platforms, archaeologists can [...] Read more.
This work explores the application of robotic systems in archaeology, highlighting their transformative role in excavation, documentation, and the preservation of cultural heritage. By combining technologies such as LiDAR, GIS, 3D modeling, sonar, and other sensors with autonomous and semi-autonomous platforms, archaeologists can now reach inaccessible sites, automate artifact analysis, and reconstruct fragmented remains with greater precision. The study provides a systematic overview of underwater, aerial, terrestrial, and other robotic systems, drawing on scientific literature that showcases their innovative use in both fieldwork and museum settings. Selected examples illustrate how robotics is being applied to solve key archaeological challenges in new and effective ways. While the paper emphasizes the potential of these technologies, it also addresses their technical, economic, and ethical limitations, concluding that successful adoption depends on interdisciplinary collaboration, careful implementation, and a balanced respect for cultural integrity. Full article
Show Figures

Figure 1

20 pages, 2776 KiB  
Article
Automatic 3D Reconstruction: Mesh Extraction Based on Gaussian Splatting from Romanesque–Mudéjar Churches
by Nelson Montas-Laracuente, Emilio Delgado Martos, Carlos Pesqueira-Calvo, Giovanni Intra Sidola, Ana Maitín, Alberto Nogales and Álvaro José García-Tejedor
Appl. Sci. 2025, 15(15), 8379; https://doi.org/10.3390/app15158379 - 28 Jul 2025
Viewed by 240
Abstract
This research introduces an automated 3D virtual reconstruction system tailored for architectural heritage (AH) applications, contributing to the ongoing paradigm shift from traditional CAD-based workflows to artificial intelligence-driven methodologies. It reviews recent advancements in machine learning and deep learning—particularly neural radiance fields (NeRFs) [...] Read more.
This research introduces an automated 3D virtual reconstruction system tailored for architectural heritage (AH) applications, contributing to the ongoing paradigm shift from traditional CAD-based workflows to artificial intelligence-driven methodologies. It reviews recent advancements in machine learning and deep learning—particularly neural radiance fields (NeRFs) and its successor, Gaussian splatting (GS)—as state-of-the-art techniques in the domain. The study advocates for replacing point cloud data in heritage building information modeling workflows with image-based inputs, proposing a novel “photo-to-BIM” pipeline. A proof-of-concept system is presented, capable of processing photographs or video footage of ancient ruins—specifically, Romanesque–Mudéjar churches—to automatically generate 3D mesh reconstructions. The system’s performance is assessed using both objective metrics and subjective evaluations of mesh quality. The results confirm the feasibility and promise of image-based reconstruction as a viable alternative to conventional methods. The study successfully developed a system for automated 3D mesh reconstruction of AH from images. It applied GS and Mip-splatting for NeRFs, proving superior in noise reduction for subsequent mesh extraction via surface-aligned Gaussian splatting for efficient 3D mesh reconstruction. This photo-to-mesh pipeline signifies a viable step towards HBIM. Full article
Show Figures

Figure 1

33 pages, 6092 KiB  
Article
3D Reconstruction of Unrealised Monumental Heritage and Its Impact on Gallery Experience
by Jure Ahtik, Anja Škerjanc, Helena Gabrijelčič Tomc and Tanja Nuša Kočevar
Buildings 2025, 15(15), 2632; https://doi.org/10.3390/buildings15152632 - 25 Jul 2025
Viewed by 264
Abstract
The research was initiated by the Plečnik House gallery (Ljubljana, Slovenia) and focuses on the 3D architectural reconstruction of the unrealised monument of the Czech military leader Jan Žižka, designed by the Slovenian architect Jože Plečnik. In addition, the experience with the 3D [...] Read more.
The research was initiated by the Plečnik House gallery (Ljubljana, Slovenia) and focuses on the 3D architectural reconstruction of the unrealised monument of the Czech military leader Jan Žižka, designed by the Slovenian architect Jože Plečnik. In addition, the experience with the 3D reconstructed monument in the exhibition “Plečnik and the Sacred” was analysed. Using the available references and interpretative approaches, a digital and 3D-printed reconstruction was created that retains Plečnik’s architectural style. The experimental phase included a detailed interpretation of the studied references, 3D modelling, 3D printing, exhibition and experience analysis. The dimensions of the finished 3D-printed model are 52.80 × 55.21 × 44.60 cm. It was produced using stereolithography (SLA) for figurative elements and fused deposition modelling (FDM) for architectural components. The reconstruction was evaluated using participant testing, including semantic differential analysis, comparative studies, and knowledge-based questionnaires. The results showed that architectural elements were reconstructed with an average similarity score of 1.97 out of 5. Statues followed with a score of 1.81, and props, though detailed, met audience expectations, scoring 1.61. Clothing received the lowest score of 1.40. This research emphasises the importance of a hypothetical digital 3D reconstruction of never constructed monument for broader understanding of Plečnik’s legacy. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 285 KiB  
Review
The Historical Evolution of the Role of Vegetation in the Enhancement and Conservation of Archaeological Sites: A Landscape Architecture Perspective Focused Mainly on Cases from Italy and Greece
by Electra Kanellou and Maria Papafotiou
Plants 2025, 14(15), 2302; https://doi.org/10.3390/plants14152302 - 25 Jul 2025
Viewed by 204
Abstract
Vegetation plays a multifaceted role in the enhancement and conservation of archaeological sites, functioning not only as an aesthetic element but also as a core component of landscape architecture practice. This review traces the historical evolution of vegetation management, though the lens of [...] Read more.
Vegetation plays a multifaceted role in the enhancement and conservation of archaeological sites, functioning not only as an aesthetic element but also as a core component of landscape architecture practice. This review traces the historical evolution of vegetation management, though the lens of landscape architecture, highlighting its potential as a design and planning tool for historical interpretation and sustainable integration of heritage sites into broader contexts. From Romantic landscaping ideals to modern interdisciplinary conservation frameworks, the review draws on key milestones such as the Athens and Venice Charters, and examines case studies like Rome’s Passeggiata Archeologica, the Acropolis slopes, Ruffenhofen Park, and Campo Lameiro. These examples illustrate how landscape architectural approaches can use vegetation to reconstruct lost architectural forms, enhance visitor engagement, and provide ecosystem functions. The article also addresses challenges related to historical authenticity, species selection, and ecological performance, arguing for future strategies that integrate archaeological sites into dynamic, living heritage systems, through collaborative, ecologically informed design. Full article
(This article belongs to the Special Issue Floriculture and Landscape Architecture—2nd Edition)
27 pages, 47905 KiB  
Article
FDS-Based Study on Fire Spread and Control in Modern Brick-Timber Architectural Heritage: A Case Study of Faculty House at a University in Changsha
by Simian Liu, Gaocheng Liang, Lei Shi, Ming Luo and Meizhen Long
Sustainability 2025, 17(15), 6773; https://doi.org/10.3390/su17156773 - 25 Jul 2025
Viewed by 389
Abstract
The modern Chinese architectural heritage combines sturdy Western materials with delicate Chinese styling, mainly adopting brick-timber structural systems that are highly vulnerable to fire damage. The study assesses the fire spread characteristics of the First Faculty House, a 20th-century architectural heritage located at [...] Read more.
The modern Chinese architectural heritage combines sturdy Western materials with delicate Chinese styling, mainly adopting brick-timber structural systems that are highly vulnerable to fire damage. The study assesses the fire spread characteristics of the First Faculty House, a 20th-century architectural heritage located at a university in China. The assessment is carried out by analyzing building materials, structural configuration, and fire load. By using FDS (Fire Dynamics Simulator (PyroSim version 2022)) and SketchUp software (version 2023) for architectural reconstruction and fire spread simulation, explores preventive measures to reduce fire risks. The result show that the total fire load of the building amounts to 1,976,246 MJ. After ignition, flashover occurs at 700 s, accompanied by a sharp increase in the heat release rate (HRR). The peak ceiling temperature reaches 750 °C. The roof trusses have critical structural weaknesses when approaching flashover conditions, indicating a high potential for collapse. Three targeted fire protection strategies are proposed in line with the heritage conservation principle of minimal visual and functional intervention: fire sprinkler systems, fire retardant coating, and fire barrier. Simulations of different strategies demonstrate their effectiveness in mitigating fire spread in elongated architectural heritages with enclosed ceiling-level ignition points. The efficacy hierarchy follows: fire sprinkler system > fire retardant coating > fire barrier. Additionally, because of chimney effect, for fire sources located above the ceiling and other hidden locations need to be warned in a timely manner to prevent the thermal plume from invading other sides of the ceiling through the access hole. This research can serve as a reference framework for other Modern Chinese Architectural Heritage to develop appropriate fire mitigation strategies and to provide a methodology for sustainable development of the Chinese architectural heritage. Full article
Show Figures

Figure 1

15 pages, 650 KiB  
Article
Advanced Isotopic Techniques to Investigate Cultural Heritage: The Research Activities at the iCONa Laboratory
by Noemi Mantile, Simona Altieri, Maria Rosa di Cicco, Valentina Giacometti and Carmine Lubritto
Heritage 2025, 8(8), 296; https://doi.org/10.3390/heritage8080296 - 24 Jul 2025
Viewed by 218
Abstract
Isotopic analyses are useful tools with a wide range of applications, including environmental studies, archaeology and biomedicine. Founded in 2019 at the University of Campania “Luigi Vanvitelli”, the iCONa laboratory specialises in stable isotope mass spectrometry, with a particular focus on cultural heritage. [...] Read more.
Isotopic analyses are useful tools with a wide range of applications, including environmental studies, archaeology and biomedicine. Founded in 2019 at the University of Campania “Luigi Vanvitelli”, the iCONa laboratory specialises in stable isotope mass spectrometry, with a particular focus on cultural heritage. The laboratory performs carbon, nitrogen and oxygen isotopic analyses, including the most recent advances in compound-specific stable isotope analysis of amino acids (CSIA-AAs). In addition to these analytical services, iCONa provides chemical and physical sample preparation for a variety of sample types. This paper focuses on our applications in the field of cultural heritage, exploring how the analysis of stable isotopes performed on archaeological remains can be used to reconstruct past subsistence strategies and human behaviours. We also discuss the challenges inherent in isotopic analysis and recent methodological advances in the field. Full article
Show Figures

Figure 1

22 pages, 3348 KiB  
Article
Comparison of NeRF- and SfM-Based Methods for Point Cloud Reconstruction for Small-Sized Archaeological Artifacts
by Miguel Ángel Maté-González, Roy Yali, Jesús Rodríguez-Hernández, Enrique González-González and Julián Aguirre de Mata
Remote Sens. 2025, 17(14), 2535; https://doi.org/10.3390/rs17142535 - 21 Jul 2025
Viewed by 359
Abstract
This study presents a critical evaluation of image-based 3D reconstruction techniques for small archaeological artifacts, focusing on a quantitative comparison between Neural Radiance Fields (NeRF), its recent Gaussian Splatting (GS) variant, and traditional Structure-from-Motion (SfM) photogrammetry. The research targets artifacts smaller than 5 [...] Read more.
This study presents a critical evaluation of image-based 3D reconstruction techniques for small archaeological artifacts, focusing on a quantitative comparison between Neural Radiance Fields (NeRF), its recent Gaussian Splatting (GS) variant, and traditional Structure-from-Motion (SfM) photogrammetry. The research targets artifacts smaller than 5 cm, characterized by complex geometries and reflective surfaces that pose challenges for conventional recording methods. To address the limitations of traditional methods without resorting to the high costs associated with laser scanning, this study explores NeRF and GS as cost-effective and efficient alternatives. A comprehensive experimental framework was established, incorporating ground-truth data obtained using a metrological articulated arm and a rigorous quantitative evaluation based on root mean square (RMS) error, Chamfer distance, and point cloud density. The results indicate that while NeRF outperforms GS in terms of geometric fidelity, both techniques still exhibit lower accuracy compared to SfM, particularly in preserving fine geometric details. Nonetheless, NeRF demonstrates strong potential for rapid, high-quality 3D documentation suitable for visualization and dissemination purposes in cultural heritage. These findings highlight both the current capabilities and limitations of neural rendering techniques for archaeological documentation and suggest promising future research directions combining AI-based models with traditional photogrammetric pipelines. Full article
Show Figures

Figure 1

21 pages, 2143 KiB  
Article
Physically Informed Synthetic Data Generation and U-Net Generative Adversarial Network for Palimpsest Reconstruction
by Jose L. Salmeron and Eva Fernandez-Palop
Mathematics 2025, 13(14), 2304; https://doi.org/10.3390/math13142304 - 18 Jul 2025
Viewed by 244
Abstract
This paper introduces a novel adversarial learning framework for reconstructing hidden layers in historical palimpsests. Recovering text hidden in historical palimpsests is complicated by various artifacts, such as ink diffusion, degradation of the writing substrate, and interference between overlapping layers. To address these [...] Read more.
This paper introduces a novel adversarial learning framework for reconstructing hidden layers in historical palimpsests. Recovering text hidden in historical palimpsests is complicated by various artifacts, such as ink diffusion, degradation of the writing substrate, and interference between overlapping layers. To address these challenges, the authors of this paper combine a synthetic data generator grounded in physical modeling with three generative architectures: a baseline VAE, an improved variant with stronger regularization, and a U-Net-based GAN that incorporates residual pathways and a mixed loss strategy. The synthetic data engine aims to emulate key degradation effects—such as ink bleeding, the irregularity of parchment fibers, and multispectral layer interactions—using stochastic approximations of underlying physical processes. The quantitative results suggest that the U-Net-based GAN architecture outperforms the VAE-based models by a notable margin, particularly in scenarios with heavy degradation or overlapping ink layers. By relying on synthetic training data, the proposed method facilitates the non-invasive recovery of lost text in culturally important documents, and does so without requiring costly or specialized imaging setups. Full article
(This article belongs to the Section E1: Mathematics and Computer Science)
Show Figures

Figure 1

27 pages, 8323 KiB  
Article
The Archaeotectural Exploration of the 13th Century Terraced Building F1 at the Laogulou Yashu Archaeological Site in Chongqing, China
by Bowen Qiu, Di Zhu, Chi Jin and Yongkang Cao
Buildings 2025, 15(14), 2486; https://doi.org/10.3390/buildings15142486 - 15 Jul 2025
Viewed by 340
Abstract
The Laogulou Yashu Archaeological Site in Chongqing represented a significant discovery in the study of medieval Chinese urban heritage. Among its remains, the 13th century terraced building F1 stood out for its scale and function as a governmental qiaolou (gate tower). This study [...] Read more.
The Laogulou Yashu Archaeological Site in Chongqing represented a significant discovery in the study of medieval Chinese urban heritage. Among its remains, the 13th century terraced building F1 stood out for its scale and function as a governmental qiaolou (gate tower). This study reconstructed the original architectural design of F1 using an archaeotectural approach that integrated archaeological evidence and Song Dynasty architectural treatises, especially Yingzao Fashi, and comparatively analysed the building with contemporaneous structures and visual references. By applying the statistical estimation of historical measurement units (chi), typological analysis based on modular standards (cai) and the interpretive modelling of structural elements, the research offered a historically grounded and dimensionally coherent reconstruction. The study not only enhanced the understanding of Southern Song governmental architecture but also contributed a replicable methodological framework for reconstructing complex historical buildings from fragmentary archaeological data. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

24 pages, 14668 KiB  
Article
Metric Error Assessment Regarding Geometric 3D Reconstruction of Transparent Surfaces via SfM Enhanced by 2D and 3D Gaussian Splatting
by Dario Billi, Gabriella Caroti and Andrea Piemonte
Sensors 2025, 25(14), 4410; https://doi.org/10.3390/s25144410 - 15 Jul 2025
Viewed by 674
Abstract
This research investigates the metric accuracy of 3D transparent object reconstruction, a task where conventional photogrammetry often fails. The topic is especially relevant in cultural heritage (CH), where accurate digital documentation of glass and transparent artifacts is important. The work proposes a practical [...] Read more.
This research investigates the metric accuracy of 3D transparent object reconstruction, a task where conventional photogrammetry often fails. The topic is especially relevant in cultural heritage (CH), where accurate digital documentation of glass and transparent artifacts is important. The work proposes a practical methodology using existing tools to verify metric accuracy standards. The study compares three methods, conventional photogrammetry, 3D Gaussian splatting (3DGS), and 2D Gaussian splatting (2DGS), to assess their ability to produce complete and metrically reliable 3D models suitable for measurement and geometric analysis. A transparent glass artifact serves as the case study. Results show that 2DGS captures fine surface and internal details with better geometric consistency than 3DGS and photogrammetry. Although 3DGS offers high visual quality, it introduces surface artifacts that affect metric reliability. Photogrammetry fails to reconstruct the object entirely. The study highlights that visual quality does not ensure geometric accuracy, which is critical for measurement applications. In this work, ground truth comparisons confirm that 2DGS offers the best trade-off between accuracy and appearance, despite higher computational demands. These findings suggest extending the experimentation to other sets of images featuring transparent objects, and possibly also reflective ones. Full article
Show Figures

Figure 1

26 pages, 6526 KiB  
Article
Typo-Morphology as a Conceptual Tool for Rural Settlements: Decoding Harran’s Vernacular Heritage with Reflections from Alberobello
by Ozge Ogut
Land 2025, 14(7), 1463; https://doi.org/10.3390/land14071463 - 14 Jul 2025
Viewed by 471
Abstract
Typo-morphology, as interpreted by the Italian School of Planning, provides an approach to investigate the relationship between built form and socio-cultural patterns in vernacular settlements. This study examines Harran, a heritage site in southeastern Türkiye known for its distinctive conic domed dwellings, to [...] Read more.
Typo-morphology, as interpreted by the Italian School of Planning, provides an approach to investigate the relationship between built form and socio-cultural patterns in vernacular settlements. This study examines Harran, a heritage site in southeastern Türkiye known for its distinctive conic domed dwellings, to explore how typo-morphological analysis can inform culturally sensitive design and adaptive reuse approaches. Despite its historical significance and inclusion in the UNESCO tentative list, Harran faces insufficient documentation, fragmented governance, limited conservation, and increasing pressure from urbanization and natural disasters. Using multiple sources and fieldwork, the research reconstructs the morphological evolution of Harran through diachronic maps across compound, district, and town scales. Reflections from Alberobello, Italy, i.e., the sister city of Harran and a UNESCO-listed town with a similarly unique vernacular fabric, provide a comparative view to explore different heritage management approaches. Harran evolved through informal, culture-driven growth, whereas Alberobello followed a regulated path. While Alberobello benefits from planned development and institutional preservation, Harran faces partial abandonment and neglect. By positioning typo-morphology as a conceptual planning tool, this paper emphasizes the need for context-responsive, ethically grounded, and inclusive approaches to heritage planning and conservation. It argues for planning practices that are not only technically competent but also attuned to place-based knowledge, local identities, and the long-term sustainability of living heritage. Full article
(This article belongs to the Special Issue Urban Morphology: A Perspective from Space (Second Edition))
Show Figures

Graphical abstract

17 pages, 610 KiB  
Review
Three-Dimensional Reconstruction Techniques and the Impact of Lighting Conditions on Reconstruction Quality: A Comprehensive Review
by Dimitar Rangelov, Sierd Waanders, Kars Waanders, Maurice van Keulen and Radoslav Miltchev
Lights 2025, 1(1), 1; https://doi.org/10.3390/lights1010001 - 14 Jul 2025
Viewed by 351
Abstract
Three-dimensional (3D) reconstruction has become a fundamental technology in applications ranging from cultural heritage preservation and robotics to forensics and virtual reality. As these applications grow in complexity and realism, the quality of the reconstructed models becomes increasingly critical. Among the many factors [...] Read more.
Three-dimensional (3D) reconstruction has become a fundamental technology in applications ranging from cultural heritage preservation and robotics to forensics and virtual reality. As these applications grow in complexity and realism, the quality of the reconstructed models becomes increasingly critical. Among the many factors that influence reconstruction accuracy, the lighting conditions at capture time remain one of the most influential, yet widely neglected, variables. This review provides a comprehensive survey of classical and modern 3D reconstruction techniques, including Structure from Motion (SfM), Multi-View Stereo (MVS), Photometric Stereo, and recent neural rendering approaches such as Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS), while critically evaluating their performance under varying illumination conditions. We describe how lighting-induced artifacts such as shadows, reflections, and exposure imbalances compromise the reconstruction quality and how different approaches attempt to mitigate these effects. Furthermore, we uncover fundamental gaps in current research, including the lack of standardized lighting-aware benchmarks and the limited robustness of state-of-the-art algorithms in uncontrolled environments. By synthesizing knowledge across fields, this review aims to gain a deeper understanding of the interplay between lighting and reconstruction and provides research directions for the future that emphasize the need for adaptive, lighting-robust solutions in 3D vision systems. Full article
Show Figures

Figure 1

32 pages, 4252 KiB  
Article
Heritage and Resilience: Sustainable Recovery of Historic Syrian Cities
by Emad Noaime and Mohammed Mashary Alnaim
Buildings 2025, 15(14), 2403; https://doi.org/10.3390/buildings15142403 - 9 Jul 2025
Viewed by 494
Abstract
This study investigates the challenges and opportunities of balancing cultural preservation, tourism investment, and community resilience in historic Syrian cities during the post-war recovery period. The Syrian conflict has imposed considerable harm upon the nation’s cultural heritage, encompassing UNESCO World Heritage sites, thereby [...] Read more.
This study investigates the challenges and opportunities of balancing cultural preservation, tourism investment, and community resilience in historic Syrian cities during the post-war recovery period. The Syrian conflict has imposed considerable harm upon the nation’s cultural heritage, encompassing UNESCO World Heritage sites, thereby interrupting not only the urban infrastructure but also local economies and social networks. Utilizing a comprehensive methodology that includes a literature review, stakeholder interviews, and local surveys, this research investigates the potential for aligning cultural preservation with tourism investment to promote sustainable economic revitalization while simultaneously enhancing social cohesion and community resilience. The results underscore the significance of inclusive governance, participatory planning, and capacity enhancement to guarantee that post-conflict urban redevelopment fosters enduring environmental, social, and cultural sustainability. By framing the Syrian case within the broader context of global urban sustainability and resilience discourse, the study offers valuable insights for policymakers, urban planners, and heritage managers working in post-conflict or post-disaster environments worldwide. In the end, the study highlights that the revitalization of historic cities transcends being a simple technical or economic endeavor; it is a complex process of re-establishing identity, strengthening communities, and fostering sustainable, resilient urban futures. Full article
(This article belongs to the Special Issue Community Resilience and Urban Sustainability: A Global Perspective)
Show Figures

Figure 1

17 pages, 2881 KiB  
Article
Seismic Vulnerability Assessment and Sustainable Retrofit of Masonry Factories: A Case Study of Industrial Archeology in Naples
by Giovanna Longobardi and Antonio Formisano
Sustainability 2025, 17(13), 6227; https://doi.org/10.3390/su17136227 - 7 Jul 2025
Viewed by 276
Abstract
Masonry industrial buildings, common in the 19th and 20th centuries, represent a significant architectural typology. These structures are crucial to the study of industrial archeology, which focuses on preserving and revitalizing historical industrial heritage. Often left neglected and deteriorating, they hold great potential [...] Read more.
Masonry industrial buildings, common in the 19th and 20th centuries, represent a significant architectural typology. These structures are crucial to the study of industrial archeology, which focuses on preserving and revitalizing historical industrial heritage. Often left neglected and deteriorating, they hold great potential for adaptive reuse, transforming into vibrant cultural, commercial, or residential spaces through well-planned restoration and consolidation efforts. This paper explores a case study of such industrial architecture: a decommissioned factory near Naples. The complex consists of multiple structures with vertical supports made of yellow tuff stone and roofs framed by wooden trusses. To improve the building’s seismic resilience, a comprehensive analysis was conducted, encompassing its historical, geometric, and structural characteristics. Using advanced computer software, the factory was modelled with a macro-element approach, allowing for a detailed assessment of its seismic vulnerability. This approach facilitated both a global analysis of the building’s overall behaviour and the identification of potential local collapse mechanisms. Non-linear analyses revealed a critical lack of seismic safety, particularly in the Y direction, with significant out-of-plane collapse risk due to weak connections among walls. Based on these findings, a restoration and consolidation plan was developed to enhance the structural integrity of the building and to ensure its long-term safety and functionality. This plan incorporated metal tie rods, masonry strengthening through injections, and roof reconstruction. The proposed interventions not only address immediate seismic risks but also contribute to the broader goal of preserving this industrial architectural heritage. This study introduces a novel multidisciplinary methodology—integrating seismic analysis, traditional retrofit techniques, and sustainable reuse—specifically tailored to the rarely addressed typology of masonry industrial structures. By transforming the factory into a functional urban space, the project presents a replicable model for preserving industrial heritage within contemporary cityscapes. Full article
Show Figures

Figure 1

26 pages, 12914 KiB  
Article
Copy/Past: A Hauntological Approach to the Digital Replication of Destroyed Monuments
by Giovanni Lovisetto
Heritage 2025, 8(7), 255; https://doi.org/10.3390/heritage8070255 - 27 Jun 2025
Viewed by 700
Abstract
This article offers a critical analysis of two ‘replicas’ of monuments destroyed by ISIL in 2015: the Institute for Digital Archaeology’s Arch of Palmyra (2016) and the lamassu from Nimrud, exhibited in the Rinascere dalle Distruzioni exhibition (2016). Drawing on Jacques Derrida’s formulation [...] Read more.
This article offers a critical analysis of two ‘replicas’ of monuments destroyed by ISIL in 2015: the Institute for Digital Archaeology’s Arch of Palmyra (2016) and the lamassu from Nimrud, exhibited in the Rinascere dalle Distruzioni exhibition (2016). Drawing on Jacques Derrida’s formulation of hauntology and Umberto Eco’s theory of forgery, this study examines the ontological, ethical, and ideological stakes of digitally mediated replication. Rather than treating digital and physical ‘copies’ as straightforward reproductions of ancient ‘originals’, the essay reframes them as specters: material re-appearances haunted by loss, technological mediation, and political discourses. Through a close analysis of production methods, rhetorical framings, media coverage, and public reception, it argues that presenting such ‘replicas’ as faithful restorations or acts of cultural resurrection collapses a hauntological relationship into a false ontology. The article thus shows how, by concealing the intermediary, spectral role of digital modeling, such framings enable the symbolic use of these ‘replicas’ as instruments of Western technological triumphalism and digital colonialism. This research calls for a critical approach that recognizes the ontological peculiarities of such replicas, foregrounds their reliance on interpretive rather than purely mechanical processes, and acknowledges the ideological weight they carry. Full article
(This article belongs to the Special Issue Past for the Future: Digital Pathways in Cultural Heritage)
Show Figures

Figure 1

Back to TopTop