Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (437)

Search Parameters:
Keywords = herbivorous insects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3377 KiB  
Article
Effect of Thuja occidentalis L. Essential Oil Combined with Diatomite Against Selected Pests
by Janina Gospodarek, Elżbieta Boligłowa, Krzysztof Gondek, Krzysztof Smoroń and Iwona B. Paśmionka
Molecules 2025, 30(15), 3300; https://doi.org/10.3390/molecules30153300 - 6 Aug 2025
Abstract
Combining products of natural origin with different mechanisms of action on insect herbivores may provide an alternative among methods of plant protection against pests that are less risky for the environment. The aim of the study was to evaluate the effectiveness of mixtures [...] Read more.
Combining products of natural origin with different mechanisms of action on insect herbivores may provide an alternative among methods of plant protection against pests that are less risky for the environment. The aim of the study was to evaluate the effectiveness of mixtures of Thuja occidentalis L. essential oil and diatomite (EO + DE) compared to each substance separately in reducing economically important pests such as black bean aphid (BBA) Aphis fabae Scop., Colorado potato beetle (CPB) Leptinotarsa decemlineata Say., and pea leaf weevil (PLW) Sitona lineatus L. The effects on mortality (all pests) and foraging intensity (CPB and PLW) were tested. The improvement in effectiveness using a mixture of EO + DE versus single components against BBA was dose- and the developmental stage-dependent. The effect of enhancing CPB foraging inhibition through DE addition was obtained at a concentration of 0.2% EO (both females and males of CPB) and 0.5% EO (males) in no-choice experiments. In choice experiments, mixtures EO + DE with both 0.2% and 0.5% EO concentrations resulted in a significant reduction in CPB foraging. A significant strengthening effect of EO 0.5% through the addition of DE at a dose of 10% against PLW males was observed in the no-choice experiment, while, when the beetles had a choice, the synergistic effect of a mixture of EO 0.5% and DE 10% was also apparent in females. In conclusion, the use of DE mixtures with EO from T. occidentalis appears to be a promising strategy. The results support the idea of not using doses of EO higher than 0.5%. Full article
18 pages, 2082 KiB  
Article
Insect Assemblage and Insect–Plant Relationships in a Cultivated Guayule (Parthenium argentatum A. Gray) Plot in Spain
by Eduardo Jarillo, Guayente Latorre, Enrique Fernández-Carrillo, Sara Rodrigo-Gómez, José Luis Yela and Manuel Carmona
Insects 2025, 16(8), 808; https://doi.org/10.3390/insects16080808 - 4 Aug 2025
Abstract
This study aims to characterize for the first time the insect assemblage associated with sown, introduced guayule (Parthenium argentatum A. Gray, Asteraceae) in Castilla-La Mancha, Spain, and identify potential relationships with the crop. Insect sampling was conducted using nets and pan traps [...] Read more.
This study aims to characterize for the first time the insect assemblage associated with sown, introduced guayule (Parthenium argentatum A. Gray, Asteraceae) in Castilla-La Mancha, Spain, and identify potential relationships with the crop. Insect sampling was conducted using nets and pan traps during spring and early summer, coinciding with the flowering period of the plant. A total of 352 insect species/morphospecies across 12 orders were identified. Diptera, Coleoptera, Hemiptera, and Hymenoptera were the most species-rich and abundant orders. Within these orders, Muscidae, Syrphidae, Tenebrionidae, Dermestidae, Miridae, Halictidae, and Apidae were the most numerous families. Guayule flowering intensity increased gradually until mid-June, aligning with the peak activity of pollinating Diptera. The majority of the identified insects (74.4%) were potential pollinators, while nearly 50% were detritivores and approximately 30% were herbivorous. The similarity in insect families and functional roles observed in this study to previous studies in the USA and Mexico suggest that guayule may serve as a similar trophic resource for insects in Spain, despite being a non-native species. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

23 pages, 2655 KiB  
Article
Ribosomal RNA-Specific Antisense DNA and Double-Stranded DNA Trigger rRNA Biogenesis and Insecticidal Effects on the Insect Pest Coccus hesperidum
by Vol Oberemok, Nikita Gal’chinsky, Ilya Novikov, Alexander Sharmagiy, Ekaterina Yatskova, Ekaterina Laikova and Yuri Plugatar
Int. J. Mol. Sci. 2025, 26(15), 7530; https://doi.org/10.3390/ijms26157530 - 4 Aug 2025
Abstract
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, [...] Read more.
Contact unmodified antisense DNA biotechnology (CUADb), developed in 2008, employs short antisense DNA oligonucleotides (oligos) as a novel approach to insect pest control. These oligonucleotide-based insecticides target pest mature rRNAs and/or pre-rRNAs and have demonstrated high insecticidal efficacy, particularly against sap-feeding insect pests, which are key vectors of plant DNA viruses and among the most economically damaging herbivorous insects. To further explore the potential of CUADb, this study evaluated the insecticidal efficacy of short 11-mer antisense DNA oligos against Coccus hesperidum, in comparison with long 56-mer single-stranded and double-stranded DNA sequences. The short oligos exhibited higher insecticidal activity. By day 9, the highest mortality rate (97.66 ± 4.04%) was recorded in the Coccus-11 group, while the most effective long sequence was the double-stranded DNA in the dsCoccus-56 group (77.09 ± 6.24%). This study also describes the architecture of the DNA containment (DNAc) mechanism, highlighting the intricate interactions between rRNAs and various types of DNA oligos. During DNAc, the Coccus-11 treatment induced enhanced ribosome biogenesis and ATP production through a metabolic shift from carbohydrates to lipid-based energy synthesis. However, this ultimately led to a ‘kinase disaster’ due to widespread kinase downregulation resulting from insufficient ATP levels. All DNA oligos with high or moderate complementarity to target rRNA initiated hypercompensation, but subsequent substantial rRNA degradation and insect mortality occurred only when the oligo sequence perfectly matched the rRNA. Both short and long oligonucleotide insecticide treatments led to a 3.75–4.25-fold decrease in rRNA levels following hypercompensation, which was likely mediated by a DNA-guided rRNase, such as RNase H1, while crucial enzymes of RNAi (DICER1, Argonaute 2, and DROSHA) were downregulated, indicating fundamental difference in molecular mechanisms of DNAc and RNAi. Consistently, significant upregulation of RNase H1 was detected in the Coccus-11 treatment group. In contrast, treatment with random DNA oligos resulted in only a 2–3-fold rRNA decrease, consistent with the normal rRNA half-life maintained by general ribonucleases. These findings reveal a fundamental new mechanism of rRNA regulation via complementary binding between exogenous unmodified antisense DNA and cellular rRNA. From a practical perspective, this minimalist approach, applying short antisense DNA dissolved in water, offers an effective, eco-friendly and innovative solution for managing sternorrhynchans and other insect pests. The results introduce a promising new concept in crop protection: DNA-programmable insect pest control. Full article
(This article belongs to the Special Issue New Insights into Plant and Insect Interactions (Second Edition))
Show Figures

Figure 1

16 pages, 1994 KiB  
Article
Fall Webworm Host Plant Preferences Generate a Reduced Predation Enemy-Free Space in Its Interaction with Parasitoids
by Lina Pan, Wenfang Gao, Zhiqin Song, Xiaoyu Li, Yipeng Wei, Guangyan Qin, Yiping Hu, Zeyang Sun, Cuiqing Gao, Penghua Bai, Gengping Zhu, Wenjie Wang and Min Li
Insects 2025, 16(8), 804; https://doi.org/10.3390/insects16080804 - 4 Aug 2025
Abstract
Plants and insects are developing strategies to avoid each other’s defense systems. Host plants may release volatile compounds to attract the natural enemies of herbivores; insect pests may also select host plants that are deterrent to natural enemies to avoid such predation. Here [...] Read more.
Plants and insects are developing strategies to avoid each other’s defense systems. Host plants may release volatile compounds to attract the natural enemies of herbivores; insect pests may also select host plants that are deterrent to natural enemies to avoid such predation. Here we investigated whether the host plant preference of Hyphantria cunea correlates with the attractiveness of these plants to Chouioia cunea, a parasitoid wasp that serves as the primary natural enemy of H. cunea. We found Morus alba was the preferred host plant for female H. cunea. Although M. alba provided suboptimal nutritional value for H. cunea growth and development compared to other plants, it attracted fewer C. cunea relative to alternative host plants. Gas chromatography–mass spectrometry (GC–MS) coupled with gas chromatography–electroantennographic detection (GC-EAD) analysis identified six distinct compounds among the herbivore-induced plant volatiles (HIPVs) produced following H. cunea feeding. Notably, M. alba was the sole plant species that did not emit tridecane. These results suggest that H. cunea utilizes M. alba as a reduced predation enemy-free space, thereby minimizing parasitization by C. cunea. Our research emphasizes the importance of considering adaptive responses of herbivores within the context of multi-trophic relationships, rather than solely focusing on optimizing herbivore growth on the most nutritionally suitable plant host. Full article
(This article belongs to the Special Issue Advances in Chemical Ecology of Plant–Insect Interactions)
Show Figures

Graphical abstract

13 pages, 2838 KiB  
Article
Differential Effects of Two Herbivore-Induced Plant Volatiles on the Oviposition of Chilo suppressalis
by Xiaowei Yang, Chang Liu, Xixi Jia, Chen Zhang, Lanzhi Han, Wanlun Cai and Yunhe Li
Plants 2025, 14(15), 2384; https://doi.org/10.3390/plants14152384 - 2 Aug 2025
Viewed by 205
Abstract
Herbivore-induced plant volatiles (HIPVs) are well known for their roles in herbivore deterrence and attraction of natural enemies, but their direct impact on insect reproduction remains largely unexplored. In this study, we provide novel evidence that two representative HIPVs, 2-heptanol and α-cedrene, exert [...] Read more.
Herbivore-induced plant volatiles (HIPVs) are well known for their roles in herbivore deterrence and attraction of natural enemies, but their direct impact on insect reproduction remains largely unexplored. In this study, we provide novel evidence that two representative HIPVs, 2-heptanol and α-cedrene, exert opposing effects on the reproduction of Chilo suppressalis, a major rice pest. While both volatiles repelled adults, α-cedrene unexpectedly enhanced oviposition, whereas 2-heptanol significantly suppressed egg laying. To examine these effects, we conducted oviposition assays, preoviposition and longevity tests, combined with qPCR and transcriptome analyses to explore underlying molecular responses. Mechanistically, α-cedrene upregulated Kr-h1, a gene linked to juvenile hormone signaling and vitellogenesis, promoting reproductive investment. Transcriptomic profiling revealed divergent molecular responses: α-cedrene activated reproductive pathways, whereas 2-heptanol induced stress- and immune-related genes, suggesting a trade-off between stress defense and reproduction. These findings demonstrate that HIPVs can exert compound-specific reproductive effects beyond repellency. This work fills a key knowledge gap and highlights the potential of HIPVs as precision tools in pest management strategies that exploit behavioral and physiological vulnerabilities beyond repellency. Full article
Show Figures

Figure 1

29 pages, 2926 KiB  
Review
Microbial Symbiosis in Lepidoptera: Analyzing the Gut Microbiota for Sustainable Pest Management
by Abdul Basit, Inzamam Ul Haq, Moazam Hyder, Muhammad Humza, Muhammad Younas, Muhammad Rehan Akhtar, Muhammad Adeel Ghafar, Tong-Xian Liu and Youming Hou
Biology 2025, 14(8), 937; https://doi.org/10.3390/biology14080937 - 25 Jul 2025
Viewed by 400
Abstract
Recent advances in microbiome studies have deepened our understanding of endosymbionts and gut-associated microbiota in host biology. Of those, lepidopteran systems in particular harbor a complex and diverse microbiome with various microbial taxa that are stable and transmitted between larval and adult stages, [...] Read more.
Recent advances in microbiome studies have deepened our understanding of endosymbionts and gut-associated microbiota in host biology. Of those, lepidopteran systems in particular harbor a complex and diverse microbiome with various microbial taxa that are stable and transmitted between larval and adult stages, and others that are transient and context-dependent. We highlight key microorganisms—including Bacillus, Lactobacillus, Escherichia coli, Pseudomonas, Rhizobium, Fusarium, Aspergillus, Saccharomyces, Bifidobacterium, and Wolbachia—that play critical roles in microbial ecology, biotechnology, and microbiome studies. The fitness implications of these microbial communities can be variable; some microbes improve host performance, while others neither positively nor negatively impact host fitness, or their impact is undetectable. This review examines the central position played by the gut microbiota in interactions of insects with plants, highlighting the functions of the microbiota in the manipulation of the behavior of herbivorous pests, modulating plant physiology, and regulating higher trophic levels in natural food webs. It also bridges microbiome ecology and applied pest management, emphasizing S. frugiperda as a model for symbiont-based intervention. As gut microbiota are central to the life history of herbivorous pests, we consider how these interactions can be exploited to drive the development of new, environmentally sound biocontrol strategies. Novel biotechnological strategies, including symbiont-based RNA interference (RNAi) and paratransgenesis, represent promising but still immature technologies with major obstacles to overcome in their practical application. However, microbiota-mediated pest control is an attractive strategy to move towards sustainable agriculture. Significantly, the gut microbiota of S. frugiperda is essential for S. frugiperda to adapt to a wide spectrum of host plants and different ecological niches. Studies have revealed that the microbiome of S. frugiperda has a close positive relationship with the fitness and susceptibility to entomopathogenic fungi; therefore, targeting the S. frugiperda microbiome may have good potential for innovative biocontrol strategies in the future. Full article
(This article belongs to the Special Issue Recent Advances in Wolbachia and Spiroplasma Symbiosis)
Show Figures

Graphical abstract

12 pages, 1597 KiB  
Article
Effects of Anthropogenic Vibratory Noise on Plant Development and Herbivory
by Estefania Velilla, Laura Bellato, Eleanor Collinson and Wouter Halfwerk
Acoustics 2025, 7(3), 45; https://doi.org/10.3390/acoustics7030045 - 25 Jul 2025
Viewed by 289
Abstract
Anthropogenic infrastructure, such as inland wind turbines commonly found in agricultural fields, has substantially increased subterranean vibratory noise in the past decades. Plants, being rooted in soil, are continuously exposed to these vibrations, yet we have little understanding of how vibrational noise affects [...] Read more.
Anthropogenic infrastructure, such as inland wind turbines commonly found in agricultural fields, has substantially increased subterranean vibratory noise in the past decades. Plants, being rooted in soil, are continuously exposed to these vibrations, yet we have little understanding of how vibrational noise affects plant development and, consequently, plant–insect interactions. Here, we examine the impact of windmill-like vibrational noise on the growth of Pisum sativum and its full-factorial interaction with the generalist herbivore Spodoptera exigua. Plants were exposed to either high or low vibrational noise from seed germination to the seed production stage. We recorded germination, flowering, fruiting time, and daily shoot length. Additionally, we measured herbivory intensity by Spodoptera exigua caterpillars placed on a subset of plants. Plants exposed to high vibrational noise grew significantly faster and taller than those in the low-noise treatment. Additionally, we found a marginally significant trend for earlier flowering in plants exposed to high noise. We did not find a significant effect of vibrational noise on herbivory. Our results suggest that underground vibrational noise can influence plant growth rates, which may potentially have ecological and agricultural implications. Faster growth may alter interspecific competition and shift trade-offs between growth and defense. Understanding these effects is important in assessing the broader ecological consequences of renewable energy infrastructure. Full article
Show Figures

Figure 1

23 pages, 1480 KiB  
Article
Intercropping Enhances Arthropod Diversity and Ecological Balance in Cowpea, Hemp, and Watermelon Systems
by Ikponmwosa N. Egbon, Beatrice N. Dingha, Gilbert N. Mukoko and Louis E. Jackai
Insects 2025, 16(7), 724; https://doi.org/10.3390/insects16070724 - 16 Jul 2025
Viewed by 464
Abstract
This study investigates arthropod assemblage in cowpea, hemp, and watermelon grown both as monocrops and intercrops using three sampling techniques: direct visual counts, sticky cards, and pan traps. A total of 31,774 arthropods were collected, spanning two classes [Arachnida (0.07%) and Insecta (99.93%)], [...] Read more.
This study investigates arthropod assemblage in cowpea, hemp, and watermelon grown both as monocrops and intercrops using three sampling techniques: direct visual counts, sticky cards, and pan traps. A total of 31,774 arthropods were collected, spanning two classes [Arachnida (0.07%) and Insecta (99.93%)], 11 orders, and 82 families representing diverse functional groups. Arachnids were represented by a single family (Araneae). Among insects, the composition included Diptera (36.81%), Thysanoptera (24.64%), Hemiptera (19.43%), Hymenoptera (11.58%), Coleoptera (6.84%), Lepidoptera (0.076%) and Blattodea, Odonata, Orthoptera, Psocodea (≤0.005%). Roughly 10% of the total arthropods were pollinators, while the remainder were primarily herbivores and predators. Apidae were abundant in all treatments except for watermelon monocrops. Intercropping supported more pollinators, particularly Apidae, Halictidae, and Sarcophagidae. However, herbivores dominated (>50%) in each system, largely due to high presence of thrips and cicadellids. Predators accounted for approximately 30%, with dolichopodids (Diptera) being the most dominant. Watermelon yield increased by 30–60% in the intercrop systems. While intercropping increases overall arthropod abundance, it also creates a more balanced community where beneficial organisms are not heavily outnumbered by pests and contributes to enhanced ecological resilience and crop performance. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

23 pages, 5108 KiB  
Review
The Invasive Mechanism and Impact of Arundo donax, One of the World’s 100 Worst Invasive Alien Species
by Hisashi Kato-Noguchi and Midori Kato
Plants 2025, 14(14), 2175; https://doi.org/10.3390/plants14142175 - 14 Jul 2025
Viewed by 365
Abstract
Arundo donax L. has been introduced in markets worldwide due to its economic value. However, it is listed in the world’s 100 worst alien invasive species because it easily escapes from cultivation, and forms dense monospecific stands in riparian areas, agricultural areas, and [...] Read more.
Arundo donax L. has been introduced in markets worldwide due to its economic value. However, it is listed in the world’s 100 worst alien invasive species because it easily escapes from cultivation, and forms dense monospecific stands in riparian areas, agricultural areas, and grassland areas along roadsides, including in protected areas. This species grows rapidly and produces large amounts of biomass due to its high photosynthetic ability. It spreads asexually through ramets, in addition to stem and rhizome fragments. Wildfires, flooding, and human activity promote its distribution and domination. It can adapt to various habitats and tolerate various adverse environmental conditions, such as cold temperatures, drought, flooding, and high salinity. A. donax exhibits defense mechanisms against biotic stressors, including herbivores and pathogens. It produces indole alkaloids, such as bufotenidine and gramine, as well as other alkaloids that are toxic to herbivorous mammals, insects, parasitic nematodes, and pathogenic fungi and oomycetes. A. donax accumulates high concentrations of phytoliths, which also protect against pathogen infection and herbivory. Only a few herbivores and pathogens have been reported to significantly damage A. donax growth and populations. Additionally, A. donax exhibits allelopathic activity against competing plant species, though the allelochemicals involved have yet to be identified. These characteristics may contribute to its infestation, survival, and population expansion in new habitats as an invasive plant species. Dense monospecific stands of A. donax alter ecosystem structures and functions. These stands impact abiotic processes in ecosystems by reducing water availability, and increasing the risk of erosion, flooding, and intense fires. The stands also negatively affect biotic processes by reducing plant diversity and richness, as well as the fitness of habitats for invertebrates and vertebrates. Eradicating A. donax from a habitat requires an ongoing, long-term integrated management approach based on an understanding of its invasive mechanisms. Human activity has also contributed to the spread of A. donax populations. There is an urgent need to address its invasive traits. This is the first review focusing on the invasive mechanisms of this plant in terms of adaptation to abiotic and biotic stressors, particularly physiological adaptation. Full article
Show Figures

Graphical abstract

13 pages, 841 KiB  
Article
Silicon Protects Rice Plants Against Striped Stem Borer by Disturbing Herbivory-Induced Putrescine Accumulation
by Hao Zhang, Xiaodong Liu, Cunyan Li, Linzhi Fang, Chaoyue Gai, Rensen Zeng, Qiongli Wang, Yuanyuan Song and Daoqian Chen
Plants 2025, 14(13), 2066; https://doi.org/10.3390/plants14132066 - 6 Jul 2025
Viewed by 341
Abstract
Silicon (Si) protects plants against insect herbivores; however, the underlying mechanisms remain unclear. Polyamines (PAs) play a crucial role in plant–insect interactions. Here, the involvement of Si in putrescine (Put) metabolism and its role in rice resistance against striped stem borer (SSB, Chilo [...] Read more.
Silicon (Si) protects plants against insect herbivores; however, the underlying mechanisms remain unclear. Polyamines (PAs) play a crucial role in plant–insect interactions. Here, the involvement of Si in putrescine (Put) metabolism and its role in rice resistance against striped stem borer (SSB, Chilo suppressalis Walker) were investigated. The results showed that SSB larval infestation led to a substantial accumulation of free Put in rice seedlings. Si application increased rice resistance against SSB and repressed the SSB attack-induced accumulation of Put, in parallel with a decreased expression of Put biosynthesis genes encoding arginine decarboxylase (ADC1 and ADC2). Moreover, Si application had no significant effect on the wounding-induced expression of ADC1 and ADC2, but attenuated the further elevation in the transcription of ADC1 and ADC2 induced by SSB larvae oral secretion. Simultaneously, Si addition reduced the Put and spermidine contents in SSB-attacked plants. Furthermore, the exogenous application of Put attenuated Si-enhanced resistance against SSB larvae, whereas exogenous D-arginine, an inhibitor of ADC, showed similar effects to Si on rice resistance against SSB. Our findings indicate that Si improves rice resistance to SSB, at least partly by reducing herbivory-stimulated putrescine accumulation. Full article
(This article belongs to the Special Issue Sustainable Strategies for Managing Plant Diseases)
Show Figures

Figure 1

15 pages, 1371 KiB  
Article
Host Plant Dependence of the Symbiotic Microbiome of the Gall-Inducing Wasp Trichagalma acutissimae
by Yingnan Wang, Yuanchen Zhang, Ran Li, Yujian Li, Muha Cha and Xianfeng Yi
Insects 2025, 16(7), 652; https://doi.org/10.3390/insects16070652 - 23 Jun 2025
Viewed by 510
Abstract
Symbiotic bacteria play a pivotal role in the biology and ecology of herbivorous insects, affecting host growth and adaptation. However, the effects of host identity on the symbiotic microbiota of gall-inducing insects remain less explored. In this study, we utilized high-throughput sequencing to [...] Read more.
Symbiotic bacteria play a pivotal role in the biology and ecology of herbivorous insects, affecting host growth and adaptation. However, the effects of host identity on the symbiotic microbiota of gall-inducing insects remain less explored. In this study, we utilized high-throughput sequencing to investigate the effects of different oak hosts on the structure and diversity of the symbiotic microbial community in the asexual larvae of the gall-inducing wasp Trichagalma acutissimae. Host plant species significantly altered the alpha and beta diversity of symbiotic microbiota of T. acutissimae. At the phylum level, Proteobacteria was the predominant microflora in both groups, with significantly higher abundance in larvae parasitizing Quercus acutissima than in those parasitizing Q. variabilis. Pseudomonas, which has been identified as responsible for tannin decomposition, was the most dominant genus in T. acutissimae larvae infesting both hosts. LEfSe analysis revealed substantial differences in the symbiotic microbial communities between the two hosts while also highlighting some commonalities. Functional prediction analysis indicated no significant difference in the functional roles of symbiotic bacteria between larvae infesting the two hosts. These findings suggest that the symbiotic microbiome of T. acutissimae larvae is influenced by host plant species, yet different microbial compositions may perform similar functions, implying the potential role of symbiotic microbiota in the adaptation to high-tannin oak leaves. This research enhances our understanding of the symbiotic relationship between forest pests and their associated microbes. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

23 pages, 6728 KiB  
Article
Identification and Expression Analysis of G-Protein-Coupled Receptors Provide Insights into Functional and Mechanistic Responses to Herbivore-Induced Plant Volatiles of Paracarophenax alternatus
by Ruiheng Lin, Xu Chu, Yangming Zhang, Sikai Ke, Yunfeng Zheng, Wei Yu, Feiping Zhang and Songqing Wu
Int. J. Mol. Sci. 2025, 26(12), 5890; https://doi.org/10.3390/ijms26125890 - 19 Jun 2025
Viewed by 379
Abstract
Herbivore-induced plant volatiles (HIPVs) play a pivotal role in mediating tritrophic interactions between plants, herbivores, and their natural enemies. Paracarophenax alternatus, a parasitic mite targeting the egg stage of Monochamus alternatus, has emerged as a promising biocontrol agent. However, its ability [...] Read more.
Herbivore-induced plant volatiles (HIPVs) play a pivotal role in mediating tritrophic interactions between plants, herbivores, and their natural enemies. Paracarophenax alternatus, a parasitic mite targeting the egg stage of Monochamus alternatus, has emerged as a promising biocontrol agent. However, its ability to detect Pinus massoniana-derived HIPVs for host insect localization remains unclear. G-protein-coupled receptors (GPCRs) may play a role in mediating the perception of HIPVs and associated chemosensory signaling pathways in mites. In this study, a total of 85 GPCRs were identified from P. alternatus. All GPCRs exhibited conserved transmembrane domains and stage-specific expression patterns, with 21 receptors significantly upregulated in viviparous mites. Combined with two previously identified odorant receptors (ORs), six candidate chemosensory receptors were selected for molecular dynamics simulations to validate their binding stability with key volatile compounds. The results demonstrate that specific GPCRs likely facilitate HIPV detection in mites, enabling precise host localization within dynamic ecological niches. Our findings provide critical insights into the molecular basis of mite–host interactions and establish a framework for optimizing P. alternatus-based biocontrol strategies against pine wilt disease vectors. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 938 KiB  
Article
Behavioral Responses of Chrysoperla defreitasi (Neuroptera: Chrysopidae) and Myzus persicae (Hemiptera: Aphididae) to Volatile Compounds from Wild and Domesticated Ugni molinae
by Manuel Chacón-Fuentes, Leonardo Bardehle, César Burgos-Díaz, Marcelo Lizama, Daniel Martínez-Cisterna, Mauricio Opazo-Navarrete, Cristina Bravo-Reyes and Andrés Quiroz
Insects 2025, 16(6), 594; https://doi.org/10.3390/insects16060594 - 5 Jun 2025
Viewed by 704
Abstract
Domestication significantly altered the phenotypic and chemical traits of murtilla, notably reducing the emission of volatile compounds essential for plant–insect interactions. This reduction may affect the plant’s natural defense mechanisms, influencing its interactions with herbivores and predators. Therefore, this study tests whether domestication [...] Read more.
Domestication significantly altered the phenotypic and chemical traits of murtilla, notably reducing the emission of volatile compounds essential for plant–insect interactions. This reduction may affect the plant’s natural defense mechanisms, influencing its interactions with herbivores and predators. Therefore, this study tests whether domestication reduces volatile emissions in murtilla, increasing aphid preference and decreasing lacewing attraction. We selected wild ancestors (19-1, 22-1, and 23-2) from a longterm Ugni molinae germplasm bank. Crosses between these wild ancestors generated four first-generation domesticated ecotypes, 10-1, 16-16, 17-4, and 66-2, used in this study. These first-generation domesticated ecotypes were six years old at the time of the study and were used for comparisons in volatile profile and insect interaction analyses. The olfactometric preference index (OPI) for lacewing larvae and aphids revealed that wild ancestors attracted more predators than domesticated plants. For example, Ecotype 19-1 had an OPI of 1.64 for larvae and 1.49 for aphids, while Ecotype 10-1 showed lower attraction (OPI of 1.01 for larvae and 1.00 for aphids). Gas chromatography analysis identified differences in volatile organic compounds, with wild ancestor ecotypes emitting higher levels of compounds such as 2-hexanone, 1,8-cineole, and α-caryophyllene. Principal component analysis and hierarchical clustering confirmed these chemical distinctions. In olfactometer assays, lacewing larvae preferred α-caryophyllene and 2,4-dimethyl acetophenone, while aphids favored 2-hexanone and 3-hexanol. In Y-tube assays, lacewing adults showed strong attraction to α-pinene and 2,4-dimethyl acetophenone, with preferences increasing with concentration. These results indicate that domestication altered the volatile murtilla profile, reducing its attractiveness to natural predators while increasing its susceptibility to herbivores, supporting the plant domestication defense theory. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Graphical abstract

21 pages, 11870 KiB  
Review
Evolution of the Defense Compounds Against Biotic Stressors in the Invasive Plant Species Leucaena leucocephala
by Hisashi Kato-Noguchi and Midori Kato
Molecules 2025, 30(11), 2453; https://doi.org/10.3390/molecules30112453 - 3 Jun 2025
Cited by 1 | Viewed by 959
Abstract
Leucaena leucocephala (Lam.) de Wit is listed in the world’s 100 worst alien invasive species because of the risks it poses to native plant communities. Life history traits, such as high growth and reproductive rates, and a high capacity to adapt to different [...] Read more.
Leucaena leucocephala (Lam.) de Wit is listed in the world’s 100 worst alien invasive species because of the risks it poses to native plant communities. Life history traits, such as high growth and reproductive rates, and a high capacity to adapt to different environmental conditions may contribute to its invasive properties. Biotic stressors, such as herbivores, pathogens, and competing plant species are known to exert significant selective pressure on the plant’s survival, distribution, and abundance. L. leucocephala has been reported to contain several compounds involved in the defense functions against these biotic stressors. A large amount of L-mimosine, a non-protein amino acid, was found in all plant parts of L. leucocephala, including its flowers. L-Mimosine is toxic to herbivorous mammals and insects, parasitic nematodes, pathogenic fungi, and neighboring competing plant species by inactivating various essential enzymes and blocking DNA replication, and/or inducing oxidative stress conditions. Several flavonoids, polyphenolic compounds, and/or derivatives of benzoic and cinnamic acids are toxic to parasitic nematodes, pathogenic fungi and bacteria, and competing plant species by disrupting plasma membrane structures and functions, and various metabolic processes. These compounds may represent the invasive traits of L. leucocephala that have undergone natural selection during the evolution of the species. They may contribute to the defense functions against the biotic stressors, and increase its survival, distribution, and abundance in the introduced ranges. This is the first review to focus on the compounds involved in the defense functions against biotic stressors. Full article
Show Figures

Figure 1

15 pages, 1113 KiB  
Article
Reactivity of Z-3-Hexenal with Amino Groups Provides a Potential Mechanism for Its Direct Effects on Insect Herbivores
by Jurgen Engelberth and Marie Engelberth
Insects 2025, 16(6), 582; https://doi.org/10.3390/insects16060582 - 31 May 2025
Viewed by 517
Abstract
Green leaf volatiles (GLV) have been shown in the past to significantly affect herbivore performance in plants by activating direct and indirect defense measures. At the same time, insect herbivores have developed multiple mechanisms to reduce the quantities of Z-3-hexenal, the first product [...] Read more.
Green leaf volatiles (GLV) have been shown in the past to significantly affect herbivore performance in plants by activating direct and indirect defense measures. At the same time, insect herbivores have developed multiple mechanisms to reduce the quantities of Z-3-hexenal, the first product of the pathway. Among the various measures is the abundance of a molecule named hexenal trapping molecule (HALT), which appears to bind large quantities of freshly produced Z-3-hexenal (Z3al). Functional groups like -NH2 within HALT may be responsible for the binding of Z3al. To test for this potential interaction, we tested different amino acids in various binding assays for their capacity to bind Z3al. We found a significant reduction in Z3al production in the presence of these amino acids, presumably through Schiff base formation. In a feeding assay with beet armyworm (Spodoptera exigua), we found a significant impact of a Z3al- or E2al-spiked artificial diet on growth and development. Together, these data indicate that the presence of Z3al in a diet can harm insect herbivores, which may help to further explain the efforts insect herbivores undertake to suppress the biosynthesis of this compound. Full article
(This article belongs to the Collection Plant Responses to Insect Herbivores)
Show Figures

Figure 1

Back to TopTop