Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = heptanoic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 7352 KiB  
Article
Sensing of Volatile Organic Compounds by Haller’s Structure in Ixodidae Tick: Electroscutumography and Olfactometric Bioassay
by Alivia Mandal, Bishwajeet Paul, Biswanath Bhowmik, Raja Reddy Gundreddy, Adolat U. Mirzaieva and Kakali Bhadra
Biosensors 2025, 15(6), 358; https://doi.org/10.3390/bios15060358 - 4 Jun 2025
Viewed by 763
Abstract
Background: Chemosensation in ticks opens a novel and unique field for scientific research. This study highlights ticks’ chemosensory system to comprehend its host-searching behavior and other integrated chemistry and biology involving Haller’s structure. Methodology: This study combines microanatomical, electrophysiological, and behavioral experiments to [...] Read more.
Background: Chemosensation in ticks opens a novel and unique field for scientific research. This study highlights ticks’ chemosensory system to comprehend its host-searching behavior and other integrated chemistry and biology involving Haller’s structure. Methodology: This study combines microanatomical, electrophysiological, and behavioral experiments to investigate the role of Haller’s organ in adult ticks in response to different classes of organic compounds. Results: We showed the microscopic anatomy of Haller’s organ in Haemaphysalis darjeeling, present at the terminal segment of the first pair of appendages. Haller’s structure serves a vital function in perceiving odor. The electrophysiological activity of adult ticks to different classes of organic compounds via electroscutumography was explored at five different concentrations: w/v 0.001, 0.01, 0.1, 1.0, and 2.0%. Among 55 organic compounds, moderate to high stimulation was recorded with pyruvate (13.28 mv at 2%), ammonia (12.26 mv at 2%), benzoic acid (1.99 mv at 0.001%), isobutyric acid (1.39 mv at 0.001%), 2,6-dichlorophenol (1.34 mv at 0.001%), p-Tolualdehyde (1.26 mv at 2%), tetradecane (1.23 mv at 2%), docosane (1.17 mv at 2%), citronellal (1.13 mv at 0.1%), isopropyl acetate (1.05 mv at 0.01%), cyclohexanol (1.03 mv at 2%), 1-octane-3-ol (1.02 mv at 2%), and 1-octanol (1.01 mv at 0.001%). Olfactometric bioassays at w/v 2.0% concentration further confirmed that ammonia, pyruvate, 1-octane-3-ol, hematin porcine, p-Tolualdehyde, methyl salicylate, uric acid, tetradecane, carbon dioxide, propanoic acid, 3-hexanol, hexanoic acid, adenine, 2,6-dichlorophenol, hexadecane, heptanoic acid, pentanoic acid, octadecane, guanine, and nonanoic acid acted as strong attractants, while citronellal, eugenol, butyric acid, geraniol, benzaldehyde, and tiglic aldehyde showed an active repellent effect against the tick species. Conclusions: This investigation provides knowledge of the olfactory sensilla of Haller’s structure as biosensors behind tick olfaction and the possibility for chemical detection of diverse attractants and repellents for future development of anti-tick compounds. Full article
(This article belongs to the Section Environmental Biosensors and Biosensing)
Show Figures

Graphical abstract

17 pages, 2836 KiB  
Article
The Optimization of Demulsification Using Composite Fatty Acids in Aqueous Enzymatic Extraction and the Changes of the Emulsion Stability During Demulsification
by Zhihua Shao, Xiangrui Kong, Hanxiang Yang, Yiyang Zhang, Chenxian Yang, Fusheng Chen, Zikun Wang, Jiaxun Chen, Tingwei Zhu, Ying Xin and Yu Chen
Foods 2025, 14(5), 749; https://doi.org/10.3390/foods14050749 - 22 Feb 2025
Cited by 2 | Viewed by 858
Abstract
Aqueous enzymatic extraction (AEE) can simultaneously separate oil and protein. However, a stable O/W emulsion is present in the AEE process, which is not favorable for extracting oils. This study optimized the use of heptanoic and octanoic acids for demulsification in aqueous enzymatic [...] Read more.
Aqueous enzymatic extraction (AEE) can simultaneously separate oil and protein. However, a stable O/W emulsion is present in the AEE process, which is not favorable for extracting oils. This study optimized the use of heptanoic and octanoic acids for demulsification in aqueous enzymatic extraction. The optimal condition for demulsification, including a fatty acid ratio of 1:3 (heptanoic acid to octanoic acid) with 1.00% addition, a reaction time of 40 min, a temperature of 70 °C, and a solid-to-liquid ratio of 1:5, resulted in a demulsification rate of 97.95% ± 0.03%. After demulsification, the particle size of the peanut emulsion increased, while the absolute potential value and conductivity decreased. The type and content of proteins decreased, and the tertiary structure also changed, with tryptophan residues buried within the proteins, shifting the system from a polar to nonpolar environment. The microstructure of the emulsion changed and the emulsion transformed into W/O. To summarize, composite fatty acid had a significant effect on the demulsification of emulsion. Full article
Show Figures

Figure 1

16 pages, 1892 KiB  
Article
Morphological and Chemical Changes in the Hemolymph of the Wax Moth Galleria mellonella Infected by the Entomopathogenic Fungus Conidiobolus coronatus
by Mieczysława Irena Boguś, Agata Kaczmarek, Anna Katarzyna Wrońska, Mikołaj Drozdowski, Lena Siecińska, Ewelina Mokijewska and Marek Gołębiowski
Pathogens 2025, 14(1), 38; https://doi.org/10.3390/pathogens14010038 - 7 Jan 2025
Viewed by 1051
Abstract
Hemolymph enables communication between organs in insects and ensures necessary coordination and homeostasis. Its composition can provide important information about the physiological state of an insect and can have diagnostic significance, which might be particularly important in the case of harmful insects subjected [...] Read more.
Hemolymph enables communication between organs in insects and ensures necessary coordination and homeostasis. Its composition can provide important information about the physiological state of an insect and can have diagnostic significance, which might be particularly important in the case of harmful insects subjected to biological control. Galleria mellonella Linnaeus 1758 (Lepidoptera: Pyralidae) is a global pest to honey bee colonies. The hemolymph of its larvae was examined after infection with the soil fungus Conidiobolus coronatus (Constantin) Batko 1964 (Entomophthorales). It was found that after one hour of contact with the fungus, the volume of the hemolymph increased while its total protein content decreased. In larvae with a high pathogen load, just before death, hemolymph volume decreased to nearly initial levels, while total protein content and synthesis (incorporation of 35S-labeled methionine) increased. The hemolymph polypeptide profile (SDS-PAGE followed by autoradiography) of infected insects was significantly different from that of healthy larvae. Hemocytes of infected larvae did not surround the fungal hyphae, although they encapsulated small foreign bodies (phase contrast microscopy). Infection had a negative effect on hemocytes, causing oenocyte and spherulocyte deformation, granulocyte degranulation, plasmatocyte vacuolization, and hemocyte disintegration. GC-MS analysis revealed the presence of 21 compounds in the hemolymph of control insects. C. coronatus infection caused the appearance of 5 fatty acids absent in healthy larvae (heptanoic, decanoic, adipic, suberic, tridecanoic), the disappearance of 4 compounds (monopalmitoylglycerol, monooleoylglycerol, monostearin, and cholesterol), and changes in the concentrations of 8 compounds. It remains an open question whether substances appearing in the hemolymph of infected insects are a product of the fungus or if they are released from the insect tissues damaged by the growing hyphae. Full article
(This article belongs to the Section Fungal Pathogens)
Show Figures

Figure 1

11 pages, 3351 KiB  
Article
Emulsive Liquid–Liquid Microextraction for the Determination of Phthalic Acid Esters in Environmental Water Samples
by Xinyuan Bi, Chi Zhang, Xiaorong Xue, Shangjun Su, Zhiping Yang, Xu Jing and Qiang Zhang
Molecules 2024, 29(24), 5908; https://doi.org/10.3390/molecules29245908 - 14 Dec 2024
Cited by 1 | Viewed by 901
Abstract
A convenient, rapid, and environmentally friendly method, emulsive liquid–liquid microextraction combined with high-performance liquid chromatography, was established to determine phthalic acid esters in tap, river, lake, and sea water. After the method’s optimization, we obtained the appropriate volume of the extractant and pure [...] Read more.
A convenient, rapid, and environmentally friendly method, emulsive liquid–liquid microextraction combined with high-performance liquid chromatography, was established to determine phthalic acid esters in tap, river, lake, and sea water. After the method’s optimization, we obtained the appropriate volume of the extractant and pure water, the number of strokes, the separation methods, the mass volume fraction of the demulsifier, the demulsifier volume, the sample volume, the salt amount, and the pH conditions. This method requires only 200 μL of heptanoic acid (fatty acid) as the extractant and 75 mg of sodium acetate as demulsifiers for fast microextraction and separation, respectively, avoiding the use of further equipment. Emulsive liquid–liquid microextraction offers substantial advantages over dispersive liquid–liquid microextraction by eliminating the need for toxic dispersants, thereby preventing any influences of dispersants on the partition coefficients. The linear range of detection ranged from 0.5 to 50 μg L−1, with a limit of detection of 0.2 μg L−1 and a limit of quantitation of 0.5 μg L−1. The recoveries ranged from 80.2% to 106.3%, and the relative standard deviations ranged between 0.5% and 6.7%. Five greenness metrics confirmed that this method is environmentally friendly and aligns with the principles of green analytical chemistry. The proposed method achieved a greenness score of 8.42, surpassing that of other methods as evaluated using the SPMS. The novel method may well be a valuable technique for determining phthalic acid esters in water samples. Full article
Show Figures

Figure 1

15 pages, 5137 KiB  
Article
Volatile Substances, Quality and Non-Targeted Metabolomics Analysis of Commercially Available Selenium-Enriched Rice
by Yu Zhang, Qianqian Lian, Jianji Zhao, Yanping He, Huang Dai, Xiuying Liu, Wei Zhang and Jie Bi
Molecules 2024, 29(23), 5703; https://doi.org/10.3390/molecules29235703 - 3 Dec 2024
Viewed by 1028
Abstract
Selenium is an essential trace element for the human body. However, its intake is usually low. Therefore, the production and utilization of selenium-enriched food are currently a research hotspot. Despite the remarkable scientific interest in this topic, only a few of the numerous [...] Read more.
Selenium is an essential trace element for the human body. However, its intake is usually low. Therefore, the production and utilization of selenium-enriched food are currently a research hotspot. Despite the remarkable scientific interest in this topic, only a few of the numerous studies focus on commercially available products. This study examined the nutritional quality, physical and chemical properties, cooking characteristics, and eating quality of four commercially available hot-selling rice types, both selenium-enriched and non-selenium-enriched, and discovered that selenium-enriched rice outperforms ordinary rice in terms of both nutritional quality and taste. In addition, we employed the gas chromatography–ion mobility spectrometry (GC-IMS) technique to evaluate the volatile chemicals of rice. Some of the chemicals that made selenium-rich rice taste different from regular rice were pentanal, (E)-2-Hexen-1-ol, ethyl-3-methyl butanoate, 2-furan methanol acetate, ethyl heptanoate, ethyl hexanoate, methyl hexanoate, isopentyl pentanoate, and ethyl butyrate. We looked into the metabolite profiles of rice using LC-MS-based untargeted metabolomics to obtain a better idea of the different metabolites that are found in selenium-enriched rice compared to regular rice. We identified a total of 522 metabolites and screened 182, 227, and 100 differential metabolites in selenium-enriched (A) vs. non-selenium-enriched rice (B/C/D) groups, respectively. This study revealed that selenium primarily influenced the metabolism of D-amino acids, starch, sucrose, and linoleic acid in rice. This study systematically analyzed the quality differences between selenium-enriched and non-selenium-enriched rice available on the market. For consumers, it is essential to understand the quality of selenium-rich rice on the market to guide the purchase of rice. Full article
(This article belongs to the Section Flavours and Fragrances)
Show Figures

Figure 1

14 pages, 1263 KiB  
Article
Blackcurrant Anthocyanins Attenuate Estrogen -Deficiency-Induced Bone Loss through Modulating Microbial-Derived Short-Chain Carboxylic Acids and Phytoestrogen Metabolites in Peri- and Early Postmenopausal Women
by Briana M. Nosal, Staci N. Thornton, Alexey V. Melnik, Ali Lotfi, Manije Darooghegi Mofrad, Alexander Aksenov, Elaine Choung-Hee Lee and Ock K. Chun
Metabolites 2024, 14(10), 541; https://doi.org/10.3390/metabo14100541 - 11 Oct 2024
Cited by 2 | Viewed by 1514
Abstract
Objectives: The present study aimed to assess the effects of blackcurrant (BC) anthocyanins on concentrations of microbial-derived short-chain carboxylic acids (SCCAs) and metabolites of phytoestrogens. We then examined their associations with six-month changes in whole-body bone mineral density (BMD) and biomarkers of bone [...] Read more.
Objectives: The present study aimed to assess the effects of blackcurrant (BC) anthocyanins on concentrations of microbial-derived short-chain carboxylic acids (SCCAs) and metabolites of phytoestrogens. We then examined their associations with six-month changes in whole-body bone mineral density (BMD) and biomarkers of bone metabolism. Methods: Fecal and blood samples from a pilot randomized controlled trial were collected and analyzed from 37 eligible peri- and early postmenopausal women aged 45–60 years who were randomized into one of three treatment groups consuming one placebo capsule (control), 392 mg BC (low BC) or 784 mg BC (high BC) daily for six months. Results: Significant differences were observed between groups at baseline in acetic, propionic, valeric, caproic and heptanoic acids (p < 0.05). Isobutyric acid significantly decreased from baseline (0 months) to six months in the control group (p < 0.05) and the high BC group had a significantly greater concentration than the control group at six months (p < 0.05). Butyric acid was significantly greater in the high BC group than low BC at six months (p < 0.05). Six-month changes in caproic and isobutyric acids showed weak correlations with changes in whole-body BMD (r = 0.3519, p < 0.05 and r = 0.3465, p < 0.05, respectively). Isovaleric and valeric acids displayed weak correlations with BALP (r = 0.3361, p < 0.05) and OPG (r = 0.3593, p < 0.05), respectively. Enterodiol was positively correlated with BALP (r = 0.6056, p < 0.01) while enterolactone was positively correlated with osteocalcin (r = 0.5902, p < 0.001) and negatively correlated with sclerostin (r = −0.3485, p < 0.05). Conclusions: The results suggest that BC may be a potential dietary agent to reduce postmenopausal bone loss through modulating microbially-derived SCCAs and phytoestrogen metabolites. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

18 pages, 8986 KiB  
Article
Metagenomic and Metabolomic Profiling Reveals the Differences of Flavor Quality between Hongqu Rice Wines Fermented with Gutian Qu and Wuyi Qu
by Zihua Liang, Shiyun Chen, Hao Wang, Qi Wu, Weiling Guo, Li Ni and Xucong Lv
Foods 2024, 13(19), 3114; https://doi.org/10.3390/foods13193114 - 29 Sep 2024
Cited by 1 | Viewed by 1460
Abstract
Jiuqu (starter) makes an important contribution to the formation of the flavor characteristics of Hongqu rice wine (HQW). Gutian Qu (GTQ) and Wuyi Qu (WYQ) are two kinds of Jiuqu commonly used in HQW brewing, but the comparison of the two kinds of [...] Read more.
Jiuqu (starter) makes an important contribution to the formation of the flavor characteristics of Hongqu rice wine (HQW). Gutian Qu (GTQ) and Wuyi Qu (WYQ) are two kinds of Jiuqu commonly used in HQW brewing, but the comparison of the two kinds of HQW is still insufficient at present. The objective of this study was to compare the dynamic changes of amino acids (AAs), higher alcohols (HAs), bioamines (BAs), volatile flavor compounds (VFCs), and microbial communities in HQW fermentation, with GTQ and WYQ as starter. This study used an automatic amino acid analyzer, GC, HPLC, and GC-MS to detect AAs, HAs, Bas, and VFCs during fermentation; metagenomic sequencing technology was used to elucidate the microbial community and its functional characteristics. The results showed that the contents of AAs and HAs in HQW brewed with WYQ (WYW) were significantly higher than those in HQW brewed with GTQ (GTW). On the contrary, the majority of BAs in GTW were significantly higher than those in WYW. The composition of VFCs in WYW and GTW were obviously different, as most of the VFCs were notably enriched in WYW, while ethyl caproate, isoamyl acetate, ethyl heptanoate, ethyl nonanoate, 1-decanol, citronellol, phenethyl acetate, and hexanoic acid were more abundant in GTW. Burkholderia gladioli, Pantoea dispersa, Weissella cibaria, Monascus purpureus, and Saccharomyces cerevisiae were the predominant microbial populations in GTW brewing at the species level, while Sphingomonas sp., Kosakonia cowanii, Enterobacter asburiae, Leuconostoc lactis, Aspergillus niger, and Saccharomyces cerevisiae were the dominant microbial species in WYW brewing. The abundance of functional genes involved in BAs biosynthesis were much higher in GTW brewing, while the abundance of functional genes related to the metabolism of characteristic VFCs were much higher in WYW brewing. Collectively, these findings provided evidence for elucidating the effects of Jiuqu and microbial communities on HQW flavor quality, and laid a solid foundation for the improvement of HQW flavor quality. Full article
Show Figures

Figure 1

20 pages, 3483 KiB  
Article
Molecular Sensomics Combined with Random Forest Model Can Reveal the Evolution of Flavor Type of Baijiu Based on Differential Markers
by He Huang, Yiyuan Chen, Yaxin Hou, Jiaxin Hong, Hao Chen, Dongrui Zhao, Jihong Wu, Jinchen Li, Jinyuan Sun, Xiaotao Sun, Mingquan Huang and Baoguo Sun
Foods 2024, 13(19), 3034; https://doi.org/10.3390/foods13193034 - 24 Sep 2024
Cited by 4 | Viewed by 1266
Abstract
Baijiu is popular with a long history and balanced flavor. Flavor type is the most widely used classification mode for Baijiu. However, the evolutionary relationships of Baijiu flavor types and the differential markers between flavor types are still unclear, significantly impacting the development [...] Read more.
Baijiu is popular with a long history and balanced flavor. Flavor type is the most widely used classification mode for Baijiu. However, the evolutionary relationships of Baijiu flavor types and the differential markers between flavor types are still unclear, significantly impacting the development of the Baijiu industry. In this study, a total of 319 trace components were identified using gas chromatography–olfactometry–mass spectrometry and gas chromatography–mass spectrometry. Among them, 91 trace components with high odor active values or taste active values were recognized as flavor components. Then random forests were conducted to screen differential markers between the derived and basic flavor types, while a principal component analysis assessed their effectiveness in distinguishing the flavor types of Baijiu. Finally, 19 differential markers (including 3-methylbutyric acid, pentanoic acid, 2-butanol, 2,3-butanediol, ethyl pro-panoate, isobutyl acetate, ethyl butanoate, ethyl hexanoate, ethyl heptanoate, ethyl lactate, ethyl 2-hydroxy butanoate, isopentyl hexanoate, ethyl nonanoate, isopropyl myristate, ethyl tetradecanoate, ethyl benzoate, 2,4-di-t-butylphenol, 2-methylbutanal and 3-octanone) were screened and proven to effectively reveal the evolution of Baijiu flavor types; these were further verified as key differential markers using addition tests and a correlation analysis. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

34 pages, 2751 KiB  
Article
Characterisation of the Volatile Compounds and Key Odourants in Japanese Mandarins by Gas Chromatography–Mass Spectrometry and Gas Chromatography–Olfactometry
by Lingyi Li, Rui Min Vivian Goh, Yunle Huang, Kim-Huey Ee, Aileen Pua, Daphne Tan, Shanbo Zhang, Lionel Jublot, Shao Quan Liu and Bin Yu
Separations 2024, 11(8), 237; https://doi.org/10.3390/separations11080237 - 1 Aug 2024
Viewed by 2134
Abstract
Japanese mandarins are becoming increasingly popular due to their pleasant aroma. The volatiles in four varieties of Japanese mandarins (Iyokan, Ponkan, Shiranui, and Unshiu mikan) were extracted by headspace solid-phase microextraction (HS-SPME) and solvent extraction, then analysed by gas chromatography–mass spectrometry (GC-MS). Principal [...] Read more.
Japanese mandarins are becoming increasingly popular due to their pleasant aroma. The volatiles in four varieties of Japanese mandarins (Iyokan, Ponkan, Shiranui, and Unshiu mikan) were extracted by headspace solid-phase microextraction (HS-SPME) and solvent extraction, then analysed by gas chromatography–mass spectrometry (GC-MS). Principal component analysis (PCA) of the GC-MS data demonstrated distinct segregation of all four Japanese mandarin varieties. Esters, such as neryl acetate, distinguished Iyokan. Methylthymol uniquely characterised Ponkan, valencene was exclusive to Shiranui, and acids like hexanoic acid and heptanoic acid differentiated Unshiu mikan from the other three varieties. Aroma extract dilution analysis (AEDA) revealed 131 key odourants across four Japanese mandarins, including myrcene (peppery, terpenic), perillyl alcohol (green, spicy, floral), trans-nerolidol (sweet, floral), and trans-farnesol (woody, floral, green). Finally, sensory evaluation was conducted on the four Japanese mandarin peel extracts to describe the distinct aroma profile of each variety of Japanese mandarin: Iyokan had higher floral and juicy notes, Ponkan showed higher sulphury notes, Shiranui was perceived to have more albedo notes, and Unshiu mikan exhibited higher peely, green, and woody notes. Full article
Show Figures

Figure 1

14 pages, 3669 KiB  
Article
Qualitative and Quantitative Metabolite Comparison of Korean Traditional Alcoholic Beverages: Takju, Yakju, and Traditional-Soju
by Hyun-Ji Tak, Na-Rae Lee, Sowon Yang, So-Young Kim and Choong-Hwan Lee
Foods 2024, 13(6), 956; https://doi.org/10.3390/foods13060956 - 21 Mar 2024
Cited by 4 | Viewed by 2389
Abstract
With increasing interest in Korean foods and beverages, Korean traditional alcoholic beverages need to be studied. To characterize Korean traditional alcoholic beverages, we analyzed the metabolites of Takju, Yakju, and Traditional-Soju using 48 commercial products. We performed non-targeted metabolite profiling using [...] Read more.
With increasing interest in Korean foods and beverages, Korean traditional alcoholic beverages need to be studied. To characterize Korean traditional alcoholic beverages, we analyzed the metabolites of Takju, Yakju, and Traditional-Soju using 48 commercial products. We performed non-targeted metabolite profiling using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) and identified 33 significantly discriminant metabolites, including nine organic acids, three amino acids, and seven fatty acids, in the three types of alcoholic beverage. Subsequently, we quantified the profiled metabolites in each product and compared their contents to identify alcoholic beverage type-specific metabolites. Thus, we figured out seven metabolites using receiver operating characteristic (ROC) curves. The results revealed that octadecanoic acid (limit of detection (LOD) to 168.72 mg/L), nonanoic acid (LOD to 112.54 mg/L), and octanoic acid (8.00 to 145.08 mg/L) in Takju; succinic acid (LOD to 1.90 mg/mL), heptanoic acid (LOD to 343.23 mg/L), and hexadecanoic acid (20.28 to 126.45 mg/L) in Yakju; and malonic acid (LOD to 19.13 mg/mL) in Traditional-Soju, with an area under the curve (AUC) > 0.7, are important metabolites that can distinguish the type of alcoholic beverage. Our results provide qualitative and quantitative metabolite information about Korean traditional alcoholic beverages that can be used by consumers and manufacturers. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

11 pages, 1290 KiB  
Article
Identification of Short-Chain Fatty Acids for Predicting Preterm Birth in Cervicovaginal Fluid Using Mass Spectrometry
by Young-Min Hur, Eun-Jin Kwon, Young-Ah You, Sunwha Park, Soo-Min Kim, Gain Lee, Yoon-Young Go and Young-Ju Kim
Int. J. Mol. Sci. 2024, 25(6), 3396; https://doi.org/10.3390/ijms25063396 - 17 Mar 2024
Cited by 2 | Viewed by 1735
Abstract
Preterm birth (PTB) refers to delivery before 37 weeks of gestation. Premature neonates exhibit higher neonatal morbidity and mortality rates than term neonates; therefore, predicting and preventing PTB are important. In this study, we investigated the potential of using short-chain fatty acid (SCFA) [...] Read more.
Preterm birth (PTB) refers to delivery before 37 weeks of gestation. Premature neonates exhibit higher neonatal morbidity and mortality rates than term neonates; therefore, predicting and preventing PTB are important. In this study, we investigated the potential of using short-chain fatty acid (SCFA) levels, specific vaginal microbiota-derived metabolites, as a biomarker in predicting PTB using gas chromatography/mass spectrometry. Cervicovaginal fluid (CVF) was collected from 89 pregnant women (29 cases of PTB vs. 60 controls) without evidence of other clinical infections, and SCFA levels were measured. Furthermore, the PTB group was divided into two subgroups based on birth timing after CVF sampling: delivery ≤ 2 days after sampling (n = 10) and ≥2 days after sampling (n = 19). The concentrations of propionic acid, isobutyric acid, butyric acid, valeric acid, hexanoic acid, and heptanoic acid were significantly higher in the PTB group than in the term birth (TB) group (p < 0.05). In particular, the concentrations of propionic acid, isobutyric acid, hexanoic acid, and heptanoic acid were continuously higher in the PTB group than in the TB group (p < 0.05). In the delivery ≤ 2 days after sampling group, the propionic acid, isobutyric acid, hexanoic acid, and heptanoic acid levels were significantly higher than those in the other groups (p < 0.05). This study demonstrated a significant association between specific SCFAs and PTB. We propose these SCFAs as potential biomarkers for the prediction of PTB. Full article
(This article belongs to the Special Issue Molecular Pathogenesis and Treatment of Pregnancy Complications)
Show Figures

Figure 1

17 pages, 3743 KiB  
Article
Heptanoate Improves Compensatory Mechanism of Glucose Homeostasis in Mitochondrial Long-Chain Fatty Acid Oxidation Defect
by Siti Nurjanah, Albert Gerding, Marcel A. Vieira-Lara, Bernard Evers, Miriam Langelaar-Makkinje, Ute Spiekerkoetter, Barbara M. Bakker and Sara Tucci
Nutrients 2023, 15(21), 4689; https://doi.org/10.3390/nu15214689 - 5 Nov 2023
Cited by 1 | Viewed by 1971
Abstract
Defects in mitochondrial fatty acid β-oxidation (FAO) impair metabolic flexibility, which is an essential process for energy homeostasis. Very-long-chain acyl-CoA dehydrogenase (VLCADD; OMIM 609575) deficiency is the most common long-chain mitochondrial FAO disorder presenting with hypoglycemia as a common clinical manifestation. To prevent [...] Read more.
Defects in mitochondrial fatty acid β-oxidation (FAO) impair metabolic flexibility, which is an essential process for energy homeostasis. Very-long-chain acyl-CoA dehydrogenase (VLCADD; OMIM 609575) deficiency is the most common long-chain mitochondrial FAO disorder presenting with hypoglycemia as a common clinical manifestation. To prevent hypoglycemia, triheptanoin—a triglyceride composed of three heptanoates (C7) esterified with a glycerol backbone—can be used as a dietary treatment, since it is metabolized into precursors for gluconeogenesis. However, studies investigating the effect of triheptanoin on glucose homeostasis are limited. To understand the role of gluconeogenesis in the pathophysiology of long-chain mitochondrial FAO defects, we injected VLCAD-deficient (VLCAD−/−) mice with 13C3-glycerol in the presence and absence of heptanoate (C7). The incorporation of 13C3-glycerol into blood glucose was higher in VLCAD−/− mice than in WT mice, whereas the difference disappeared in the presence of C7. The result correlates with 13C enrichment of liver metabolites in VLCAD−/− mice. In contrast, the C7 bolus significantly decreased the 13C enrichment. These data suggest that the increased contribution of gluconeogenesis to the overall glucose production in VLCAD−/− mice increases the need for gluconeogenesis substrate, thereby avoiding hypoglycemia. Heptanoate is a suitable substrate to induce glucose production in mitochondrial FAO defect. Full article
(This article belongs to the Special Issue Diet, Nutrition and Metabolic Health)
Show Figures

Figure 1

13 pages, 484 KiB  
Article
An Improved Validated Method for the Determination of Short-Chain Fatty Acids in Human Fecal Samples by Gas Chromatography with Flame Ionization Detection (GC-FID)
by Morganne Smith, Lee Polite, Andreas Christy, Indika Edirisinghe, Britt Burton-Freeman and Amandeep Sandhu
Metabolites 2023, 13(11), 1106; https://doi.org/10.3390/metabo13111106 - 24 Oct 2023
Cited by 2 | Viewed by 3603
Abstract
Short-chain fatty acids (SCFAs) are metabolites produced by the gut microbiota through the fermentation of non-digestible carbohydrates. Recent studies suggest that the gut microbiota composition, diet and metabolic status play an important role in the production of SCFAs. The primary objective of this [...] Read more.
Short-chain fatty acids (SCFAs) are metabolites produced by the gut microbiota through the fermentation of non-digestible carbohydrates. Recent studies suggest that the gut microbiota composition, diet and metabolic status play an important role in the production of SCFAs. The primary objective of this study was to develop a simplified method for SCFA analysis in human fecal samples by gas chromatography with flame ionization detection (GC-FID). The secondary objective was to apply the method to fecal samples collected from a clinical trial. The developed GC-FID method showed excellent linearity (R2 > 0.99994), with a limit of detection (LOD) ranging from 0.02 to 0.23 µg/mL and a limit of quantification (LOQ) ranging from 0.08 to 0.78 µg/mL. Recovery for the method ranged between 54.24 ± 1.17% and 140.94 ± 2.10%. Intra- and inter-day repeatability ranged from 0.56 to 1.03 and from 0.10 to 4.76% RSD, respectively. Nine SCFAs were identified and quantified (acetic, propionic, iso-butyric, butyric, iso-valeric, valeric, 4-methyl valeric, hexanoic and heptanoic acids) in freeze-dried fecal samples. The clinical trial compared participants with prediabetes mellitus and insulin resistance (IR-group, n = 20) to metabolically healthy participants (reference group, R-group, n = 9) following a 4-week intervention of a daily red raspberry smoothie (RRB, 1 cup fresh-weight equivalent) with or without fructo-oligosaccharide (RRB + FOS, 1 cup RRB + 8 g FOS). The statistical analysis (Student’s t-test, ANCOVA) was performed on PC-SAS 9.4 (SAS Institute). Acetic acid was higher in the R-group compared to the IR-group at baseline/week 0 (p = 0.14). No significant changes in fecal SCFA content were observed after 4 weeks of either RRB or RRB + FOS. Full article
(This article belongs to the Section Bioinformatics and Data Analysis)
Show Figures

Figure 1

17 pages, 2531 KiB  
Article
Demulsification of Emulsion Using Heptanoic Acid during Aqueous Enzymatic Extraction and the Characterization of Peanut Oil and Proteins Extracted
by Tianci Li, Chenxian Yang, Kunlun Liu, Tingwei Zhu, Xiaojie Duan and Yandong Xu
Foods 2023, 12(19), 3523; https://doi.org/10.3390/foods12193523 - 22 Sep 2023
Cited by 5 | Viewed by 2079
Abstract
Peanut oil body emulsion occurs during the process of aqueous enzymatic extraction (AEE). The free oil is difficult to release and extract because its structure is stable and not easily destroyed. Demulsification can release free oil in an oil body emulsion, so various [...] Read more.
Peanut oil body emulsion occurs during the process of aqueous enzymatic extraction (AEE). The free oil is difficult to release and extract because its structure is stable and not easily destroyed. Demulsification can release free oil in an oil body emulsion, so various fatty acids were selected for the demulsification. Changes in the amount of heptanoic acid added, solid–liquid ratio, reaction temperature, and reaction time were adopted to investigate demulsification, and the technological conditions of demulsification were optimized. While the optimal conditions were the addition of 1.26% of heptanoic acid, solid–liquid ratio of 1:3.25, reaction temperature of 72.7 °C, and reaction time of 55 min, the maximum free oil yield was (95.84 ± 0.19)%. The analysis of the fatty acid composition and physicochemical characterization of peanut oils extracted using four methods were studied during the AEE process. Compared with the amount of oil extracted via other methods, the unsaturated fatty acids of oils extracted from demulsification with heptanoic acid contained 78.81%, which was significantly higher than the other three methods. The results of physicochemical characterization indicated that the oil obtained by demulsification with heptanoic acid had a higher quality. According to the analysis of the amino acid composition, the protein obtained using AEE was similar to that of commercial peanut protein powder (CPPP). However, the essential amino acid content of proteins extracted via AEE was significantly higher than that of CPPP. The capacity of water (oil) holding, emulsifying activity, and foaming properties of protein obtained via AEE were better than those for CPPP. Overall, heptanoic acid demulsification is a potential demulsification method, thus, this work provides a new idea for the industrial application of simultaneous separation of oil and proteins via AEE. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

18 pages, 1462 KiB  
Article
Effects of Algicidal Macrophyte Metabolites on Cyanobacteria, Microcystins, Other Plankton, and Fish in Microcosms
by Svetlana Kurbatova, Nadezhda Berezina, Andrey Sharov, Ekaterina Chernova, Evgeny Kurashov, Yulia Krylova, Igor Yershov, Alexander Mavrin, Natalia Otyukova, Elena Borisovskaya and Roman Fedorov
Toxins 2023, 15(9), 529; https://doi.org/10.3390/toxins15090529 - 28 Aug 2023
Cited by 8 | Viewed by 2029
Abstract
To control harmful algae blooms (HABs), methods based on natural mechanisms are now required. We investigated the effects of an algicide derived from macrophyte metabolites, namely mixtures of gallic, tetradecanoic, heptanoic, and octanoic acids (1:1:1:1 mass ratio, a total concentration of 14 mg/L), [...] Read more.
To control harmful algae blooms (HABs), methods based on natural mechanisms are now required. We investigated the effects of an algicide derived from macrophyte metabolites, namely mixtures of gallic, tetradecanoic, heptanoic, and octanoic acids (1:1:1:1 mass ratio, a total concentration of 14 mg/L), on the biomass of cyanobacteria and other plankton and the production of microcystins under experimental conditions. Two types of microcosms have been created: simple (microalgae, cyanobacteria, and zooplankton) and complex (microalgae, cyanobacteria, zooplankton, and planktivorous fish). We observed the dynamics of the phytoplankton structure, the concentrations of microcystins and chlorophyll-a, hydrochemistry, and the status of zooplankton and fish in both types of microcosms with and without algicide for one month (from 19 July to 19 August 2021). The introduction of algicide caused changes in phytoplankton structure, a drop in cyanobacterial biomass, and a decrease in the total concentration of microcystins. Surprisingly, the contributions of the most toxic microcystins (LR form) were higher in both types of microcosms exposed to algicide than in microcosms without algicide. The inhibitory effect on the cyanobacterial biomass was most significant in complex ecosystems (containing fish), while it was only observed at the end of the exposure in simple ecosystems. Not only algicide but also phytoplankton consumed by fish and zooplankton, as well as nutrient excretory activity by both consumers, seem to have impact on cyanobacterial biomass. This study found that the using chemical substances similar to macrophyte metabolites can help regulate HABs and cyanotoxins. However, the results differ depending on ecosystem type. Full article
(This article belongs to the Special Issue Prospective Studies on Harmful Cyanobacteria and Cyanotoxins)
Show Figures

Graphical abstract

Back to TopTop