Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = hemp weed management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2556 KiB  
Article
The Efficacy of Sunn Hemp (Crotalaria juncea) and Fe3O4 Nanoparticles in Controlling Weed Seed Germination
by Fatemeh Ahmadnia, Ali Ebadi, Mohammad Taghi Alebrahim, Ghasem Parmoon, Solmaz Feizpoor and Masoud Hashemi
Agronomy 2025, 15(4), 795; https://doi.org/10.3390/agronomy15040795 - 24 Mar 2025
Viewed by 753
Abstract
Utilizing nanotechnology for weed management offers a sustainable alternative to synthetic herbicides. This study evaluated the effectiveness of sunn hemp extract (SH), Fe3O4 nanoparticles (NPs), and Fe3O4/sunn hemp NPs in inhibiting the germination of redroot pigweed [...] Read more.
Utilizing nanotechnology for weed management offers a sustainable alternative to synthetic herbicides. This study evaluated the effectiveness of sunn hemp extract (SH), Fe3O4 nanoparticles (NPs), and Fe3O4/sunn hemp NPs in inhibiting the germination of redroot pigweed (Amaranthus retroflexus L.), wild mustard (Sinapis arvensis L.), and lamb’s quarters (Chenopodium album L.) weeds. The structural characteristics of the NPs were analyzed using Scanning electron microscopy (SEM), Scanning X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Vibrating sample magnetometer (VSM), Brunner–Emmet–Teller (BET), and Fourier-transform infrared spectroscopy (FTIR). The optimal Fe3O4 NP concentration for reducing seed germination ranged from 3000 to 3100 mg L−1. Higher concentrations of SH extract (100, 150, and 200 g L−1) effectively inhibited weed seed germination with A. retroflexus displaying the highest sensitivity. The maximal effective concentration (NOECmax) for Fe3O4/sunn hemp NPs was 10 g L−1 for S. arvensis, 150 g L1 for A. retroflexus, and 200 g L−1 for C. album. Fe3O4/sunn hemp NPs led to a reduction in 1/D50 and an increase in EEC50, indicating a rise in sensitivity to Fe3O4 NPs, particularly in S. arvensis. Variations in species responses to SH, Fe3O4 NPs, and Fe3O4/sunn hemp NPs are likely influenced by genetic, physiological, and ecological factors. Overall, the findings suggest that utilizing Fe3O4/sunn hemp NPs offers an effective strategy for sustainable weed management. Full article
Show Figures

Figure 1

21 pages, 4161 KiB  
Article
Systemic Uptake of Rhodamine Tracers Quantified by Fluorescence Imaging: Applications for Enhanced Crop–Weed Detection
by Yu Jiang, Masoume Amirkhani, Ethan Lewis, Lynn Sosnoskie and Alan Taylor
AgriEngineering 2025, 7(3), 49; https://doi.org/10.3390/agriengineering7030049 - 20 Feb 2025
Cited by 1 | Viewed by 892
Abstract
Systemic fluorescence tracers introduced into crop plants provide an active signal for crop–weed differentiation that can be exploited for precision weed management. Rhodamine B (RB), a widely used tracer for seeds and seedlings, possesses desirable properties; however, its application as a seed treatment [...] Read more.
Systemic fluorescence tracers introduced into crop plants provide an active signal for crop–weed differentiation that can be exploited for precision weed management. Rhodamine B (RB), a widely used tracer for seeds and seedlings, possesses desirable properties; however, its application as a seed treatment has been limited due to potential phytotoxic effects on seedling growth. Therefore, investigating mitigation strategies or alternative systemic tracers is necessary to fully leverage active signaling for crop–weed differentiation. This study aimed to identify and address the phytotoxicity concerns associated with Rhodamine B and evaluate Rhodamine WT and Sulforhodamine B as potential alternatives. A custom 2D fluorescence imaging system, along with analytical methods, was developed to optimize fluorescence imaging quality and facilitate quantitative characterization of fluorescence intensity and patterns in plant seedlings, individual leaves, and leaf disc samples. Rhodamine compounds were applied as seed treatments or in-furrow (soil application). Rhodamine B phytotoxicity was mitigated by growing in a sand and perlite media due to the adsorption of RB to perlite. Additionally, in-furrow and seed treatment methods were tested for Rhodamine WT and Sulforhodamine B to evaluate their efficacy as non-phytotoxic alternatives. Experimental results demonstrated that Rhodamine B applied via seed pelleting and Rhodamine WT used as a direct seed treatment were the most effective approaches. A case study was conducted to assess fluorescence signal intensity for crop–weed differentiation at a crop–weed seed distance of 2.5 cm (1 inch). Results indicated that fluorescence from both Rhodamine B via seed pelleting and Rhodamine WT as seed treatment was clearly detected in plant tissues and was ~10× higher than that from neighboring weed plant tissues. These findings suggest that RB ap-plied via seed pelleting effectively differentiates plant seedlings from weeds with reduced phytotoxicity, while Rhodamine WT as seed treatment offers a viable, non-phytotoxic alternative. In conclusion, the combination of the developed fluorescence imaging system and RB seed pelleting presents a promising technology for crop–weed differentiation and precision weed management. Additionally, Rhodamine WT, when used as a seed treatment, provides satisfactory efficacy as a non-phytotoxic alternative, further expanding the options for fluorescence-based crop–weed differentiation in weed management. Full article
Show Figures

Graphical abstract

13 pages, 250 KiB  
Article
Exploring Chemical and Cultural Weed Management for Industrial Hemp Production in Georgia, USA
by Hannah E. Wright-Smith, Timothy W. Coolong, A. Stanley Culpepper, Taylor M. Randell-Singleton and Jenna C. Vance
Agrochemicals 2024, 3(3), 219-231; https://doi.org/10.3390/agrochemicals3030015 - 7 Aug 2024
Cited by 1 | Viewed by 2409
Abstract
Industrial hemp (Cannabis sativa) production is complex, with strict regulatory constraints and challenges associated with a lack of labeled pesticides due to its status as a novel crop in the US. Four experiments were conducted in 2020 and 2021 to establish [...] Read more.
Industrial hemp (Cannabis sativa) production is complex, with strict regulatory constraints and challenges associated with a lack of labeled pesticides due to its status as a novel crop in the US. Four experiments were conducted in 2020 and 2021 to establish herbicide tolerances for hemp production in the coastal plain of Georgia, USA. Objectives included evaluating hemp response to pretransplant or posttransplant herbicides, determining if planting method influenced herbicide injury from residual preplant applied herbicides, and understanding how plastic mulch may influence hemp flower yields. When applied one day prior to transplanting, maximum hemp crop visual injury was less than 12% compared to the untreated control, with acetochlor, flumioxazin, fomesafen, pendimethalin, and norflurazon while dithiopyr, halosulfuron, isoxaben, and isoxaflutole resulted in greater than 50% injury. Posttransplant applications of S-metolachlor, acetochlor, pendimethalin, and clethodim resulted in less than 15% injury while halosulfuron, metribuzin, trifloxysulfuron, imazethapyr, and prometryn applications resulted in greater than 50% injury to plants. Preplant and posttransplant applied herbicides were found to have little effect on total tetrahydrocannabinol (THC), cannabidiol (CBD), or total cannabinoids in the dry flower after harvest. In a separate experiment, injury from halosulfuron and metribuzin was 52% to 56% less when planted with a mechanical transplanter as compared to the practice of using a transplant wheel to depress a hole in the soil followed by hand transplanting. In the final experiment, hemp dry flower yield in a non-plastic mulched (bareground) system was similar to that in a plastic mulched system. However, early season plant above-ground biomass was less in the plastic mulched system, which may have been due to elevated soil temperatures inhibiting early season growth. Full article
(This article belongs to the Special Issue Feature Papers on Agrochemicals)
17 pages, 2907 KiB  
Article
Implementing Digital Multispectral 3D Scanning Technology for Rapid Assessment of Hemp (Cannabis sativa L.) Weed Competitive Traits
by Gursewak Singh, Tyler Slonecki, Philip Wadl, Michael Flessner, Lynn Sosnoskie, Harlene Hatterman-Valenti, Karla Gage and Matthew Cutulle
Remote Sens. 2024, 16(13), 2375; https://doi.org/10.3390/rs16132375 - 28 Jun 2024
Cited by 4 | Viewed by 2425
Abstract
The economic significance of hemp (Cannabis sativa L.) as a source of grain, fiber, and flower is rising steadily. However, due to the lack of registered herbicides effective in hemp cultivation, growers have limited weed management options. Plant height, biomass, and canopy [...] Read more.
The economic significance of hemp (Cannabis sativa L.) as a source of grain, fiber, and flower is rising steadily. However, due to the lack of registered herbicides effective in hemp cultivation, growers have limited weed management options. Plant height, biomass, and canopy architecture may affect crop–weed competition. Greenhouse experiments conducted at the joint Clemson University Coastal Research and Education Center and USDA-ARS research facility at Charleston, SC, USA used 27 hemp varieties, grown under controlled temperature and light conditions. Weekly plant scans using a digital multispectral phenotyping system, integrated with machine learning algorithms of the PlantEye F500 instrument, (Phenospex, Heerlen, Netherlands) captured high-resolution 3D models and spectral data of the plants. Manual and scanner-based measurements were validated and analyzed using statistical methods to assess plant growth and morphology. This study included validation tests showing a significant correlation (p < 0.001) between digital and manual measurements (R2 = 0.89 for biomass, R2 = 0.94 for height), indicating high precision. The use of 3D multispectral scanning significantly reduces the time-intensive nature of manual measurements, allowing for a more efficient assessment of morphological traits. These findings suggest that digital phenotyping can enhance integrated weed management strategies and improve hemp crop productivity by facilitating the selection of competitive hemp varieties. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Graphical abstract

11 pages, 678 KiB  
Review
The Potential of Three Summer Legume Cover Crops to Suppress Weeds and Provide Ecosystem Services—A Review
by Stavros Zannopoulos, Ioannis Gazoulis, Metaxia Kokkini, Nikolaos Antonopoulos, Panagiotis Kanatas, Marianna Kanetsi and Ilias Travlos
Agronomy 2024, 14(6), 1192; https://doi.org/10.3390/agronomy14061192 - 1 Jun 2024
Cited by 5 | Viewed by 2269
Abstract
Recently, there has been growing interest in the use of summer cover crops that can be grown during summer fallow periods of crop rotation. This study evaluates the potential of sunn hemp (Crotalaria juncea L.), velvetbean [Mucuna pruriens (L.) DC.] and [...] Read more.
Recently, there has been growing interest in the use of summer cover crops that can be grown during summer fallow periods of crop rotation. This study evaluates the potential of sunn hemp (Crotalaria juncea L.), velvetbean [Mucuna pruriens (L.) DC.] and cowpea [Vigna unguiculata (L.) Walp.]. as three annual legumes summer cover crops. The main objective of this review was to conduct global research comparing these summer cover crops to investigate the benefits, challenges, and trade-offs among ecosystems services when implementing these summer cover crops. In European agriculture, there are three main windows in crop rotation when these summer legumes can be grown: Around mid-spring after winter fallow, early summer after harvest of a winter crop, and mid- to late summer after harvest of an early-season crop. All three legumes can suppress weeds while they are actively growing. After termination, their mulch can create unfavorable conditions for weed emergence. Sunn hemp and velvetbean cover crops can cause a reduction in weed biomass of more than 50%. In addition to their ability to suppress weeds, sunn hemp, velvetbean, and cowpea provide a variety of ecosystem services, such as improving soil health, quality, and fertility, controlling pests, and sequestering carbon. The review highlights their promising role in weed suppression and their contribution to sustainable agricultural practices. However, further research is needed to evaluate their performance in weed management and their environmental impact in field trials under different soil-climatic conditions, as cover cropping is an effective practice but highly context-specific. Full article
(This article belongs to the Special Issue Weed Biology and Ecology: Importance to Integrated Weed Management)
Show Figures

Figure 1

11 pages, 3652 KiB  
Article
Hemp Seed Yield Responses to Nitrogen Fertility Rates
by Swarup Podder, Sanaz Shafian, Wade E. Thomason, T. Bain Wilson and John H. Fike
Crops 2024, 4(2), 145-155; https://doi.org/10.3390/crops4020011 - 11 Apr 2024
Cited by 3 | Viewed by 2298
Abstract
Industrial hemp (Cannabis sativa L.) holds promise as a crop for more sustainable supply chains given its potential as a source of high-strength fibers, adsorbents, and nutrient-dense feedstuffs. Developing nutrient management guidelines for hemp will be an important part of optimizing the [...] Read more.
Industrial hemp (Cannabis sativa L.) holds promise as a crop for more sustainable supply chains given its potential as a source of high-strength fibers, adsorbents, and nutrient-dense feedstuffs. Developing nutrient management guidelines for hemp will be an important part of optimizing the crop’s sustainability attributes. This study measured hemp seed yield in response to N fertilization rate (0, 60, 120, 180, and 240 kg N ha−1). Treatments were tested with four hemp cultivars (‘Joey’ and ‘Grandi’ in 2020, 2021, and 2022 and ‘NWG 2463’ and ‘NWG 4113’ in 2023) in Virginia. Nitrogen input influenced (p ≤ 0.0177) seed yield in all four experimental years, although the pattern of response varied substantially. In 2020, following delayed seeding, hemp showed a weak quadratic (p = 0.0113) response to N inputs, with peak yield (1640 kg ha−1) occurring with 120 kg N ha−1. In 2021, hemp displayed a strong linear (p < 0.0001) response to N inputs, with the highest seed yield (2510 kg ha−1) at 240 kg N ha−1. In 2022, a season characterized by low precipitation and high weed pressure, a weak, linear (p = 0.0111) response to the N rate was observed. The greatest seed yield (380 kg ha−1) was again observed with 240 kg N ha−1. In 2023, weed pressure remained an issue, but the response to N was strong and linear (p < 0.0001), with the greatest seed yield (831 kg ha−1) again measured at 240 kg N ha−1. These findings indicate hemp can be quite responsive to N inputs but that the magnitude of response is sensitive to other factors such as available soil moisture, weed pressure, and growing period. Full article
Show Figures

Figure 1

26 pages, 16053 KiB  
Article
Impact of Polylactic Acid Fibers in Cellulose Nonwoven Mulch Blends on Biodegradability and Performance—An Open Field Study
by Dragana Kopitar, Paula Marasovic and Domagoj Vrsaljko
Polymers 2024, 16(2), 222; https://doi.org/10.3390/polym16020222 - 12 Jan 2024
Cited by 4 | Viewed by 1823
Abstract
The performance and degradation of nonwoven mulches made from viscose, jute, hemp fibers, and their blends with PLA fibers, subjected to field conditions, are investigated. This research explores the possible substitution of traditional agricultural polyethylene mulching agro foil with environmentally friendly biodegradable nonwoven [...] Read more.
The performance and degradation of nonwoven mulches made from viscose, jute, hemp fibers, and their blends with PLA fibers, subjected to field conditions, are investigated. This research explores the possible substitution of traditional agricultural polyethylene mulching agro foil with environmentally friendly biodegradable nonwoven mulches produced from blends of jute, hemp, and viscose fibers along with PLA fibers. The nonwoven mulches underwent a ten-month exposure to field conditions, showing varied degradation. The jute and hemp nonwoven mulches degraded completely within the test period, whereas their blends with PLA fibers exhibited slowed degradation. This study indicated that PLA fibers in blends with jute, hemp, and viscose mulches slowed degradation, impacting their structural integrity and tensile properties. The tensile properties of nonwoven mulches blended with 20% of PLA fibers increased the breaking forces after field exposure. Observations on structural changes through microscopy highlighted the structure maintenance in jute and hemp blends due to the non-degraded PLA fibers, contrasting the complete degradation of 100% jute and hemp mulches. A microscopic analysis revealed alterations in the fiber structure and density changes, particularly in viscose mulches and their blends with PLA fibers. Soil temperature variations were observed under different mulches; e.g., agro foil consistently exhibited higher temperatures compared to nonwoven mulches. Notably, the hemp and jute/PLA blend mulches showed slightly elevated temperatures, while the viscose-based mulches consistently revealed the lowest temperatures. Regarding soil moisture, the nonwoven mulches generally maintained higher moisture levels compared to the control field and agro foil from June to October. These findings suggest that nonwoven mulches effectively preserved soil moisture during critical growth periods, potentially positively impacting plant growth. The weed suppression capabilities varied among mulches, with hemp mulch initially displaying the lowest suppression ability in the first six months. The addition of 20% of PLA fibers in mulch blends with viscose, jute, and hemp notably improved the weed control capabilities. Understanding the impacts of field conditions on newly produced nonwoven mulches is crucial for optimizing mulch selection in agricultural practices to enhance soil conditions and weed management. Full article
Show Figures

Figure 1

14 pages, 1464 KiB  
Review
Intercropping Cover Crops for a Vital Ecosystem Service: A Review of the Biocontrol of Insect Pests in Tea Agroecosystems
by Sabin Saurav Pokharel, Han Yu, Wanping Fang, Megha N. Parajulee and Fajun Chen
Plants 2023, 12(12), 2361; https://doi.org/10.3390/plants12122361 - 18 Jun 2023
Cited by 21 | Viewed by 4987
Abstract
The intercropping of cover crops has been adopted in several agroecosystems, including tea agroecosystems, which promotes ecological intensification. Prior studies have shown that growing cover crops in tea plantations provided different ecological services, including the biocontrol of pests. Cover crops enrich soil nutrients, [...] Read more.
The intercropping of cover crops has been adopted in several agroecosystems, including tea agroecosystems, which promotes ecological intensification. Prior studies have shown that growing cover crops in tea plantations provided different ecological services, including the biocontrol of pests. Cover crops enrich soil nutrients, reduce soil erosion, suppress weeds and insect pests, and increase the abundance of natural enemies (predators and parasitoids). We have reviewed the potential cover crops that can be incorporated into the tea agroecosystem, particularly emphasizing the ecological services of cover crops in pest control. Cover crops were categorized into cereals (buckwheat, sorghum), legumes (guar, cowpea, tephrosia, hairy indigo, and sunn hemp), aromatic plants (lavender, marigold, basil, and semen cassiae), and others (maize, mountain pepper, white clover, round-leaf cassia, and creeping indigo). Legumes and aromatic plants are the most potent cover crop species that can be intercropped in monoculture tea plantations due to their exceptional benefits. These cover crop species improve crop diversity and help with atmospheric nitrogen fixation, including with the emission of functional plant volatiles, which enhances the diversity and abundance of natural enemies, thereby assisting in the biocontrol of tea insect pests. The vital ecological services rendered by cover crops to monoculture tea plantations, including regarding the prevalent natural enemies and their pivotal role in the biocontrol of insect pests in the tea plantation, have also been reviewed. Climate-resilient crops (sorghum, cowpea) and volatile blends emitting aromatic plants (semen cassiae, marigold, flemingia) are recommended as cover crops that can be intercropped in tea plantations. These recommended cover crop species attract diverse natural enemies and suppress major tea pests (tea green leaf hopper, white flies, tea aphids, and mirid bugs). It is presumed that the incorporation of cover crops within the rows of tea plantations will be a promising strategy for mitigating pest attacks via the conservation biological control, thereby increasing tea yield and conserving agrobiodiversity. Furthermore, a cropping system with intercropped cover crop species would be environmentally benign and offer the opportunity to increase natural enemy abundance, delaying pest colonization and/or preventing pest outbreaks for pest management sustainability. Full article
(This article belongs to the Special Issue Plant Chemistry and Insect Adaptation from Physiology to Ecology)
Show Figures

Figure 1

25 pages, 2266 KiB  
Article
Effect of Fertilization and Weed Management Practices on Weed Diversity and Hemp Agronomic Performance
by Angeliki Kousta, Panayiota Papastylianou, Ilias Travlos, Antonios Mavroeidis and Ioanna Kakabouki
Agronomy 2023, 13(4), 1060; https://doi.org/10.3390/agronomy13041060 - 5 Apr 2023
Cited by 9 | Viewed by 3502
Abstract
The industrial hemp market is rapidly expanding, and best crop practices need to be assessed. This study aimed to determine the effect of fertilization and weed management on hemp crops and weed flora during the 2019 and 2020 growing seasons. Field experiments were [...] Read more.
The industrial hemp market is rapidly expanding, and best crop practices need to be assessed. This study aimed to determine the effect of fertilization and weed management on hemp crops and weed flora during the 2019 and 2020 growing seasons. Field experiments were laid out in a split–split plot design with three replicates: two hemp cultivars as main plots, three fertilization treatments as sub-plots, and three sub-sub-plots (weedy, weed-free, and herbicide application). For the computation of crop traits, 10 plants were randomly selected by each plot. Weed species were collected by quadrate for density and biomass weight determination. Increased fertilization rate positively affected plant height and dry biomass, while no impact was recorded on yield and yield components. The density and biomass of nitrophilous weeds were enhanced by fertilization, negatively affecting hemp growth. Marked differences were recorded on the competitive ability of cultivars since “Fedora 17” decreased the weed studied traits better than “Uso 31”. Herbicide application decreased the biomass of annual and perennial weeds by 38% and 13%, respectively, while it caused a reduction in hemp growth and yield of “Uso 31” plants. Further research should be conducted to address hemp yield losses under different cultural practices and weed control systems. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

12 pages, 635 KiB  
Article
Weed Management by In Situ Cover Crops and Anaerobic Soil Disinfestation in Plasticulture
by Gursewak Singh, Brian Ward, Amnon Levi and Matthew Cutulle
Agronomy 2022, 12(11), 2754; https://doi.org/10.3390/agronomy12112754 - 5 Nov 2022
Cited by 5 | Viewed by 2584
Abstract
Weeds negatively affect organic vegetable crop growth and profitability. Weed management is the greatest challenge for vegetable organic growers since control options are limited for organic vegetable production. Anaerobic soil disinfestation (ASD) is a novel non-chemical pest management technique that creates anoxic conditions [...] Read more.
Weeds negatively affect organic vegetable crop growth and profitability. Weed management is the greatest challenge for vegetable organic growers since control options are limited for organic vegetable production. Anaerobic soil disinfestation (ASD) is a novel non-chemical pest management technique that creates anoxic conditions in the topsoil layer for a limited time. ASD is primarily based on the addition of labile carbon sources to topsoil to promote anaerobic conditions driven by microorganisms in moist soil mulched with polyethylene film (polyfim). Field studies were conducted in the summer–fall of 2020 and 2021 to determine the efficacy of warm season cover crops used as carbon sources for ASD and their role in weed management. The study used a factorial experimental design with four cover crop residue treatments (sorghum-sudangrass, sunn hemp, both, or none) in two soil aeration conditions (aerated or non-aerated). Cover crops were grown for 75 days, incorporated into the soil, and sealed with totally impermeable film (TIF) clear mulch, followed by a 4-week ASD process. All incorporated cover crop treatments in non-aerated conditions generated moderate to higher anaerobic conditions (0–150 mV) and provided significantly higher (p < 0.05) weed control than all the other treatments tested or controls. Tomato plants transplanted in non-aerated, cover crops incorporated plots were more vigorous and produced higher yields than aerated plots. No phytotoxicity was observed on tomato plants following ASD treatment in any of the treatments tested. This study demonstrated that warm season cover crops could potentially serve as a carbon source for ASD in organic tomato production. Full article
Show Figures

Figure 1

19 pages, 1780 KiB  
Article
Mild Abiotic Stress Affects Development and Stimulates Hormesis of Hemp Aphid Phorodon cannabis
by Roma Durak, Malgorzata Jedryczka, Beata Czajka, Jan Dampc, Katarzyna Wielgusz and Beata Borowiak-Sobkowiak
Insects 2021, 12(5), 420; https://doi.org/10.3390/insects12050420 - 8 May 2021
Cited by 10 | Viewed by 4412
Abstract
The hemp aphid Phorodon cannabis Passerini is a well- known (Asia, Europe) or newly emerging (North America) insect. It is a monophagous insect pest causing considerable damage in field and glasshouse cultivations. The aim of this work was to study the effects of [...] Read more.
The hemp aphid Phorodon cannabis Passerini is a well- known (Asia, Europe) or newly emerging (North America) insect. It is a monophagous insect pest causing considerable damage in field and glasshouse cultivations. The aim of this work was to study the effects of meteorological (temperature) and agronomical (herbicide) factors on the biology of the hemp aphid. In one experiment, hemp plants were kept at constant temperatures ranging from 20 to 30 °C, and aphid survival and fecundity were measured. In a related experiment conducted at 20 °C, plants were treated with field-appropriate rates of a selective graminicide containing quizalofop-P-tefuryl (40 gL−1, 4.38%, HRAC group 1), commonly used to control weeds in hemp, and aphid enzyme activity was measured in addition to population parameters. We found that hemp aphids could live, feed and reproduce within the whole studied range of temperatures, demonstrating its great evolutionary plasticity. However, the optimal temperature for development was 25 °C, at which the insect lived and reproduced for 25 and 15 days, respectively, with an average fecundity of 7.5 nymphs per reproduction day. The herbicide treatment increased the activity of superoxide dismutase (SOD), catalase (CAT), β-glucosidase, S-glutathione transferase (GST), oxidoreductive peroxidase (POD), and polyphenol oxidase (PPO) in the aphids, but only on certain days after treatment, which indicates a mild stress in aphid tissues, related to a higher reproduction and changed feeding behavior; aphids moved from the actively growing tips compared to untreated plants. The results of these experiments are discussed in terms of the impact on the future management of this pest. Full article
(This article belongs to the Collection Biology and Management of Sap-Sucking Pests)
Show Figures

Graphical abstract

16 pages, 10120 KiB  
Article
Organic Kale and Cereal Rye Grain Production Following a Sunn Hemp Cover Crop
by Ted S. Kornecki and Kipling S. Balkcom
Agronomy 2020, 10(12), 1913; https://doi.org/10.3390/agronomy10121913 - 4 Dec 2020
Cited by 3 | Viewed by 3391
Abstract
A four-year field experiment was initiated in 2011 at the EV. Smith Research Station, in central Alabama, to determine the effect of sunn hemp (Crotalaria juncea L.) termination methods on organically grown kale (Brassica oleracea, var. acephala L.) for fresh market [...] Read more.
A four-year field experiment was initiated in 2011 at the EV. Smith Research Station, in central Alabama, to determine the effect of sunn hemp (Crotalaria juncea L.) termination methods on organically grown kale (Brassica oleracea, var. acephala L.) for fresh market and cereal rye (Secale cereale L.) for grain. Three different termination methods for the sunn hemp cover crop were chosen: (1) rolling/crimping with an experimental two-stage roller/crimper, (2) rotary mowing, and (3) rotary mowing with incorporation (disking). Kale plots were harvested in the winter and rye plots were harvested in the following spring. Kale plots were fallow from January to June (kept mowed) until planting sunn hemp again across all plots in late spring of the next growing season. Over four growing seasons, average sunn hemp biomass (dry basis) was 10,981 kg ha−1 with plant height of 2.4 m. The average C/N ratio of sunn hemp was 23:1. Sunn hemp biomass amounts differed among growing seasons (from 5589 to 14,720 kg ha−1) due to different weather conditions. Kale yield also varied across growing seasons, with the highest yield of 17,565 kg ha−1 measured in 2012 and the lowest (3915 kg ha−1) in 2014 due to massive weed pressure. Generally, sunn hemp residue management affected kale yield, with greater yields measured for mowed and incorporated residue (15,054 kg ha−1) compared with lower yields for mowed (6758 kg ha−1) and rolled sunn hemp (5559 kg ha−1). Lower yields were related to poor kale seed-to-soil contact (hair pinning) from large amounts of sunn hemp residue on the soil surface. Over four growing seasons, cereal rye grain yield varied among growing seasons, with an average yield of 1358 kg ha−1. Moreover, sunn hemp residue treatments affected grain yield, with greater yields for rolled (1419 kg ha−1) and mowed residue (1467 kg ha−1) compared with a lower yield (1187 kg ha−1) for mowed and incorporated sunn hemp residue. Full article
Show Figures

Figure 1

Back to TopTop